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Abstract— In this paper we present a novel technique to
estimate the state of heterogeneous features from inaccurate
sensors. The proposed approach exploits the reliability of the
feature extraction process in the sensor model and uses a Rao-
Blackwellized particle filter to address the data association
problem. Experimental results show that the use of reliability
improves performance by allowing the approach to perform
better data association among detected features.

Moreover, the method has been tested on a real robot during
an exploration task in a non-planar environment. This last
experiment shows an improvement in correctly detecting and
classifying interesting features for navigation purpose.

I. INTRODUCTION

Mobile robots have been applied in domains such as space
exploration [1], surveillance [2], [3] and search and rescue
[4]. A primary requisite for such robot is to provide an
estimate of its state (e.g., position, velocity, etc.) along with
a representation of its surrounding environment (e.g., a map).
Localization and Mapping are two very well knownareas in
the field of mobile robots, and several successful approaches
have been recently proposed (e.g., [5], [6]).

Most of these approaches are very well suited for struc-
tured, planar environments; however, increasing interest is
posed towards environments where a plain planar repre-
sentation is not sufficient: such as outdoor navigation or
search and rescue. In such domains, robotic systems deal
with complex 3D objects (such as slopes, ramps or stairs)
that can be detected and identified only through sophisti-
cated techniques and algorithms. Detection of such complex
features is relevant both to low level primary tasks, such
as navigation, and to higher level complex tasks, such as
surveillance, search and rescue, etc.

When such complex features are involved in the estimation
process, the reliability of the feature extraction process
cannot be taken for granted. A wrong feature classification,
might lead the robotic platform to a completely wrong and
possibly dangerous maneuver. Consequently, a correct esti-
mation of detected features from the observations acquired
over time is of crucial importance. For example, consider a
robot which is performing an exploration task in a complex
unstructured environment.

Previous works in the field of localization and mapping
do not usually explicitly consider the possibility of false
measurements due to sensor inaccuracy. Those works rather
process all the measures that the robot receives from its
sensors using a probabilistic error model, and filter out
false readings through iterative filtering techniques (Kalman
Filters, Particle Filters, etc.). This kind of approach is mainly

justified by the high accuracy of currently used sensing
devices which are deployed for this applications (e.g., laser
range finders).

In this work we propose a method to estimate the state
of a set of complex heterogeneous features considering the
reliability of the feature extraction process involved. The
features we are considering may belong to different classes
and can be represented in different ways. Features can be
extracted by different processing routines, possibly returning
only partial observations about the feature state. Our aim is
not to provide an approach for Localization and Mapping,
but rather to locate the heterogenous features extracted by
diferent dedicated routines inside the world representation
built by the robot.

We suppose that the routine that detects features is able to
provide a reliability measure of the classification performed.
Such reliability measure is used as an approximate prior over
the current association. In this way we are able to explicitly
consider possible failures of the low level detection routine
such as false positives and false negatives. Moreover, we
deal with both the two cases arising from knowing or not in
advance the number of features that are in the environment.

The main ideas presented in this paper are: i) the use
of reliability of the extraction process in the sensor model;
ii) a formal framework for data association using sensor
reliability, based on Rao-Blackwellized particle filters.

The paper is organized as follow. Related work is pre-
sented in Section II. Section III describes the formalization
of the problem, Section IV the Rao-Blackwellized particle
filter approach, while Section V presents our approach both
when the number of features is known a priori and when such
number has to be estimated on-line. Section VI shows the
experimental results obtained. Finally, section VII concludes
the paper.

II. RELATED WORK

The problem of state estimation is related to the problem
of Localization, Mapping and Simultaneous Localization and
Mapping (SLAM) [7]. Also several works in the SLAM area
uses Rao-Blackwellized particle filters [8], [9]. However, in
this paper we present an approach to address a different
problem, we want to estimate the state of interesting features
in the environment on top of two other modules present in
the system: a SLAM algorithm for mapping and localization
[10] and a feature detection process (implemented as a neural
network classifier).
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Works in the area of Multi-Object Tracking (MOT)
are also related to our work [11]. In particular Rao-
Blackwellized particle filters have been used in [12] to track
multiple objects. The use of particle filtering technique for
MOT is justified by the asymptotic convergence of particle
filtering to the optimal Bayesian estimator. Moreover, the use
of Rao-Blackwellized particle filters provides an efficient ap-
proach. In addition to this, in our work we use in the proposal
distribution the reliability of the feature detection process,
and model the association evolution using a Dirichlet model.
In this way we are able to have a more efficient estimation
process, as shown by the experimental results.

In the work [13] the authors present an approach based
on Markov Chain Monte Carlo Data Association to track
multiple objects. The authors prove that when the number of
features in the environment is known a priori their approach
ensure convergence in polynomial time and with a single
scan processing. However, when the number of features is
unknown their approach cannot be considered an incremental
approach, and this is a fundamental requirement for our
application.

In [14] a similar approach is presented. The authors
use a Rao-Blackwellized Particle Filter to estimate people
location in the environment. Each particle represents the
association history between Kalman filtered object tracks and
observations. While the authors use a very similar technique
to our work, there are two important differences. First of all,
their approach is designed for tracking purposes, while our
presents a general framework for data association. Secondly,
we also use the sensor reliability within the framework, while
they just rely on the observation likelihood.

III. PROBLEM FORMULATION

Let F = {f1, . . . , fK} be a set of K features which are
present in the environment, where K may be either known
or not (see section V for further details on this). Each feature
has associated a state xk

t , which can evolve during time. The
nature of the state is strictly connected with the class of the
corresponding feature. Therefore, such states neither belongs
to the same space nor have the same dimension. The state
evolution of each feature is modeled by a stochastic process
ruled by the distribution:

p(xk
t+1|xk

t ) (1)

The features persist over time. The robot is able to observe
a subset of the features at time. Those features are detected
by a complex algorithm, and a reliability measure about the
detection is provided1. The number of features is modelled
as a Poisson distribution, with parameter λnV , where V is
the dimension of the explored space and λn is the scattered
rate of the features. There are also false alarms and the
number of false alarms also follows a Poisson distribution
with parameter λf , where λf is the false alarm rate.

Without loss of generality, we restrict ourselves to consider
just one observation for time step. Let zt = 〈yt, Rel(yt)〉 the
reading at time t. This reading is composed by two parts:
yt is an observation of the feature2; Rel(yt) is a vector of

1The reliability is intended as a measure on how likely the feature is
detected and associated to an already existing one

2More precisely, yt is a raw data, which is transformed into a feature
observation according to that feature’s class

numerical values that encodes the reliability of the detection
process for each feature. For the sake of clarity, we use the
notation Relk(yt), k = 1, . . . ,K to denote the probability of
the readings being generated by the k-th feature, Rel0(yj

t )
to denote the probability of the reading being a false alarm
and RelK+1(yj

t ) to denote the probability of the readings
being generated by a new feature. It is worth noting, that
Rel0(yj

t ) and RelK+1(yj
t ) do not depend on the detection

process, but are instead modelled by the Poisson distributions
defined above.

The observations yt are generated from{
p(Ψk(yt)|xk

t ) if the observation is from xk
t

ut otherwise (2)

where p(Ψk(yt)|xk
t ) is the likelihood of the state given the

observation, Ψk is a function that maps the raw data yt into
the measurement space of the k-th feature and ut ∼ Unif(R)
is a random process for false alarm, R being the domain of
yt. This likelihood depends on the class associated to the
feature and in general is different among the features. In the
rest of the paper, we will omit writing the function Ψ for
notational simplicity.

Association among observations and features is ob-
tained through a joint association event [13] αt =
{T 0

t , T 1
t , . . . , TKt

t }, where T k
t is the set of observations

associated to the feature k. At every time step, the system
associates an observation zt with a feature: for instance, if
zt is associated with the k-th feature, then the correspondent
track T k

t = T k
t−1 ∪ {zt} will be updated. Therefore the goal

of the system is to provide E(xk
t |z1:t), which is dependent

on P (αt|z1:t).
In the following, for notational simplicity, we will make

use of the term label to address the association between
observations and features. We map an association event into
a sequence of labels L1:t = {L1, · · · , Lt} where Li = k if
the observation i is associated to the feature k. Using this
notation, we can derive the incremental update equation of
the filter.

IV. RAO-BLACKWELLIZED PARTICLE FILTERS

The previous problem can be well described within
the Bayesian framework, resulting in estimating the
joint posterior over the associations and features’ state,
p(X1:t, L1:t|z1:t), given the history of observations. Once
obtained this distribution, it is straightforward to obtain
p(Xt|z1:t). One way is to simply marginalize out the
association. This is similar to a Joint Probabilistic Data
Association Filter, which simulates an exact Bayes filter
and compute the expected posterior by just marginalizing
out the last association made [11]. A second way is to
obtain p(Xt|z1:t, L̂1:t), being L̂1:t a Maximum A Posteriori
estimator for p(L1:t|z1:t). This approach is in a way similar
to the Multiple Hypothesis Tracker; the main difference
lies in the fact that RBPF is a fully probabilistic approach,
while MHT uses some deterministic rules to add and delete
association tracks.

Exact inference in such a model is not possible, since the
number of possible associations grows hyper-exponentially
with the number of measurements. As a matter of fact, this
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number is equal to the number of set partitions of the set of
measurements, which is known as the Bell number [15].

However, only a small fraction of the set partitions is
feasible with respect to the real associations. Based on
this observation, it is reasonable, both from a theoretical
and practical perspective, to approximate the distribution
of the associations with a sum of different samples. The
reason behind this is that the mass of the distribution is
concentrated only in a small portion of the state space. In
other words, we want to focus our attention on the most
probable associations, which are represented by the samples
drawn from the association distribution, by using Monte
Carlo methods [16].

The key idea of the Rao-Blackwellized particle filter for
this problem is to estimate a posterior p(L1:t|z1:t) about po-
tential labels L1:t of the measurements given the observations
z1:t, and to use this posterior to compute a posterior over
features’ state and feature association.

p(X1:t, L1:t|z1:t) = p(X1:t | L1:t, z1:t)p(L1:t | z1:t).(3)

This can be done efficiently, when the posterior over features’
state p(X1:t | L1:t, z1:t) can be computed analytically given
the knowledge of L1:t and z1:t. Luckily, there are several
situations where this assumption holds (like for Linear Gaus-
sian or Hidden Markov models). This technique is known as
Rao-Blackwellized Particle Filter and is proved to reduce
the variance of the estimate, according to the Rao-Blackwell
Theorem[17].

In the next section we will show how to use the Rao
Blackwellized Particle Filters in this context, by providing
the proposal distribution and the weight computation, first
when the number of features is fixed and known, then when
their number is not known in advance and can increase over
time.

V. STATE ESTIMATION WITH RBPF
In the previous section, we described the general frame-

work of Rao Blackwellized Particle Filter. Here we show
how to instantiate the framework in the context of hetero-
geneous features’ state estimation. To this end, we need to
define what information the samples (particles) represent and
the nature of the distributions involved.

Each sample is characterized by the following N +2-uple:

s
(i)
t =

〈
w

(i)
t , L

(i)
1:t, θ

1,(i)
t , θ

2,(i)
t , . . . , θ

N,(i)
t

〉
(4)

where w
(i)
t represents the importance weight, L

(i)
1:t the asso-

ciation history and each θ
n,(i)
t the sufficient statistic of the

corresponding feature, e.g. mean and variance if they are
represented as Gaussians.

Recalling that the association is independent from the past
reliability given the last one3, we can write the distribution
in the following recursive way

p(L1:t|z1:t) ∝ p(yt|L1:t, y1:t−1, Rel(y1:t)) ·
p(L1:t|Rel(y1:t), y1:t−1) (5)

= p(yt|L1:t, y1:t−1)p(Lt|Rel(yt), L1:t−1) ·
p(L1:t−1|z1:t−1) (6)

3The past reliabilities are embedded in the previous labels, thus resulting
in this independence property

We now have a recursive distribution, which is well suited
to be implemented in the Sequential Monte Carlo framework.
We choose as proposal the distribution:

p(Lt|Rel(yt), L1:t−1) (7)

While this is not the optimal proposal, as we do not use
the measurements yt, the reliability allows us to highly
reduce the association space. This is because the reliability
can be seen as a direct observation of the label, as it
reflects the information provided by the detection algorithm.
Experimental results show the differences between using or
not such information (see section VI)

After the sampling stage, we apply the importance sam-
pling principle, obtaining the following weight distribution:

wt = wt−1p(yt|L1:t, y1:t−1) (8)

which is easy to evaluate given the fact that we have already
computed the predicted state distribution p(Xt|L1:t, y1:t)
using the sufficient statistics embedded within the particles.

In the end, we adopt an adaptive resampling schema,
by considering the effective number of particles [18]. This
number,

Neff (t) =
1∑N

i=1

(
w

(i)
t

)2 (9)

is an approximative measure which tells us how well the set
of samples approximates the goal distribution and is strongly
related to the variance in the particle weights. We perform
a resampling step when this quantity falls below a certain
threshold, Neff < Ntsh.

A. Fixed and known number of features
When the number of features to estimate is fixed and

known, the problem is slightly simpler, as the association
is constrained to one of the existing classes.

With respect to the proposal distribution, we have two
important distributions to take into account. The first is given
by the frequency of the different features in the environment.
The second is given by the reliability and reflects our degree
of belief about the association provided. We can use the fact
that in a fixed and known number of features, the new label
Lt is given by the product p(Rel(yt)|Lt)p(Lt|L1:t−1) as
the reliability does not depend on the previous labels. We
can obtain p(Lt|L1:t−1) by marginalizing the multinomial
distribution over the past associations. The parameters of this
distribution have to be estimated, in order to reflect the real
labels’ frequency. To do so, we use a MAP estimate, using
the Dirichlet distribution as a conjugate prior.

As for the weight, we need to define the conditional
likelihood distribution, which strongly depends on the label
associated to the reading. We can define the weight, by
marginalizing with respect to the estimated state of the
feature, obtaining:

p(yt|L1:t, y1:t−1) =
∫

p(yt|xLt
t )p(xLt

t |TLt
t )dxLt

t (10)

This integral can be computed analytically for some distribu-
tion, such as Gaussians and discrete distributions. Otherwise,
numerical or stochastic methods can be used to obtain a close
approximation.
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B. Variable and unknown number of features
The previous framework can be extended to handle an

unknown number of features. First of all, we notice that the
main difference in dealing with a known or unknown number
of features lies in the sampling procedure, namely in the
distribution p(Lt|Rel(yt), L1:t−1). In this scenario, we need
to focus also on the fact that observations can come from an
unknown feature, and model this fact appropriately. We use
the Dirichlet Process, in order to estimate the probability of
having a new class and assigning the observation to already
existing classes. This distribution is often used in the infinite
mixture model, and is considered a natural extension of the
standard Dirichlet distribution when the number of classes is
not known in advance[19], [20].

Using the Dirichlet Process as our prior over the parame-
ters of p(Lt|L1:t−1), and the independence of the reliability
of time t from previous labeling, we can still reduce our-
selves to:

p(Lt|Rel(yt), L1:t−1) = p(Rel(yt)|Lt)p(Lt|L1:t−1) (11)

when:

p(Lt|L1:t−1) =

{
|T i

t−1|
|L1:t−1|+c i = 1, . . . ,K

c
|L1:t−1|+c i = K + 1

(12)

with c encoding our belief on the number of features in the
environment.

The importance weight defined for the fixed case, ( 10),
is still valid in this situations We just want to notice that
in the case of the new feature, the integral reduces to the
computation of the normalizing factor of the distribution (as
the state is equal to the observation due to the initialization).

VI. EXPERIMENTS

We performed extensive experimental analysis of the
approach in an abstract simulation and validation on data
extracted from a mobile platform. The experiments are
described in details in the following two sections. We first
analyze some numerical results of the algorithm by imple-
menting an abstract simulator. Then, we use our algorithm
with data obtained from a real robot, in order to show
applicability of this technique in real scenarios.

A. Abstract Simulator
We use an abstract simulator to perform an extensive

quantitative analysis of correctness an completeness of the
association algorithm. We use a Markov Chain to simulate
the observations arrival. This chain is tuned in order to
simulate a robot path inside an environment. This is achieved
by giving higher probability to persistent move in the chain
and it results in a burst of observations of one feature,
followed by a burst of another feature and so on. The state of
the features is given by a simple one dimensional Gaussian,
as we decided to focus our attention on the association
process, rather than on the estimation one. The observation
of the state are sampled from a Gaussian distribution with
different values for the variance. The reliability values for the
feature association are sampled from a Dirichlet distribution,
whose parameters are tuned in order to obtain slightly higher
values of reliability for the correct association, simulating a
real detection algorithm.
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Fig. 1. Number of features: The graphs show the variation of the two
metrics with respect to the number of features and the use of reliability. We
show the results regarding correctness (top) and completeness (bottom)

We performed several experiments, varying the number
of features to be tracked, the peakness of the Dirichlet
distribution and the variance of the observations. In all those
cases, we compute two measures, in order to evaluate the
performances.

The first metric is related to the correctness of the associ-
ation, and is given by:

TruePositive

TruePositive + FalsePositive
(13)

This value measures the percentage of correct associations
made by the algorithm, with respect to the complete set of
associations provided.

The second metric is related to the completeness of the
association, and is given by:

TruePositive

TruePositive + FalseNegative
(14)

This value measures the percentage of correct associations
made by the algorithm, with respect to the complete set of
correct associations.

In order to prove the efficacy of using the reliability,
we also performed the same experiments without using the
reliability in the data association process, notice that, such an
approach is similar to the one presented in [12]. We use the
same parameters and the input data for both the approaches.
The data set was composed of 700 simulated observations,
with 5 runs with different random seeds. The number of
particles used in the experiments was 1000, which allows
for real time execution. The features are scattered within the
environment at about 10m of distance.

In the first experiment, we analyze the variation of the
performances when varying the number of features. When
the number of features increases the performance of both
the algorithms decreases, as one would expected. However,
this decrease in performance is much more evident when
the reliability is not taken into account, as can be seen in
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Fig. 2. Precision of the sensor: The graphs show the variation of the two
metrics with respect to the precision of the sensor and the use of reliability.
We show the results regarding correctness (top) and completeness (bottom)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8

p
er

ce
n

t

reliability rate

TP/(TP+FP) 
TP/(TP+FN) 

Fig. 3. Reliability: The graphs show the variation of the two metrics with
respect to the peakiness of the reliability. Notice that a reliability of 0 means
not using the reliability.

Figure 1. This is due to the increased combinatorial space
when more features are presented. The reliability provides
us some kind of ”hint” about the right associations, which
reduces the search space.

In the second experiment, we vary the precision of the
sensor. The sensor is related to the analytical part of the
features’ state and its variance influences the importance
weight computation. Figure 2 shows the result. As we can
see, less precision in the sensor has some impact on the
precision of the algorithm. This is due to the fact that when
features are too close in the state space, there is not so much
difference in the importance weight of a wrong association.
As before the results show that even if there is a decrease in
performance, such decrease is much more evident when the
reliability is not taken into account.

Finally, we performed some experiments to show how the
performance varies according to different levels of reliability.
In Figure 3 the results are plotted. As one would expected,
the performance increases when the reliability grows. In the
experiments we let this value to vary from 0.4 percentage
of getting the real association up to a 0.9 one. When the
reliability value is 0 reliability is not used in the algorithm.

Further experiments with high dimensional features results

in similar classification rate, showing good robustness of the
association with respect to the feature structure.

B. Real Robot

We performed a set of experiments on data extracted by
a mobile platform performing an exploration task in a non-
planar environment.

We focus on features that might be of interest for the nav-
igation process. In particular, in the experiments we detect
and estimate ramps and slopes present in the environment.
A feature’s state is composed by the feature class and the
feature absolute position inside the environment.

A stereo system mounted on the robot is used to collect 3D
information about these features. In particular, we compute
a disparity map between the left and right image of the
camera4 and use such a map for classifying three kinds of
features: slopes, planes and ramps. To do so, we pre-process
the disparity map extracting a vector of disparity values along
the main direction of the view and then trained a Neural
Network classifier with these data. The Neutal Network was
composed of one hidden layer with ten neurons, one input
layer of ten neurons and one output layer of three and was
trained with a standard backpropagation algorithm.

After training, the Neural Network was used to classify
the three classes of features (slopes, ramps and planes) that
are of interest for our application. Notice that, although for
navigation purposes only ramps and slopes are considered,
planes are still classified as features by the Neural Network
and sometimes misclassifications of such a feature give rise
to false positives.

We estimate the position of each feature using the position
of the robot provided by a SLAM algorithm [10], applied
during robot navigation in the environment, adding the
distance given by the disparity map.

During the experiments, the robot performed a predefined
path several times acquiring data for the interesting fea-
tures along the way. We compared three approaches: i) our
approach using reliability; ii) our approach without using
reliability; iii) a nearest neighbor approach. The last method
is a well known, simple method for data association that
gives us a measure of the difficulty of the problem we are
trying to solve. The same acquired data are given as input
to all the approaches. In the environment there were four
interesting features, highlighted by boxes in the map (see
Figure 4). The rightmost feature is a ramp heading towards
the wall, the leftmost feature is a slope, while the features in
the middle are a ramp and a slope (going from bottom-left to
top-right). Notice that, these last features will be interpreted
as slopes or ramps depending on the heading of the robot.
In this environment, a desirable behavior for an estimation
algorithm would be to report one feature for each of the
elements present in the environment (i.e., 3 ramps and 3
slopes in this case).

In Figure 4 we report the features detected by our algo-
rithm (boxes) and the features detected by a simple nearest
neighbour approach (crosses). As it is possible to see from
this figure, the nearest neighbour approach reports several

4To compute the disparity image we used the Small Vision System
software http://www.ai.sri.com/software/SVS
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Fig. 4. Real robot experiments: results obtained using a simple nearest
neighbor approach (crosses) and our current work (boxes).

incorrect associations, showing that the problem addressed
is not a trivial one.

Compared to the nearest neighbour, our approach reports
fewer misclassification and obtains a better accuracy of
the feature state estimation. Similar results are obtained
comparing to an approach similar to [12] (e.g., witout the use
of reliability) confirming the results obtained in simulation.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach to estimate
the state of heterogeneous features from inaccurate sensors.
Two main novel aspects are present in the approach: the
use of a Rao-Blackwellized particle filter to address the data
association problem and the integration of the reliability of
the feature extraction process in the sensor model. The use
of a Rao-Blackwellized particle filters provides an efficient
way to approximate the optimal Bayesian estimation of
the features’ states. Moreover, by integrating the reliability
information in the estimation process our approach is able
to consistently improve the performance of the system,
providing a better estimate of the features’ states.

We have performed several experiments on an abstract
simulator as well as on a mobile robot. The abstract simulator
allowed us to perform a quantitative evaluation over broad
set of parameters, confirming that the use of reliability can
improve the performance of the estimation process.

To validate the results obtained in the simulated environ-
ment, the method has been applied to a mobile robot explo-
ration task, showing improvements in correctly detecting and
classifying 3D features that are of interest for navigating in
a non-planar environment.

In the future, we want to consider highly heterogeneous
features, where the state space is not just a position and a
class, but, for example, the slope and the length of a ramp,
or the number of steps of a staircase, etc.. Moreover, it
is interesting to validate our approach in situations where
simple strategies, like the nearest neighbor, would not be
applicable as it is not possible to define a distance among
different features.

Another important aspect we want to further investigate
is the use of different detection algorithms, for instance
from different sensors, and analyze how different detectors
influence the total reliability and how it is possible to use one
detector to improve the performance of the others in terms
of detection accuracy.

VIII. ACKNOWLEDGMENTS

Alessandro Farinelli is supported by the European Office
of Aerospace Research and Development under grant number
053015. The views and conclusions contained herein are
those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either expressed or implied, of the European Office of
Aerospace Research and Development.

REFERENCES

[1] D. Goldberg, V. Cicirello, M. B. Dias, R. Simmons, S. Smith, T. Smith,
and A. Stentz, “A distributed layered architecture for mobile robot
coordination: Application to space exploration,” in Proceedings of the
3rd Int. NASA Workshop on Planning and Scheduling for Space, 2002.

[2] L. E. Parker, “The effect of heterogeneity in teams of 100+ mobile
robots,” in Proc. of the NRL Workshop on Multi-Robot Systems, A. C.
Shultz and L. E. Parker, Eds., vol. II. Washington, DC: Kluwer
Academic Publishers, 2003, pp. 205–215.

[3] K. e. a. Konolige, “Centibots: Large scale robot teams,” in Proc. of
the NRL Workshop on Multi-Robot Systems, A. C. Shultz and L. E.
Parker, Eds., vol. II. Washington, DC: Kluwer Academic Publishers,
2003, pp. 193–204.

[4] R. Murphy, J. G. Blitch, and J. L. Casper, “RoboCup/AAAI urban
search and rescue events: Reality and competition,” AI Magazine,
vol. 1, no. 23, pp. 37–42, 2002.

[5] W. Burgard, D. Fox, and S. Thrun, “Robust monte carlo localization
for mobile robots,” Journal of Artificial Intelligence, 2001.

[6] J. Leonard and H. Durrant-White, “Mobile robot localization by
tracking geometric beacons,” IEEE Transactions on Robotics and
Automation, vol. 7, pp. 376–382, 1991.

[7] W. Burgard, D. Fox, and T. S., “A probabilistic approach to concurrent
mapping and localization,” Machine Learning, 1998.

[8] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A
factored solution to the simultaneous localization and mapping prob-
lem,” in Proceedings of the AAAI National Conference on Artificial
Intelligence. Edmonton, Canada: AAAI, 2002.

[9] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based
slam with rao-blackwellized particle filters by adaptive proposals and
selective resampling,” in Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 2005.

[10] G. Grisetti, G. D. Tipaldi, C. Stachniss, W. Burgard, and D. Nardi,
“Speeding up rao blackwellized slam,” in Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), Orlando, FL, USA, 2006,
pp. 442–447.

[11] Y. B. Shalom and T. E. Fortmann, Tracking and Data Association.
Boston: Academic-Press, 1988.

[12] S. Sarkka, A. Vehtari, and J. Lampinen, “Rao-blackwellized monte
carlo data association for multiple target tracking,” in Proc. of 7th Int.
Conf. on Information Fusion, vol. I, 2004, pp. 583–590.

[13] S. Oh, S. Russell, and S. Sastry, “Markov chain monte carlo data
association for general multiple target tracking problems,” in Proc. of
43rd IEEE Conference on Decision and Control (CDC), 2004.

[14] D. Shulz, D. Fox, and J. Hightower, “People tracking with anonymous
and id-sensors using rao-blackwellized particle filters,” in Proc. of the
International Joint Conference on Artificial Intelligence (IJCAI), 2003.

[15] A. Nijenhuis and H. Wilf, Combinatorial Algorithms. Academic
Press, 1978.

[16] A. Doucet, N. De Freitas, and N. Gordon, Sequential Monte Carlo
Methods in Practice. Springer Verlag, 2001.

[17] A. Doucet, N. Freitas, K. Murphy, and S. Russel, “Rao-blackwellized
particle filtering for dynamic bayesian networks,” in in Proceedings of
the 16th Annual Conference on Uncertainty in Artificial Intelligence
(UAI 2000), 2000.

[18] J. Liu, “Metropolized independent sampling with comparisons to
rejection sampling and importance sampling,” Statist. Comput., vol. 6,
pp. 113–119, 1996.

[19] A. Ranganathan and F. Dellaert, “A rao-blackwellized particle filter
for topological mapping,” in Int. Conf. on Robotics and Automation,
2006.

[20] D. Blackwell and J. B. MacQueen, “Ferguson distributions via polya
urn schemes,” Annals of Statistics, vol. 1, pp. 353–355, 1973.

FrB11.3

3855


