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Abstract— By vibrating a rigid plate with up to six degrees
of freedom, we can create a large family of programmable
frictional force fields acting on parts resting on the plate. These
fields can be used for sensorless part orientation, uncertainty-
reducing transport, and simultaneous manipulation of multiple
parts. The principle is demonstrated by a plate rotating about
an axis below the plate. Simple oscillatory rotation produces a
squeeze field that attracts and aligns parts along a center line.
This behavior is confirmed in experiment. Motivated by this
experimental confirmation, we use a simulation to find plate
motions that yield a number of other useful primitive force
fields. By sequencing these force fields, we can create any force
field that is a convex combination of the primitives.

I. INTRODUCTION

In pioneering work, Reznik and Canny [13], [14] demon-

strated that vibration of a rigid plate in a horizontal plane

can create frictional force fields acting on parts on the plate.

These force fields arise because Coulomb friction forces

between the plate and parts depend only on the direction

of slip, the normal force, and the coefficient of friction,

but not on the magnitude of the slip velocity. Based on

this observation, asymmetric periodic plate motions can be

designed that cause the plate to slip relative to a part for

a longer time in one direction than another, producing a

net force on the part in the first direction. By allowing the

plate to rotate in the plane (not just translate), frictional

force fields on the plate can be made position-dependent.

Reznik and Canny exploited this property to build a three-

degree-of-freedom vibratory plate that uses visual feedback

to simultaneously drive multiple parts along independent

trajectories.

We extend their work by considering a rigid vibratory plate

that can move with six degrees of freedom. Out-of-plane

motions allow us to change the effective gravitational force

(and therefore friction force) experienced by a part during

periodic motion of the plate. By using rotational motions to

make this asymmetry position-dependent, we greatly increase

the family of force fields that can be generated. In particular,

Reznik and Canny’s assumption that parts always slip relative

to the plate, coupled with planar-only vibration, constrains

the force field f to be divergence free, ∇ · f = 0. This

means that the force field contains no sinks or sources, and

that sensorless reduction in part uncertainty is not possible.

In contrast, out-of-plane rotations allow the construction of
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programmable force fields that can position and orient parts

without the use of sensors.

For fixed automation, we can construct one- or two-

degree-of-freedom versions that implement a subset of the

full family of force fields that can be created by a six-

degree-of-freedom plate. For example, the LineSink field

(Section II), which squeezes parts to a center line, can

be implemented using a single actuator. Using just two

actuators, we can create a force field that pushes parts to a

center line and translates them along that line. In both cases,

parts with planar extent tend to be aligned with the center

line. Two actuators also can be used to create shaped sink

fields that approximate “universal” sensorless parts orienting

fields, as demonstrated in theory [3], [7].

In [1], [4], parts are also oriented along a squeeze line

on a vibrating plate. In that example, however, the plate is

flexible, and the sink line is a node of the vibration. Parts

interact with the plate by micro-impacts. In contrast, the part

always remains in contact with the rigid plate in our system.

We use a frictional sliding analysis and create force fields

using the plate’s rigid-body motion.

Programmable planar force fields have also been created

using massively parallel arrays of actuators. These actuators

include MEMS devices [2], air jets [6], rolling wheels [8],

[10], [12], [11], and individual vibrating plates [5], [15]. In

this last system, each individual plate translates in a circular

motion in the horizontal plane and translates sinusoidally

in the vertical direction. The phasing of these motions

determines the force felt by parts on the plate—the net force

is in the horizontal direction the plate is moving when the

effective gravity is largest. These approaches to generating

force fields differ from the work in this paper in that they

require large numbers of individually-controlled actuators.

In contrast, Luntz et al. [9], [16] use a small number of

strategically-placed air sinks to position and orient laminar

parts floating on an air bearing.

We begin in Section II by studying in detail how a

squeeze field is generated by rotating a plate about an axis

below the plate. The theoretical predictions are validated by

experiment. Section III generalizes this behavior, describing

how general plate and part motions give rise to steady-state

velocity fields and zero-velocity force fields. In Section IV

we examine primitive force fields created by simple plate

motions. Sequencing primitives in time to produce a larger

class of force fields is discussed in Section V. We conclude in

Section VI by summarizing key points and discussing future

directions.
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Fig. 1. (a) A part on a plate rotating about an axis below the plate in a gravitational field. A fixed inertial world frame with horizontal and vertical axes
(x, z) is centered on the plate. (b) Three snapshots of the motion of the plate. The amount of rotation is exaggerated for clarity. (c) The acceleration of the

contact point includes a centripetal component of magnitude ρψ̇2 and an angular component of magnitude ρψ̈. Considering only the part’s motion relative

to the plate, the gravitational field is equivalent to the plate accelerating upward with magnitude g. (d) Assuming ψ = ψ̇ = 0 (a good approximation for

small amplitude, high frequency oscillation), the acceleration g is always normal to the plate and the only other acceleration component is ρψ̈. Let anet be
the total acceleration of the plate at the contact point with the part. At position (i) from (b), anet lies to the left of the friction cone of possible accelerations
of the point mass part. Therefore, a part initially stationary with respect to the plate begins to slip to the right relative to the plate with a small acceleration.
At position (iii), a part initially at rest slips left relative to the plate with a larger acceleration. At position (ii), a part initially at rest does not slip. (e) The
motion of a point part on the plate obtained from a simulation considering the full dynamics and stick-slip friction. Note the small-amplitude oscillatory
motion as the part converges to the center of the plate. The plate is rotating sinusoidally with an amplitude of 0.3◦ at f = 30 Hz in full gravity, with an
axis of rotation 5 cm below the plate.

II. THE LINESINK PRIMITIVE

We begin by analyzing a convergent squeeze field created

by the one-degree-of-freedom rotational shaker device shown

in Figure 1. The part rests on a horizontal plate that oscillates

symmetrically (e.g., sinusoidally) about a perpendicular axis

below the surface. At the contact point, the plate’s acceler-

ation has a centripetal component and a component due to

the angular acceleration (see Figure 1(c)). The gravitational

field is equivalent to a constant upward acceleration of the

plate with magnitude g. Due to the high frequency, small

amplitude nature of the plate’s motion we are choosing to

generate, we assume ψ = ψ̇ = 0. We also assume that the

part is always slipping with respect to the plate.

The rotational motion of the plate causes the normal force

on the part to vary in time throughout the cycle. For half

of the cycle the right side of the plate is located below

horizontal (represented by state (i) in Figure 1(b)). In this

state, the effective gravity experienced by the part is greater

than g, due to the plate’s upward acceleration. During the

other half of the cycle (state (iii)), the right side of the

plate is above horizontal. In this state, the effective gravity

experienced by the part is less than g due to the plate’s

downward acceleration.

In state (i), the net acceleration of the plate lies just to the

left of the part’s friction cone due to the increased normal

force (Figure 1(d)); from the part’s perspective, the plate has

a small acceleration to the left. Therefore, a part initially

at rest will begin to slip slightly to the right relative to the

plate. In state (iii), the net acceleration of the plate lies to the

right and farther from the edge of the friction cone due to

the decreased normal force. A part at rest will slip to the left

relative to the plate with a larger acceleration than in state

(i). The net effect is that the part slides towards the axis of

rotation over the course of one cycle. We call this behavior a

LineSink. Results from a numerical simulation are shown

in Figure 1(e).

If the axis of rotation is placed above the plate surface, the

situation is reversed; the part will slide away from the axis

of rotation over the course of a cycle. We call this behavior

a LineSource.

A. Steady-State Velocity

The notion of a steady-state velocity is useful for charac-

terizing the behavior of point parts on the plate. When the

part’s velocity at the end of the cycle matches its velocity at

the beginning of the cycle, we say it is in steady-state. We

define the steady-state velocity as the average velocity of the

part over a steady-state cycle. This notion is an approximate

one, as we assume the part’s motion during the cycle is

negligible. However, simulations indicate that point parts

rapidly approach steady state behavior regardless of their
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initial velocity and position.

For certain plate motions it is possible to find a closed-

form solution of the steady-state velocity; one such case is

for the device shown in Figure 1. In particular, let the angular

acceleration of the plate, ψ̈(t), be a square wave of period

T defined by

ψ̈(t) =

{

α 0 ≤ t < T/2
−α T/2 ≤ t < T.

(1)

Call the vertical distance from the axis to the plate h and

the horizontal distance from the axis to the part r. With the

approximation ψ = ψ̇ = 0, the acceleration of the plate at

the contact point with the part has horizontal and vertical

components

asx
(t) = −hα, asz

(t) = rα 0 ≤ t < T/2 (2)

asx
(t) = hα, asz

(t) = −rα T/2 ≤ t < T (3)

in the fixed world frame defined by (x, z).
The effective gravity experienced by the part is defined as

geff(t) = g + asz
(t). (4)

We assume that the displacement of the part is negligible

over a single cycle so that the effective gravity is a piecewise

constant function in time.

We impose two restrictions to obtain an analytical solution

for the steady-state velocity. First, we require that geff ≥ 0
for all time so that the part never loses contact with the

plate. This condition bounds the distance rmax for which the

steady-state analysis is defined:

r ≤ rmax =
g

α
.

The second restriction is that the part never sticks to the

plate. This condition is satisfied if at all times

|asx
| > µgeff,

where µ is the friction coefficient. As the maximum value

of geff is g + rα, this condition is satisfied if

hα > µ(g + rα).

Figure 2 shows steady-state velocity profiles, vpx
(t) and

vsx
(t), for the part and the plate over one cycle. Without

loss of generality, we start the plate at rest in state (iii)

from Figure 1(b). During the first quarter of the cycle (state

(iii)), the plate accelerates away from the part, resulting in a

small value of geff; the acceleration of the part is µ(g− rα).
During the middle half of the cycle (state (i)), the plate is

accelerating upward, which leads to a higher value of geff; the

magnitude of the acceleration of the part is µ(g + rα). Once

the part’s velocity matches the plate’s (at C), its acceleration

changes from positive to negative. For the last quarter of

the cycle (state (iii)), geff is once again low; the magnitude

of the acceleration of the part reverts back to µ(g − rα).
At E the part’s velocity instantaneously matches the plate’s

for the second time, forcing the acceleration to change from

negative back to positive.

0 T

0

Time

H
o

ri
z
o

n
ta

l 
V

e
lo

c
it
y

A

B

C

D
E

F

t1 t2 t3 t4 t5

v
p

x

 (Part)

v
s

x

 (Plate)

Fig. 2. Steady-state velocity profiles for the plate and the part in the
horizontal direction.

Using the notation of Figure 2 we can write expressions

for the velocity of the part at points A–F ,

vB = vA + µ(g − rα)t1 (5)

vC = vB + µ(g + rα)t2 (6)

vD = vC − µ(g + rα)t3 (7)

vE = vD − µ(g − rα)t4 (8)

vF = vE + µ(g − rα)t5 (9)

vA = vF . (10)

Equating the final and initial velocities in (10) ensures that

the part is in steady state.

The three equations that relate the times are:

t1 =
1

4
T (11)

t2 + t3 =
1

2
T (12)

t4 + t5 =
1

4
T. (13)

Since the maximum plate speed is 1
4hαT and the velocities

of the part and plate are equal at points C and E, we obtain

two more equations:

vC =
1

4
hαT − hαt2 (14)

vE = −
1

4
hαT + hαt4. (15)

The average steady-state velocity of the part over the cycle

is

vss =
1

T
(
vA + vB

2
t1 +

vB + vC

2
t2 +

vC + vD

2
t3+

vD + vE

2
t4 +

vE + vA

2
t5) (16)

which reduces to

vss =
µ2[g2 − (rα)2] − 3(hα)2

8(hα)2
αµrT (17)

when substituting (5) through (15).
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Fig. 3. When the plate is oscillated about an axis below the surface with
either a square or sine wave angular acceleration profile, the relationship
between the part’s steady-state velocity and its distance from the axis is
nearly linear. In all five cases shown, T = 0.03 s and µ = 0.3. The
theoretical square wave plot is based on equation (21) with α = 180 rad/s2.
The four simulated plots incorporate the full dynamics, allowing part
position and effective gravity to change during the cycle. The simulated
square wave has α = 180 rad/s2 with h = 5 cm. The three sine waves all
have angular accelerations with amplitude 220 rad/s2. The simulated sine
wave (no sticking) has h = 5 cm. The simulated sine wave (minor sticking)
has h = 2 cm. The simulated sine wave (major sticking) has h = 1 cm.

The r terms can be factored out to yield

vss = br + cr3 (18)

where b and c are constants:

b =
µT

8h2α
(µ2g2 − 3h2α2) (19)

c =
µ3αT

8h2
. (20)

Under typical operating conditions (α ∼ 102 rad/s2), the

linear term in (18) dominates because the part must be close

to the axis of rotation to avoid losing contact with the plate

(r ≪ 1 m). Additionally, if the vertical distance from the

axis to the plate (h) is too small, the part will stick to the

plate. Thus, it is reasonable to assume that µ2g2 ≪ 3h2α2.

With these simplifications, (18) reduces to

vss ≈ −
3µTα

8
r. (21)

The steady-state velocity of the part is always directed

towards the axis of rotation and increases linearly with dis-

tance. The rate of convergence to the axis can be controlled

by adjusting T or α.

Numerical simulations indicate that nearly linear behavior

also occurs when the vibration is sinusoidal (Figure 3). In

fact, if the axis of rotation is far enough below the plate

surface to ensure that the part never sticks, the steady-state

velocities for square and sine wave angular accelerations are

almost indistinguishable, and closely follow the theoretical

Fig. 4. One-degree-of-freedom shaker device with rotation axis below the
plate surface. Linear motion of a speaker is converted into rotational motion
of the plate.

curve of (21). Even if the axis of rotation is moved closer

to the plate and causes the part to stick for a small portion

of the cycle, a sinusoidal angular acceleration still results in

linear behavior. However, when the axis is moved too close

to the plate (h is small), the part may come to rest before

r = 0. In this deadband region, the effective gravity never

becomes small enough to allow the part to slip, given the

decreased side-to-side acceleration due to small h.

B. Experimental Results

We used the one-degree-of-freedom rotational shaker de-

vice shown in Figure 4 to experimentally study the relation-

ship between the part’s velocity and its distance r from the

axis of rotation. The shaker plate is made of aluminum. The

axis of the rotation is located 4 cm below the plate surface. It

is driven by a speaker whose linear motion is converted into

rotational motion through a lever arm. A function generator

provides a sinusoidal input signal to a stereo amplifier which

powers the speaker. An accelerometer mounted on the plate

verifies nearly sinusoidal acceleration of the plate surface.

The part was an aluminum disk with a diameter of 0.5 cm.

It was initially placed at rest 9 cm from the axis of rotation

and allowed to move inwards. Timing began when the center

of the part was 6.5 cm from the axis. The time was recorded

after every 0.5 cm of travel between 6.5 cm and 1 cm.

Recordings were not taken until the part reached the 6.5 cm

mark because it audibly rattled when located between 7.5

and 9 cm, indicating loss of contact with the plate. Once

inside 7.5 cm, the part appeared to travel very smoothly,

with virtually no rotational motion.

For LineSink-type behaviors that have the form

v(r) = −kr

such as (21), the time it takes for a part to move from an

initial position, r0, to a final position, r, is given by

t =
1

k
ln

r0

r
. (22)
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Fig. 5. Data taken with the shaker shown in Figure 4. The shaker was
driven with a roughly sinusoidal angular acceleration. A small part traveled
to the center of the plate and was timed every 0.5 cm. Error bars indicate
the spread of ten trials.

Therefore, a plot of t vs. ln r0

r
should produce a line. The

experimental data is plotted in Figure 5. Ten trials were

performed and the plotted points represent average times.

A line was fitted to the data with R2 = 0.99, confirming a

strong linear relationship between the part location and the

part velocity.

Video of rectangular parts in a

LineSink field can be viewed at

http://lims.mech.northwestern.edu/∼lynch/research/

videos/feeding.html. These parts, which have significant

planar extent, tend to orient themselves along the sink line

as they move towards the center of the plate.

III. TURNING PLATE MOTION INTO FIELDS

One goal of our work is to be able to design a plate

vibration that produces a desired field. The analysis of Sec-

tion II yielded a steady-state velocity field for LineSink.

A point part on the plate tends to follow the integral curves

of this velocity field, in this case moving directly toward a

center line with decreasing velocity. Another type of field

is a zero-velocity force field. This field represents the net

force experienced by a point part of unit mass at rest. While

the interpretations of the steady-state velocity field and the

zero-velocity force field are different, they often look nearly

identical.

One way to approximate the zero-velocity force field at

a point is to measure the acceleration of a part starting

from rest, averaged over a small number of cycles. We

envision this field being particularly useful for determining

equilibrium part orientations.

It is worth noting that, for some fields, the part must be

allowed to move during the cycle in order for it to feel a

net force. For example, in the LineSink example of the

previous section, if the part were held stationary at r �= 0, the

net force on the part over the cycle would be zero, whereas

S

U

5

Fig. 6. The dashed plate on the left is in the horizontal home position; its
center is aligned with the origin of the fixed inertial frame W . The solid
plate is in an arbitrary position.

it would be nonzero if the part began at rest but were free

to move during the cycle.

A. Plate Motion

We define a fixed inertial frame W and a frame S attached

to the origin of the plate (Figure 6). The two frames coincide

when the plate is in the horizontal home position. The

configuration of the plate in W is given by

[

R(t) p(t)
0 1

]

∈ SE(3),

where p : R → R
3 and R : R → SO(3) are both C1

functions of time. The motion of the plate is periodic with

period T , so that (p(t),R(t)) = (p(t + T ),R(t + T )).

Let r = [rx, ry, 0]T be a vector in the plate frame S to

the point R on the plate. The location of R in W is written

rW , with

rW = Rr + p

ṙW = ω × Rr + ṗ

r̈W = ω × ω × Rr + α × Rr + p̈,

where ω and α are, respectively, the angular velocity and

acceleration of the plate. The plate’s velocity and acceler-

ation at R can then be expressed in an inertial frame S ′,

instantaneously aligned with S, as

vs = RT ṙW (23)

as = RT r̈W . (24)

B. Friction Forces

Let vs(r, t) be the velocity of the plate surface at a point

R in an inertial frame S ′ instantaneously aligned with the

plate frame. Let a point mass part located at R have velocity

vp in S ′ and be in contact with the plate. The force exerted

on the part depends upon the relative velocity between the

part and the plate, vrel = vp − vs.

If we assume the part is slipping with respect to the

plate (vrel �= 0), the part will experience a force f due
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Fig. 7. Each of (a)-(e) shows a perspective view of a horizontal plate and its motion generating a primitive force field. The elements of h are given in
centimeters. The other parameters are: ω = 209 rad/s (T = 0.03 s), ψo = 0.005 radians, and do = 0.05 cm. The simulated motions of a uniform mass
rectangle overlaid on top of the force fields are shown in (d) and (e).

to kinetic friction in the direction opposite to the relative

velocity vector,

f = −µkmgeff

vrel

‖vrel‖
, (25)

where µk is the coefficient of kinetic friction, m is the

mass of the part, and geff is the sum of the z-component of

the plate’s acceleration and the negative of the gravitational

acceleration projected to the z-axis.

If the relative velocity between the part and the plate is

zero, the part is stuck to the plate and experiences a force due

to static friction. If the tangential acceleration of the plate

is less than µsgeff, where µs is the static friction coefficient,

the part remains fixed to the plate. Otherwise, the part begins

to slip. In this case, the friction force has a magnitude of

µsmgeff in the direction of the plate’s tangential acceleration.

C. Simulator

We have created a program in Matlab to approximate

steady-state velocity and zero-velocity force fields for a given

plate motion, as well as to simulate the motion of a part with

planar extent. The simulation takes into account the full part

dynamics as long as contact with the plate is maintained.

Calculating zero-velocity force (acceleration) fields can be

problematic because the part’s behavior over a small number

of cycles is sensitive to the initial velocity of the plate. To

mitigate this effect, we initialize the simulation with the

part at rest at 30 different points within the plate’s motion

cycle. For each of these 30 initial conditions, we average the

acceleration over one cycle. The 30 average accelerations are

then averaged to give the approximate acceleration of the

part. Repeating this procedure over a discrete set of points
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TABLE I

APPROXIMATE FORCE FIELD REPRESENTATIONS OF THE MOTION

PRIMITIVES

Primitive Force Field

Trans f(x, y) ≈ a(1, 0)

ScaledCircle f(x, y) ≈ a(−y, x)

Circle f(x, y) ≈ a

„

−y√
x2+y2

, x√
x2+y2

«

DivCircle f(x, y) ≈ (axy, bx2)

LineSink f(x, y) ≈ a(−x, 0)

LineSource f(x, y) ≈ a(x, 0)

SkewSink f(x, y) ≈ a(−x, x)

SkewSource f(x, y) ≈ a(x,−x)

gives a sense of the force field.

IV. MOTION PRIMITIVES

To find a set of primitive force fields, we have investigated

a set of motion primitives consisting of periodic screw

motions. Each primitive is defined by a rotation axis k in

W , a point h through which k passes, a periodic translation

d(t) along k, and a periodic rotation ψ(t) about k. Eight

primitive fields are shown in Figure 7 along with their {k,

h, ψ(t), d(t)} representations.

The first three primitives are generated from purely in-

plane plate motion, as in [13], [14]. Asymmetrical longitu-

dinal motion produces Trans; the magnitude of the force is

constant everywhere on the plate. Asymmetrical rotational

motion produces ScaledCircle and Circle. In the

Circle field, the magnitude of the force is nearly indepen-

dent of plate location due to very large plate velocities [13].

In the ScaledCircle field, the magnitude of the force is

roughly proportional to the distance from the rotation axis.

This behavior occurs when the plate’s velocity is of the same

order of magnitude as the part’s.

The fourth primitive, DivCircle, results from symmet-

ric rotation about an axis that pierces the plate at a 45◦

angle. Where the axis is above the plate, the field is divergent

like LineSource; where the axis is below the plate it is

convergent like LineSink.

The next two primitives, LineSink and LineSource,

discussed in section II, are created by symmetric rotation

about an axis below and above the plate, respectively.

Full screw motions about an axis (simultaneous rotation

and translation with the same phase and frequency) above

and below the plate surface produce the final two primitives,

SkewSink and SkewSource.

Approximate closed-form representations for the force

fields based on simulation data are given in Table I. The

positions and orientations of these fields can be modified by

changing the positions and orientations of the motion axes.
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(e) Jet

Fig. 8. Results of sequencing the motion primitives from Figure 7 are
shown in (a)-(e). In each case, the next motion primitive begins the instant
the previous one ends. The simulated motion of a uniform mass rectangle
is shown overlaid on top of the force field in (b).

V. COMBINING MOTION PRIMITIVES

We can concatenate the primitives in time, provided the

trajectories at the points of “gluing” have continuous veloc-

ities and positions. By concatenating primitive force fields,

we can achieve time-averaged force fields, vastly expanding

the class of obtainable fields. The simulated fields in Figure 8

are representative. All of them were created by combining

primitive motions from Figure 7. Since all the primitive

motions are defined such that the plate begins and ends at

rest in the horizontal home position, smooth sequencing is

ensured.

Two orthogonal LineSinks sequenced one after the

other produce a Sink. This is a close approximation to

the elliptic field for parts orienting in [4]. Sequencing

a LineSink and a linear transport Trans produces a

SqueezeTrans, which may be useful for simultaneous ori-

entation and transport. A LineSink and a LineSource

create a Saddle. Other fields include a Whirlpool (two

orthogonal LineSinks and a Circle), and a Jet for

localized transport (two Circles) [14]. Once a sufficiently

rich set of primitive fields has been developed, generating a

desired field amounts to finding an appropriate sequence of

scaled primitives.

In theory, the set of all convex combinations of primitive
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force fields in Table I are obtainable by sequencing primitives

in time. In practice, however, each primitive has a basic

“quantum” unit consisting of a full cycle. Therefore, time-

averaging of the fields is only approximate; the part may

move significantly before the next primitive is applied, so

that the net result is only approximately modeled by a time-

averaged field. In addition, there is an interaction between

the motion primitives depending on the order in which

they are executed; the sliding motion at the end of one

motion primitive will influence the effect of the next motion

primitive. To lessen this effect, the motion primitives may

be joined by a period during which the plate is at rest. This

reduces the strength of the combined force field, however.

When a rest period is not included, we see slight asymmetries

in the simulated time-averaged force field relative to our

prediction. For example, we would predict that the squeeze

line of the SqueezeTrans field of Figure 8 would be

centered on the plate based on the two individual primitives.

The fact that it is not illustrates an offset that depends on

the phasing of the two primitives.

VI. CONCLUSIONS AND FUTURE WORK

We have shown how to create force and velocity fields with

nonzero divergence by vibration of a rigid plate. In particular,

a squeeze field can be created by symmetric oscillation about

an axis below the plate (LineSink). In both simulation and

experiment, this field was shown to obey an approximately

linear relationship between part velocity and distance from

the axis of rotation. Further, the strength of the field and

the location of the squeeze line are easily controllable in

a six-degree-of-freedom implementation. By sequencing two

orthogonal squeeze fields to make a Sink field, it is possible

to sensorlessly orient parts on a vibrating plate. We are

currently in the process of building a six-degree-of-freedom

shaker to test this and our other simulation results. We also

plan to continue to build a library of force field primitives

by investigating new types of plate motion. The convex

combination of primitive force fields describes a large family

of time-averaged force fields that we plan to characterize in

more detail.

The zero-velocity force (or acceleration) fields described

in this paper can be used to determine equilibrium con-

figurations of parts with planar extent. To do this, we can

“lift” the pointwise force field to a force field in the three-

dimensional configuration space describing the part’s posi-

tion and orientation on the plate. This requires integrating

over the part the product of the acceleration field and the

part’s support pressure distribution. In most past work, the

part’s support distribution is assumed uniform, allowing

precise calculation of equilibria. As the support distribution

is usually underdetermined, however, the best we can hope

for is to calculate tight bounds on the possible equilibrium

set. This is an area for future work.
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