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Abstract— This paper presents a new method of optimizing
the needle insertion point, heading and depth for needle
insertion into deformable tissue. The goal is to minimize the
distance between a number of specified targets and the needle.
Assuming a rigid needle and a deformable tissue described
by a finite element model, an iterative optimization method
is proposed that uses the needle insertion simulation. At
each iteration, the best fitted 3D line to the targets in the
simulated deformed configuration is used as a candidate for
the new insertion line in the next iteration. This method has
been implemented in a prostate brachytherapy simulator to
minimize seed misplacement errors. The targets are designed
to lie on a straight line in the undeformed configuration inside
the prostate. To increase the accuracy while simulating the
prostate rotation, a non-linear model is used. The neo-Hookean
material model is exploited to determine the effects of geometric
and mechanical non-linearities and compressibility effects. It
is shown that the optimization algorithm converges in few
iterations and decreases the targeting error effectively.

I. INTRODUCTION

Prostate cancer is the most common cancer in men. Low
dose brachytherapy is an effective treatment for localized
prostate cancer. During brachytherapy, radioactive capsules
or “seeds” of 125I or 103Pd are permanently placed inside
the prostate and peri-prostatic tissue, with the goal of deliv-
ering sufficient radiation to kill the cancerous tissue while
maintaining a tolerable dose to the urethra and rectum. In
a common approach, the seed positions inside the tissue
are planned before the operation. First, during a volume
study, images of the prostate are taken using trans-rectal
ultrasound (TRUS). A 3D model of the prostate tissue is
constructed using several parallel TRUS images that are
manually segmented. This model is then used for treatment
planning. The seed positions are usually along straight lines
parallel to the long axis (y axis) of the TRUS probe (see
Fig. 1). The physician implants the seeds using long needles
inserted according to the plan with the aid of a guiding
template. The template has holes in the x−z plane, allowing
the needles to move along the y axis. Real time TRUS
imaging and X-ray fluoroscopy are used by physicians to
guide the needle during the operation.

During brachytherapy, needle insertion forces deform the
prostate tissue and displace the targeted seed positions. Due
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to needle forces the prostate can rotate up to 20 degrees [1].
As a result of prostate movement, seed misplacement errors
are still common in brachytherapy [2], leading to under-
dosed regions and complications, such as impotence or uri-
nary incontinence. Limited visual feedback during the opera-
tion demands highly skilled physicians to compensate for the
deformations and decrease the errors. Hence, brachytherapy
simulators and planners are in demand to train physicians and
provide treatment plans. In addition, brachytherapy planners
can be used for robotic needle insertion.

The guiding template allows the needle to move along the
y axis. Although the target positions are originally along the
lines parallel to this axis, they diverge from this line due
to tissue deformation. Therefore, insertion of the needle at
a different orientation can decrease the error between the
predefined target positions and the actual seed locations.
Upon availability of a robotic system [3] to place and orient
the needle, the needle orientation and insertion point can be
optimized to maximize the targeting accuracy in the presence
of tissue deformation.

The focus of this paper is on the optimization of the
needle insertion point, heading and depth for insertion of a
rigid needle into a 3D prostate model to minimize the seed
misplacement errors. Although the brachytherapy needle is
slightly flexible, this insertion point and heading can be
used as a starting point for needle planning algorithms that
account for needle flexibility. This optimization method is
based on simulation. The Finite Element Method (FEM) is
used for the needle insertion simulation. A non-linear model
that considers geometric and mechanical non-linearities is
used in the FEM simulations.

This paper is organized as follows. In the next section,
previous work on needle insertion simulation and planning
is presented. The needle insertion simulation method and the
non-linear model used are introduced in the third section.
The fourth section is dedicated to the optimization approach,
followed by the simulation results and conclusions.

II. RELATED WORK

The Finite Element Method is known to be a very powerful
tool to simulate tissue deformations during surgery and
needle insertion. This method has been used in 2D and 3D
needle-tissue interaction simulations [4]–[6]. A 3D mesh of
prostate tissue was generated in [5] and then used to simulate
the brachytherapy procedure using a linear FEM model and
accelerated simulation methods. Alterovitz et al. used a
2D linear FEM model to simulate needle insertion during
brachytherapy [6]. They also used a search-based sensorless
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Fig. 1. Insertion of the needle during prostate brachytherapy

planning algorithm to optimize the needle insertion point to
minimize the seed placement error in a 2D brachytherapy
simulator [7]. Unlike in the approach presented here, their
method did not optimize the needle insertion angle.

The same group also worked on optimizing the needle
insertion initial location and orientation for a highly flexible
bevel-tip needle model introduced by Webster et al. [8] in 2D
tissue using a penalty method [9]. To solve the unconstrained
optimization problem generated by the penalty method they
used the Gradient Descent algorithm. Due to its complexity,
the objective function cannot be differentiated directly. To
approximate the derivatives of the objective function with
respect to the optimization parameters at each point, they
simulated the needle insertion procedure with perturbed
parameters. By contrast, the algorithm proposed in this paper
is gradient free and converges in few iterations.

Alterovitz et al. also used the needle bevel tip direction
as an input and guided a highly flexible needle inside a
2D tissue model under Markov uncertainty [10] without the
optimization of the initial location or orientation. The highly
flexible model, that assumes that the needle is steered by its
tip without generating significant lateral forces on the tissue,
is not applicable to brachytherapy or many other needles
used in practice.

DiMaio and Salcudean, introduced the concept of steering
a flexible needle inside tissue by manipulating its base [11].
They guided a flexible needle inside a 2D tissue phantom to
reach a target while avoiding obstacles using a numerically
computed needle Jacobian and potential fields. Glozman
and Shoham [12] used a 2D spring mesh to simulate the
tissue and a linear beam to simulate the needle flexibility.
They derived the inverse kinematics of the needle to steer
the needle inside the tissue. However, in [11] and [12] the
initial needle location and orientation were not optimized.
The optimization method introduced in this paper can define
the initial needle placement for the above mentioned flexible
needle steering methods.

A comparison of different models for brachytherapy nee-
dles was presented in [13]. In [14] and [15] needle rotation,
speed and acceleration were controlled to reduce the tissue
deformation during insertion. Heverly et al. [15] used an
energy based fracture mechanics approach to show that the
velocity dependence of tissue properties can reduce tissue
motion with increased needle velocity.

Okamura et al. [16] divided the force applied by the tissue
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Fig. 2. The simplified mesh of prostate and surrounding tissue.

to the needle into three parts: 1) capsule stiffness; 2) friction
and 3) cutting forces occurring at the needle tip. The tip
and friction forces applied by a needle during penetration
into a canine prostate were measured by Kataoka et al. [17].
DiMaio and Salcudean measured the force profile along the
needle during penetration into a slab of PVC [4]. They
used this profile to introduce a stick-slip interaction model
between needle and tissue [4]. This needle-tissue interaction
model is used in this paper.

Linear FEM models are not rotation invariant and cannot
accurately simulate situations with large rotations and high
strains. However, large rotations and high strains can occur
during brachytherapy [1]. To achieve higher accuracies in
this case, geometric and mechanical non-linearities should be
taken into account. Geometric and mechanical non-linearities
have been considered in soft tissue deformation simulations
[18]–[24]. Among many available non-linear models, neo-
Hookean hyperelastic models [25] are suitable for rubbery-
like material and can be accurate models for soft tissue.
Nienhuys and van der Stappen [20] simulated insertion of
a rigid needle into a totally compressible (zero Poisson’s
ratio) neo-Hookean material model. Although their method
can be extended to 3D, they performed the simulation in 2D.
In [24] effects of the boundary conditions and non-linearities
on targeting accuracy were shown by simulation of needle
insertion into a compressible neo-Hookean material model
under plane stress assumption. By contrast, in this paper the
neo-Hookean material model is used in a 3D needle insertion
simulation.

III. SIMULATION METHOD

The optimization method in this paper is an iterative
method which uses the simulation results in each iteration
to improve the insertion parameters. To simulate the needle
insertion procedure a simplified 3D mesh of the prostate -
a cube of material simulating the prostate tissue and sur-
rounding tissue (see Fig. 2) - is used in an FEM simulation.

The simulation is performed in a quasi-static mode in
which the tissue is assumed to be in its equilibrium at each
time sample. The stick-slip model introduced in [4] is used to
simulate the friction and cutting forces applied by the needle
to the tissue. In this method, a node is stuck to the needle as
long as its reaction force is less than a pre-defined threshold.
Three displacement boundary conditions are applied to the
stuck node. If the reaction force is greater than the threshold
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Fig. 3. Mesh adaptation algorithm. (a) and (b): The undeformed and
deformed configurations, respectively, before mesh adaptation. The needle
tip is close to a new element boundary. (c): The closest node to the needle
tip is moved to the proper position in the undeformed configuration, without
any external force. (d): The node is located at the needle tip in the deformed
configuration.

the node state changes to slip mode. In this mode the node
can freely slide along the needle. A force boundary condition
is applied to the slipping node in the needle axial direction.
Two displacement boundary conditions are applied to the
same node to keep it on the needle.

During insertion the needle may enter an element from any
point on the surface of the element, while the slip-stick force
model applies the boundary conditions only to the element
nodes. A mesh adaptation algorithm is used to solve this
problem [5]. When the needle tip comes close to an element
edge, the closest node to the needle tip is relocated onto the
needle tip and the FEM model is updated to account for this
change. Fig. 3(b) shows the deformed configuration of the
mesh when the needle tip is close to a new element boundary.
The corresponding undeformed (reference) mesh is shown
in Fig. 3(a). Figs. 3(c) and 3(d) show the undeformed and
deformed configurations, respectively, after mesh adaptation.
In Fig. 3(d) the closest node to the needle tip is relocated on
the needle tip. Since this node is relocated in the reference
mesh, as shown in Figs. 3(a) and 3(c), no external force is
applied to the node.

A. Non-linear Material Model

A neo-Hookean material model is used to accommodate
both geometric and mechanical non-linearities. This model
can simulate the prostate rotation and avoid element inver-
sion in cases with high strain that can occur during needle
insertion. The stored energy density for a neo-Hookean
material that includes the compressibility effect is expressed
as [25]:

W (I, J) =
1
2
µ (I − 3 − 2 ln J) +

1
2
λ (J − 1)2 , (1)

where I is the first invariant of the deformation tensor and
J is the determinant of the deformation gradient tensor. λ
and µ are Lamé parameters. The Green strain, the second
Piola-Kirchhoff stress and the material moduli tensors with
respect to the reference configuration can be written as:

εij =
1
2
(Cij − δij), (2)

σij = µ
(
δij − C−1

ij

)
+ λJ (J − 1)C−1

ij , (3)

Dijkl = λJ (2J − 1)C−1
ij C−1

kl

+ 2 [µ − λJ (J − 1)] C−1
ijkl, (4)

where i, j, k, l ∈ {1, 2, 3}, δij is Kronecker delta, C is the
right Cauchy-Green deformation tensor, C−1

ij is the pivot
(i, j) of C−1 and:

C−1
ijkl =

1
2

[
C−1

ik C−1
jl + C−1

il C−1
jk

]
. (5)

Discretization and approximation of these equations over
several finite elements lead to a set of non-linear algebraic
equations of the form:

Φ(u) − f = 0, (6)

where u and f are vectors of nodal displacements and exter-
nal forces, respectively. The Newton-Raphson method is used
to iteratively solve the non-linear equations of deformation
[25]. Therefore, the following equation should be solved for
δu at each iteration:

KT(ut) δut+1 = −(Φ(ut) − f) = −et, (7)

where KT is the tangent stiffness matrix constructible from
(2)-(5), ut is the vector of nodal displacements in iteration
t, et is the vector of error and:

ut+1 = ut + δut+1. (8)

IV. OPTIMIZATION ALGORITHM

The non-linear FEM simulator described above works as
a function in the optimization program. The needle insertion
point ps, the insertion depth d and the needle heading v are
the inputs of this function. The outputs are the displaced
target positions ui:

ui = fi(ps, v, d) i ∈ {1, 2, · · · , N}, (9)

where N is the number of targets. It is assumed that uN

is the displaced position of the distal target. Tissue elastic
parameters, target initial positions and stick-slip model pa-
rameters are assumed to be known constants in this function.

The optimization goal is to minimize the distance between
the displaced targets and a rigid needle in the deformed con-
figuration by optimizing the needle insertion point, heading
and depth. Assume a global coordinate system Oxyz and
a needle-attached coordinate system Ox

N
y

N
z

N
as shown

in Fig. 2. Since the needle is axially symmetric, only the
pitch and yaw angles are necessary to determine the relation
between the two coordinate systems. In addition to the pitch
and yaw angles, the needle insertion point in the x − z
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(b) After the first iteration
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(c) After the second iteration
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(d) After the third iteration

Fig. 4. Simulation iterations for three targets. (b), (c) and (d) show the position of the targets in the deformed tissue after insertion of the needle with the
insertion parameters calculated in (a), (b) and (c), respectively. 3D fitted line is shown as a dotted line. The front surface of the prostate mesh is removed
to show the position of the targets and the needle inside.

plane and the insertion depth are the other parameters to
be optimized.

Consider the deformed configuration of the tissue after
the insertion of the needle from a point on the tissue
surface along a specified direction (see i.e. Fig. 4(b)). Due
to deformations caused by needle forces, the targets are
displaced. In this situation, the next candidate for needle
insertion heading is the 3D line fitted to the displaced targets.
The following steps are used in an iterative algorithm to
optimize the insertion parameters:

1) Align the needle with the 3D line passing through the
targets in the undeformed configuration. This line can
be defined by a point p and a vector v. The insertion
point is the intersection of this line and the front
surface of the tissue. The insertion depth is defined
as the distance between the distal target and the front
surface of the tissue (see Fig. 4(a)).

2) Insert the needle from the insertion point along the
computed insertion line to the desired depth. Find the
displaced target positions ui as in (9) using the FEM
simulator.

3) Fit a 3D line to the displaced targets in the deformed

tissue (see Figs. 4(b)-4(d)). The new line parameters
can be computed by solving the following problem.

(pk+1, vk+1) = arg min
p,v

N∑
i=1

min
α

‖p + αv − uk
i ‖2,

(10)
where k is the iteration number. It can be shown that:

pk+1 =
1
N

N∑
i=1

uk
i (11)

vk+1 = arg max
v

‖Av‖
‖v‖ , (12)

where

A =
[
uk

1 − pk+1 uk
2 − pk+1 · · · uk

N − pk+1
]T

. (13)

Therefore vk+1 is the right singular vector correspond-
ing to the largest singular value of A.

4) The new insertion point pk+1
s , is the intersection of the

insertion line and the front surface of the tissue.
5) The distance between the insertion point and the clos-

est point on the insertion line to the distal target in
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Fig. 5. The x − z position of the target sets in a cross section of the
prostate at y = 25mm.

the deformed configuration is the new insertion depth.
This can be written as:

dk+1 = arg min
α

‖pk+1
s + αv − uk

N‖2 (14)

6) If the convergence criterion is met, then terminate the
algorithm. Otherwise go to step 2.

The convergence criterion could be the satisfaction of a
bound on the sum of distances from the displaced targets
to the needle. Targets in brachytherapy are originally on
a straight line in the undeformed tissue. However, after
deformation it is usually impossible for the displaced targets
to be on a straight line. Therefore, the above mentioned
convergence criterion does not usually converge to zero.
Alternatively, convergence of the optimization parameters to
a value can be used as the convergence criterion. In this
method if the Euclidean norm of the difference between two
consecutive vectors of parameters is less than a threshold the
algorithm is terminated (see Fig. 4(d)).

V. SIMULATION RESULTS

The optimization algorithm was performed for nine sets
of targets, each of which consisted of three targets located
inside the prostate mesh as shown in Fig. 4(a). The targets in
each set were localized on a straight line parallel to the y axis
in the undeformed configuration at y = 15, y = 25 and y =
35 mm. Fig. 5 shows the x− z coordinates of the nine target
sets in a cross section of the prostate at y = 25mm. The
tissue elastic parameters were typical of soft tissue and are
given, together with other simulation parameters, in Table I.

The optimization algorithm was performed for each of the
target sets. The optimization iterations were continued until
the change in the vector of parameters was less than 1%.
The sums of distances from the three targets to the needle
at the first and the last iterations are reported in Table II for
each set. It can be seen that in all the cases the algorithm
converged in 3 to 7 iterations to sub-millimeter errors. In the
final iteration, the targets lie very close to the needle and the
errors are less than the brachytherapy needle diameter.

As an example, Fig. 4(a) shows the position of the targets
inside the tissue in the undeformed configuration for the 5th

TABLE I

SIMULATION PARAMETERS

(λ, ν) for the prostate tissue (9.8×105, 2.01×104)
(λ, ν) for the surrounding tissue (3.3×105, 6.7×103)
Number of Nodes 570
Number of Elements 2801
Element Type Tetrahedron
Simulation type Non-linear, quasi-static
Material Type Compressible neo-Hookean

TABLE II

SIMULATION RESULTS SHOWING THE ERROR BEFORE AND AFTER

OPTIMIZATION

Set Number of 1st Iteration Last Iteration
Iterations Error (mm) Error (mm)

1 3 15.5 0.6
2 7 11.5 0.9
3 6 13.0 0.4
4 3 7.4 0.7
5 3 7.5 0.8
6 6 4.9 0.7
7 3 7.8 0.3
8 4 4.4 0.7
9 3 2.4 0.4

set. Figs. 4(b)-4(d) show the configuration of the deformed
tissue after each iteration. The optimization algorithm con-
verged in 3 iterations. It can be seen in Fig.4(d) that the
needle path is very close to the computed insertion line for
the next iteration. The target positions and the optimized
parameters for this case are shown in Table III.

For each iteration of the optimization, a needle insertion
process into a non-linear material model was simulated. At
each time step a set of non-linear algebraic equations had
to be solved due to the non-linearity of the material model.
These equations were solved iteratively using the Newton-
Raphson method. The tangent stiffness matrix in (7) was of
dimension 1710 × 1710. Therefore, the simulation part was
very time consuming. The mean time per simulation was 70
minutes using Matlab R©. When higher speeds are required
linear tissue models can be used. Simulation acceleration
methods for linear models can be used to increase the
simulation speed dramatically as in [26] in which the sim-
ulation time was decreased to 50 seconds. Although quasi-
Newton methods are available to increase the computation
speed for non-linear models, linear models are considerably
faster. With optimization of the computer code in C++ faster
solutions are possible.

The Newton-Raphson method employed to solve the non-
linear FEM equations converged to the desired error, de-
scribed in (7), in less than 10 iterations in all of the performed
simulations, while convergence was achieved in 5 iterations
most of the time.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusion

The needle insertion point, heading and depth were
optimized using an optimization method for a prostate
brachytherapy simulator. To simulate the prostate rotation
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TABLE III

SIMULATION RESULTS FOR THE 5th SET

1st target location (mm) (45, 15, 30)
2nd target location (mm) (45, 25, 30)
3rd target location (mm) (45, 35, 30)
Optimized needle insertion point (mm) (43.1, 70, 25.9)
Optimized insertion depth (mm) 59.0
Optimized needle orientation (yaw, pitch) (7.84o, −2.97o)

a neo-Hookean non-linear material model was used to con-
sider geometric and mechanical non-linearities as well as
compressibility effects. The optimization algorithm showed
convergence in a few iterations and decreased the seed
misplacement errors effectively. Since non-linear models
were applied in the simulation phase, the program was
computationally expensive. Linear simulation methods can
be used to increase the optimization speed. The optimization
method can be used with any model for tissue deformation
simulation, since the assumptions on the simulation phase do
not put any restrictions on the optimization phase.

B. Future Work

In the future, validation studies will be carried out using
a needle guidance robot to orient and insert the needle into
tissue phantoms. A tissue phantom is needed to simulate the
prostate and surrounding tissue. This tissue phantom should
have accurate boundary conditions and be able to mimic
the rotation of the prostate around the pubic bone. Needle
flexibility will be added to the planning system. In this case
the needle insertion point and orientation for a rigid needle
will be used as a starting point for the flexible needle. Needle
base manipulation methods introduced in [11] or [12] could
be used to steer the needle for smaller targeting errors inside
the prostate.
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