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Abstract— This paper presents a method to estimate the 3D
pose of a human’s head using two images input from stereo
cameras. The proposed method utilizes an evolutionary search
technique of genetic algorithm (GA) and a fitness evaluation
based on a stereo model matching. To improve the dynamics of
recognition, a motion-feedforward method is proposed for the
hand-eye system. The effectiveness of the method is confirmed
by the experiments where the motion of the hand-eye camera
compensated for the relative motion of the object in camera
frame, resulting robust recognition against the hand-eye motion.

I. INTRODUCTION

This work is motivated by our desire to establish a visual
system for a patient robot that is used to evaluate the ability
of the medical treatments of nurse students, as shown in
Fig.1. It is necessary for nurse to pay attention to the
condition of the patient during, e.g. injection, to sense tiny
sign of patient’s state and as a result to avoid medical
accidents. What is the most important for nurses is to check
the patient’s face periodically and carefully to infer their
inside conditions. To evaluate this nurse abilities, the patient
robot have to contrarily track the nurse’s head pose, then the
patient robot can judge whether the students can give their
patient a good treatment. The behaviors of patient robot to
position its head pose relative to the nurse’s to observe the
nurse’s head pose and gazing direction of eyes is one of
visual servo to 3D pose.

There is a variety of approaches for head pose estimation,
and they can be classified into three general categories:
feature-based, appearance-based, and model-based. Feature-
based approach is to select a set of feature points like the
corners of the eyes or mouth, which are matched against
the incoming video to update the estimation pose, [1], [2].
Detection of facial features is not accurate and often fails
because it is affected by other parameters depending on
identity, distance from the camera, facial expression, noise,
illumination changes, and occlusion. Appearance-based (also
template-based) approach attempts to define the face as a
whole to deal with aspect changes and occlusions, [3], [4]. In
[3], the image is compared with a set of reference key-frames
from several views to determine which one most closely
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Fig. 1. visual system for a patient robot

matches the image. The head pose is evaluated by that of the
key-frame, which needs a learning process to be registered
offline. The author improved the accuracy by interpolating
new key-frames between the predefined key-frames. The
third method is to use a 3D solid model to search a target
head in the image, and the model is composed based on how
the target object can be seen in the input image [5], [6]. Our
method is included in this category. The matching degree
of the model to the target can be estimated by a function,
whose maximum value represents the best matching and can
be solved by GA, using the matching function as a fitness
function. An advantage of our method is that we use a 3D
solid model which enables it to possess six degree of freedom
(DOF), both the position and orientation, without following
hindrances. In other methods like feature-based recognition,
the pose of the target object should be determined by a set
of image points, which makes it need a very strict camera
calibration. Moreover, searching the corresponding points in
Stereo-vision camera images is also complicated and time
consuming,e.g., [7].

GA is well known as a method for solving parameter
optimization problems [9]. The GA-based scene recognition
method described here can be designated as “evolutionary
recognition method”, since for every step of the GA’s evo-
lution, it struggles to perform the recognition of a target
in the input image. To recognize a target input by CCD
camera in real-time, and to avoid time lag waiting for the
convergence to a target, we used GA in such manner that only
one generation is processed to newly input image, which we
called “1-Step GA”. In this way, the GA searching process
and the convergence to the target does not consist in one
image but the convergence is achieved in the sequence of the
input image to recognize it in the continuously input images.
The adaptive searching is also considered by global/local
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searching [10], which is switched depending on the matching
degree of the target in the images and the model created.
During the process of the local searching, gazing operation is
suggested to shorten recognition time and raise the accuracy,
which is inspired from gazing action of human.

II. MOTION-FEEDFORWARD COMPENSATION

Most visual servo systems use an eye-in-hand config-
uration, having the camera mounted on the robot’s end-
effector. In this case, the motion of the target in the camera
coordinate will be effected by both the motion of the target
in real world and the motion of the camera itself. Here what
we are interested in is how to predict the target velocity
based on the motion of the camera. For an eye-in-hand
manipulator, the question is how to predict the target velocity
based on the joint velocity of manipulator. This can be
considered the same as human’s action. As human, we can
predict the target pose caused by the motion of ourselves.
To apply such an intelligence into a manipulator, we propose
an robust recognition method, called a motion-feedforward
recognition, in which the target velocity is predicted based on
the joint velocity of manipulator to compensate the influence
from the motion of the camera itself.

A. Kinematics of Hand-Eye

We explain how to describe such a relationship between a
target and a moving camera in a mathematical formulation.

First, we establish relations among relative velocities of
three frames, world coordinate system ΣW , target coordinate
system ΣM and camera coordinate systems as ΣCR, shown
in Fig.2. Take ΣW as the fixed reference frame. Denote the
vector from OW (the origin of ΣW ) to OCR expressed in ΣW

as W rCR, the vector from OW to OM expressed in ΣW as
W rM , and the vector from ΣCR to ΣM expressed in ΣCR as
CRrCR,M . We define robot’s end-effector coordinate system
as ΣH , which is considered same as ΣCR since the camera
is mounted on the robot’s end-effector. So the rotation matrix
W RCR is a function of the joint vector q. Then the following
relations hold:

CRrCR,M = CRRW (q)(W rM −W rCR(q)). (1)

Differentiating Eq.1 with respect to time

CRṙCR,M = CRRW (q)(W ṙM −W ṙCR) + S(CRωW )
CRRW (q)(W rM −W rCR(q)). (2)

where S(·) is the operator performing the cross product
between two (3×1) vectors. Given ω = [ωx, ωy, ωz]T , S(ω)
takes on the form

S(ω) =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 . (3)

Similarly, the angular velocities of ΣCR and ΣM with
respect to ΣW are W ωCR and W ωM , respectively, and the
angular velocity of ΣM with respect to ΣCR is CRωCR,M .
Then the following relations hold:

CRωCR,M = CRRW (q)(W ωM −W ωCR). (4)

The camera velocity, which is considered as the end-
effector velocity, can be expressed using the Jacobian matrix
J(q) = [JT

p (q),JT
o (q)]T ,

W ṙCR = Jp(q)q̇, (5)
W ωCR = Jo(q)q̇, (6)

S(CRωW ) = −CRRW (q)S(W ωCR)W RCR(q)

= −CRRW (q)S(Jo(q)q̇)W RCR(q).
(7)

A detailed deduction of Eq.7 is shown in Appendix A.
The target velocity in ΣCR represented by CRφ̇CR,M is

defined as

CRφ̇CR,M =
[

CRṙCR,M
CRωCR,M

]
, (8)

where the translation velocity of ΣM with respect to ΣCR
CRṙCR,M is given in Eq.2, the angular velocity CRωCR,M

is given in Eq.4.
Substituting Eqs.5, 6, 7 to Eqs.2, 4, the target velocity

CRφ̇CR,M can be described by a mathematical formulation
using a × b = −b × a, that is, S(a)b = −S(b)a:

CRφ̇CR,M =
[

CRṙCR,M
CRωCR,M

]

=




−CRRW (q)Jp(q) + CRRW (q)
S(W RCR(q)CRrCR,M )Jo(q)

−CRRW (q)Jo(q)


 q̇

+
[

CRRW (q) 0
0 CRRW (q)

] [
W ṙM
W ωM

]

= Jm(q)q̇ + Jn(q)W φ̇M .

(9)

The relationship Jn(q) given by above describes how
target pose change in ΣCR with respect to the pose changing
of itself in real word. The relationship Jm(q) in the same
equation describes how target pose change in ΣCR with
respect to changing manipulator pose which influences the
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recognition from the relative motion of the camera to the
object.

In this paper, the target is considered static so we can
rewrite Eq.9 as

CRφ̇CR,M = Jm(q)q̇. (10)

Using Eq.10, we can predict the target velocity in ΣCR based
on the joint velocity of manipulator q̇.

B. Prediction of Object’s Pose

In this paper, the target orientation is expressed by roll,
pitch, yaw angles, represented by φ, θ, ψ respectively. So
the position/orientation of the target based on ΣCR can
be expressed by a six-parameter representation CRψM =
[CRrT

CR,M ,CR εT
M ]T , where CRrCR,M = [tx, ty, tz]T ,

CRεM = [φ, θ, φ]T .
The target’s position/orientation volecity is defined as

CRψ̇M =
[

CRṙCR,M
CRε̇M

]
, (11)

where the time derivation of target’s position CRṙCR,M is
given by Eq.9. The relation between the time derivative of
CRεM and the body angular velocity CRωCR,M is given by
the inverse of matrix Jc

CRε̇M = Jc
−1CRωCR,M , (12)

where

Jc =




0 −sinφ cosφcosθ
0 cosφ sinφcosθ
1 0 cosψcosθ


 . (13)

The body angular velocity CRωCR,M is also given by Eq.9.
Then the position/orientation of the target in time t +

∆t can be predicted from the current end-effector motion,
presented by

CRψ̂M (t + ∆t) =CR ψM (t) + CRψ̇M∆t. (14)

CRψ̇M∆t is the changing extent from the current pose to
the next. We consider that the recognition ability will be
improved by using Eq.14 to predict the future pose of the
target based on the relative motion from the camera to the
object. And the recognition will be robust to the motion of
manipulator itself.

III. EVOLUTIONARY RECOGNITON

A. Kinematics of Stereo-Vision

We utilize a perspective projection as projection transfor-
mation. The coordinate systems of left and right cameras
and object (here we take a solid head model as an example)
in Fig.3 consist of world coordinate system as ΣW , model
coordinate system as ΣM , camera coordinate systems as
ΣCR and ΣCL, image coordinate systems as ΣIR and ΣIL.
A point i on a solid model of the target head can be described
using these coordinates and homogeneous transformation
matrices. At first, a homogeneous transformation matrix from
ΣCR to ΣM is defined as CRT M . And an arbitrary point i

x

y

x

x

y

y

zP
M

P
CL

P
CR

f

Solid Model

Camera RCamera RCamera RCamera R

Camera LCamera LCamera LCamera L

y

zx

P
IR

Image RImage RImage RImage R

Image LImage LImage LImage L

x

y

z

P
IL

d

y

z

x P
W

Searching Area

ty;min

ty;max

tx;min
tz;min tz;max

CR†M = [tx; ty; tz; û;í;†]T

tx;max

Wri

CRri

CLri

i

Fig. 3. Coordinate systems

on the target object in ΣCR and ΣM is defined CRri and
Mri. Then CRri is,

CRri = CRT M
Mri. (15)

The position vector of i point in right image coordinates,
IRri is described by using projection matrix P of camera
as,

IRri = P CRri. (16)

Using a homogeneous transformation matrix of fixed values
defining the kinematical relation from ΣCL to ΣCR, CLT CR,
CLri is,

CLri = CLT CR
CRri. (17)

By the same way as we have obtained IRri, ILri is described
by the following Eq.18 through projection matrix P .

ILri = P CLri (18)

Then position vectors projected in the ΣIR and ΣIL of
arbitrary point i on target object can be described IRri and
ILri. The position and orientation of ΣM based on ΣCR has
been defined as CRψM , here, we abbreviate CRψM to ψ.
So Eqs.16, 18 are rewritten as,

{
IRri = fR(ψ, Mri)
ILri = fL(ψ, Mri).

(19)

This relation connects the arbitrary points being predefined
and fixed on the object and projected points on the left
and right images with the variables ψ, which is considered
to be unknown in this paper. Then, IRri and ILri are
thought to be moved by ψ(t) and the 3D solid model is
also. This measurement problem of ψ(t) in real time will
be solved by consistent convergence of a matching model to
the target object by a “1-Step GA” which will be explained
in section III C. When evaluating each point above, the
matching problem of corresponding point in left and right
images mentioned in the introduction is arisen. Therefore, to
avoid this problem, the 3D model-based matching that treats
the points of the object model as a set, is chosen instead of
point-based corresponding.

The 3D model for head located in ΣM is shown in Fig.4.
The set of coordinates of head’s surface is depicted as Sin,
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(a) Left searching model (b)Right searching model

Fig. 5. Searching model

Sin = Sin,1

⋃
Sin,2

⋃
Sin,3 where the inside surface of head

called Sin,1, the inside surface of eyebrows Sin,2 and the
inside surface of eyes Sin,3. The outside space enveloping
Sin is denoted as Sout, consisting of Sout,1, Sout,2, Sout,3

corresponding to Sin,1, Sin,2, Sin,3 respectively. The combi-
nation of Sin and Sout is named as S. Sin,1 is divided into
two parts, one is hair area called Sin,1h, the other is face area
called Sin,1f . Then, the set of the points of solid searching
model S consisted of Sin and Sout are projected onto 2D
coordinates of left camera, expressed as

SL,in(ψ) =
3∑

k=1

SL,in,k =
3∑

k=1

{
ILri ∈ <2

∣∣ ILri

= fL(ψ,Mri),Mri∈Sin,k ∈<3
}

(20)

SL,out(ψ) =
3∑

k=1

SL,out,k =
3∑

k=1

{
ILri ∈ <2

∣∣ ILri

= fL(ψ,Mri).Mri∈Sout,k ∈<3
}

(21)

The inside surface of the model in the left camera is called
SL,in and the contour-strips is called SL,out. SL,in,1 also
includes two parts SL,in,1h and SL,in,1f corresponding to
the hair and face in the left image. The left searching model
projected to left camera coordinates is shown in Fig.5(a).
The area composed of SL,in and SL,out is named as SL. The

(a)Left image (b)Left brightness

(c)Right image (d)Right brightness
Fig. 6. Input image and brightness distribution

above defines only the left-image searching model, the right
one is defined in the same way and the projected searching
model is shown in Fig.5(b).

B. Definition of Evaluation Function

Here, we define evaluation function to estimate how much
the moving solid model S defined by ψ lies on the target
being imaged on the left and right cameras. The input images
will be directly matched by the projected moving models,
SL and SR, which are located by only ψ. Therefore, if the
camera parameters and kinematical relations are completely
accurate, and the solid searching model describes precisely
the target object shape, then SL,in and SR,in will be com-
pletely lies on the target reflected on the left and right images.

The 2D raw images of a target human are shown in
Fig.6(a) and (c), their corresponding 3D plot are shown in
Fig.6(b) and (d). In these figures, the vertical axis represents
the brightness values, where we define 255 as black and
0 as white, and the horizontal axes represent the image
coordinates. In order to search for the head in the input
images, the searching model shown in Fig.4 and its position
calculated by Eqs.20, 21 are used. Take the left image in
Fig.6(a) as an example. The brightness distribution of input
image lying on the area of searching model is expressed as
p(ILri), ri ∈ SL(ψ), then the evaluation function of the
moving searching model using brightness values is given as,

FL,gray(ψ) =
1

H1
(
∑

IRri∈SL,in(ψ)

p(ILri) −
∑

IRri∈SL,out(ψ)

p(ILri)), (22)

where H1 represents the value of the searching points in
SL,in multiplied by 255 (maximum value). It is a scaling fac-
tor that normalized FL,gray ≤ 1. In case of FL,gray(ψ)<0,
FL,gray(ψ) is given to zero.
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Fig. 7. Flow chart of 1-Step GA recognition

In our previous research, we have confirmed that the
robustness of recognition against the background can be
improved by adding extraction of the skin color which is
one of human characteristic to the evaluation function [8]. It
is easy to understand that the color of skin can be limited
only by hue value in HSV parameters. Let h(ILri) denote
the hue value at the image position ILri. The pose estimation
of the searching models by color is given as

FL,color(ψ) =
1

H2
(

∑

IRri∈SL,in,1f (ψ)

a(ILri) +
∑

ILri∈SL,in,1h(ψ)

b(ILri)), (23)

where

a(ILri) =
{

1 0 < h(ILri) < 30
0 otherwise

(24)

b(IRri) =
{

1 p(IRri) > 220 and h(IRri) = 0
0 otherwise

(25)
where H2 represents the number of the searching points in
SL,in,1f . It is a scaling factor that normalized FL,color ≤ 1.
In case of FL,color(ψ)<0, FL,color(ψ) is given to zero.

Adding Eqs.22 and 24, the left estimation function is given
as

FL(ψ) = FL,gray(ψ) + FL,color(ψ). (26)

Knowledge of Knowledge of Knowledge of Knowledge of 
object shapeobject shapeobject shapeobject shape

CAMERACAMERACAMERACAMERA
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Recognition resultRecognition resultRecognition resultRecognition result

Fig. 8. Feedforward recognition system

The right one is defined in the same way, so the entire
matching function is

F (ψ) = (FL(ψ) + FR(ψ))/2. (27)

Eq.27 is used as a fitness function in GA process. When
the moving searching models fits to the target head being
imaged in the right and left images, then the fitness function
F (ψ) gives maximum value. Therefore the problem of head
pose recognition can be converted to searching problem of
ψ such that maximizes F (ψ). To recognize the target object
in a short time, we solve this optimization problem by GA
whose gene representing CRψGA is defined as,

tx︷ ︸︸ ︷
01 . . . 01︸ ︷︷ ︸

12bit

ty︷ ︸︸ ︷
00 . . . 01︸ ︷︷ ︸

12bit

tz︷ ︸︸ ︷
11 . . . 01︸ ︷︷ ︸

12bit

φ︷ ︸︸ ︷
01 . . . 01︸ ︷︷ ︸

12bit

θ︷ ︸︸ ︷
01 . . . 01︸ ︷︷ ︸

12bit

ψ︷ ︸︸ ︷
01 . . . 01︸ ︷︷ ︸

12bit

.

The 72 bits of gene refers to the range of the searching area:
−150 ≤ tx, ty ≤ 150, 900 ≤ tz ≤ 1200[mm], −20 ≤
φ, θ, ψ ≤ 20[deg].

C. On-line Evolutionary Recognition

Although GA have been applied to a number of robot
control systems [11], it has not been yet applied to a robot
manipulator control system to track a target in 3D space
with unpredictable movement in real time, since the general
GA method costs much time until its convergence. So here,
for real-time visual control purposes, we employ GA in a
way that we denoted as “1-Step GA” evolution. This means
that the GA evolutional iteration is applied one time to the
newly input image. While using the elitist model of the GA,
the position/orientation of a target can be detect in every
new image by that of the searching model given by the top
gene in the GA. That is, the evolving speed to the solution
in the image should be faster than the speed of the target
object in the successively input images, for the success of
real-time recognition by “1-Step GA”. The flow chart of the
1-step GA process is shown in Fig.7. We exploit this on-
line results of the GA in every newly input image for the
feedback signal to the manipulator’s controller. Thereby real-
time visual servo can be performed. Our previous research
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Fig. 9. (a) Shuttle motion of end-effector in x axis of ΣW (from x = 120
to −120[mm]). (b) Shuttle motion of end-effector to see the face from
θ = −7[deg] to θ = 7[deg].

has confirmed the 2D recognition method enabled a eye-in-
hand robot manipulator to catch a swimming fish by a net
equipped at the hand [10].

However, as the searching space extending to 3D, the time
of each GA process will become longer since the parameters
are increased to six, three for position and three for orienta-
tion. So it becomes more difficult for a robot manipulator to
track a target in 3D space in real-time even by using “1-Step
GA” method. The proposed motion-feedforward recognition
method can help us to conduct such a task since it can predict
the motion of the target observed from the cameras by using
the known motion of the robot. Using Eq.14, the pose of the
individuals CRψ̂GA in the next generation can be predicted
from the current end-effector motion, presented by

CRψ̂
i+1

GA =CR ψi
GA + CRψ̇CR,M∆t. (28)

The recognition system of the proposed method is shown
in Fig.8. We consider that the recognition ability will be
improved by using Eq.28 to move all the individuals to
compensate the influence of the motion of the camera. So the
recognition is expected to be robust to the motion of robot
itself.

IV. EXPERIMENT OF RECOGNITION

To verify the effectiveness of the proposed motion-
feedforward recognition, we have conducted the experiment
to recognize a static human head pose with two cameras
which are mounted on the robot end-effector. The image
processing board, CT-3001, receiving the image from the
CCD cameras in real time (30[fps]), is connected to the
DELL Optiplex GX1 (CPU: Pentium2, 400 MHz) host
computer. Here, we used a doll as the target to eliminate
the natural shake of a human being. Two kind of motion has
been given to the robot end-effector while recognizing the
doll’s head pose. We will show effectiveness of the proposed
motion-feedforward recognition method by comparing with
the recognition result without using motion-feedforward un-
der two robot’s motions respectively as follows.

(1) Recognition under translational motion “A”: given
position changing of end-effector (shown in Fig.9(a))

In this case, the shuttle motion in x axis of ΣW (from
x = 120 to −120[mm]) is given to the robot end-effector.
Here, we fixed the orientation of searching models to true
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Fig. 10. Recognition under motion “A” with period T = 15[s]. (a)
Recognition result of position x without using motion-feedforward method
compared with the desired position in ΣCR. (b) Recognition result with
motion-feedforward method compared with the desired position in ΣCR.
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(b)
Fig. 11. Recognition under motion “A” with period T = 7[s]. (a) (b) is
the same meaning as that in Fig.10.
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(b)
Fig. 12. Recognition under motion “B” with period T = 20[s].
(a) Recognition result of orientation θ without using motion-feedforward
method compared with the desired position in ΣCR. (b) Recognition result
of orientation θ with motion-feedforward method compared with the desired
position in ΣCR.
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(b)
Fig. 13. Recognition under under motion “B” with period T = 10[s]. (a)
(b) is the same meaning as that in Fig.12.

values as (φ, θ, ψ) = (0, 0, 0)[deg], so the searching area is
−150 ≤ tx, ty ≤ 150, 900 ≤ tz ≤ 1200[mm]. Fig.10 shows
the recognition under motion “A” with period T = 15[s].
Fig.10(a) is the recognition result of position x without
using motion-feedforward method compared with the desired
position xd in ΣCR. Fig.10(b) is x and xd with motion-
feedforward method. The recognition result of position y and
z is not shown because the target was not moving in those di-
rections, so it is easy to track and the errors are almost 0. The
recognition error of x without using the motion-feedforward
method got larger, however, it could be constrained to the
extent of 15[mm] with motion-feedforward method. It means
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that the model can match the target better when using the
motion-feedforward recognition method.

When the hand motion period is shorten to 7[s], the
recognition error got much bigger without using the motion-
feedforward method as shown in Fig.11(a). Tracking of the
target for GA became more difficult when the speed of the
end-effector got quicker, which caused GA’s convergence
speed is not faster than the target speed relative to the
camera. In comparison, the recognition error can still keep in
the extent of 15[mm] using motion-feedforward recognition
method, shown in Fig.11(b). From this experiment, we
can say that our proposed motion-feedforward recognition
method are robust to the position motion of robot.

(2) Recognition under translational and rotational motion
“B”: given orientation changing of end-effector (shown in
Fig.9(b))

Here, the orientation changing of end-effector is defined
as the motion in a circle with a fixed distance to the target,
keeping the eye-line (z axis of ΣCR) passing the center of
the target. The shuttle motion looking the target from the
left side to the right side from −7[deg] to 7[deg] is given
to the robot end-effector. Here, we fixed (φ, ψ) of searching
models to true values as (0, 0)[deg], so the searching area is
−150 ≤ tx, ty ≤ 150, 900 ≤ tz ≤ 1200[mm], −20 ≤ ψ ≤
20[deg].

In the same way as the previous experiment, we gave the
shuttle motion with different period time 20[s] and 10[s], in
which the corresponding velocity of the end-effector become
quicker. Figs.12(a) (20[s]) and 13(a) (10[s]) is the recognition
result of orientation θ without using motion-feedforward
method compared with the desired orientation θd in ΣCR (the
erorrs of other parameters is not shown since they are almost
0). Figs.12(b) and 13(b) are the results of θ and θd with
motion-feedforward method. The error of the recognition
result without motion-feedforward method changed much
bigger than that with the motion-feedforward method. It con-
firms the effectiveness of the motion-feedforward method,
the recognition can be robust to the motion of robot itself
because it compensates the influence of the motion of the
camera.

V. CONCLUSIONS AND FUTURE WORKS
We have proposed a 3D head pose measurement method

which utilizes a genetic algorithm (GA) and model-based
matching. The head pose evaluation is based on a fitness
function which is composed of head (including facial fea-
ture: eyes and eyebrows) detection and pose estimation by
color. We have proposed an motion-feedforward recognition
method, which is confirmed to be robust by the experiments
since it can make a good prediction to compensated for the
relative motion of the object in camera frame.

As future research, we will continue to work on improving
the accuracy and speed of the recognition. Try to build a
stable visual servo system (6DOF ) to human face.
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APPENDIX

A. A proof of Eq.7

Consider two orthogonal coordinate frame ΣA and ΣB ,
and let AωB denote the angular velocity of ΣB with respect
to ΣA, BωA denote the angular velocity of ΣA with respect
to ΣB . The relation of AωB and BωA will be derived here.

The rotation matrix ARB satisfies
ARB

BRA = I, (A.1)

the time derivative of Eq.(A.1) is given by
d

dt
(ARB)BRA + ARB

d

dt
(BRA) = 0. (A.2)

For an arbitrary vector Bp expressed in ΣB , we have
d

dt
(ARB)Bp = AωB × (ARB

Bp)

= S(AωB)ARB
Bp.

(A.3)

d

dt
(ARB) = S(AωB)ARB . (A.4)

Similarly, we can obtain
d

dt
(BRA) = S(BωA)BRA. (A.5)

Input Eq.(A.4) and Eq.(A.5) to Eq.(A.2), we have

S(AωB) = −ARBS(BωA)BRA. (A.6)

FrD5.4

4400


