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Abstract— In [17] we proposed an RL framework for control
of flapping-wing MAVs. The algorithm has been discussed and
simulation results using a quasi-steady model showed initial
promise. In this paper, the results from an experiment on a
Drosophila-based dynamically scaled model are presented and
are used to verify the control framework. Moreover, a com-
parison between a biological Drosophila melanogaster and the
experimental results shows the actual possibility of employing
the proposed approach to MAV control problem.

I. INTRODUCTION

Insect-scale flapping wing micro aerial vehicles (MAVs)
have been proposed for a number of applications, especially
ones where maneuverability at low speed is necessary of-
ten in confined spaces. These applications include internal
inspection of pipes, search and rescue in hazardous or
inaccessible areas, and surveillance of indoor environments.
Some notable work in this area include those by Fearing et
al. [9], Michelson and Reece [14], and Pornsin-Sirirak et al.
[18].

Although one might consider designing low speed
MAVs by scaling down dimensions of conventional aircraft
(Reynolds number1, Re ≈ 107), doing so is not feasible
because it would significantly magnify the relative effect of
the viscous forces. In view of the remarkable capabilities
of insect flight for low Reynolds numbers (Re ≈ 102),
numerous researchers have turned to the use of flapping
wings to engineer a solution. The best understanding, both
qualitative and quantitative, of insect unsteady aerodynamics
has come from three general techniques: (a) direct force
measurements on tethered biological insects (e.g., [1], [22]);
(b) computational fluid dynamics (CFD) models which nu-
merically solve the Navier-Stoke equations (e.g., [19] and
[23]); and (c) instrumented dynamically-scaled models (e.g.,
[8], [2] and [11]). Sane provides a comprehensive survey on
these methods, including their advantages and drawbacks in
[20].

The authors previously discussed the problem of unsteady
aerodynamics at low Reynolds numbers and proposed rein-
forcement learning (RL) as a suitable candidate for the flight
control of flapping-wing MAVs [17]. The algorithm has been
discussed and simulation results using a quasi-steady model
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1In aerodynamics, the Reynolds number (Re) is a measure of the ratio of
inertial to viscous forces and it determines the general qualitative behaviour
of the fluid interaction with an object.

showed initial promise by converging to a smooth flapping
motion. The computer simulation demonstrated that the algo-
rithms are suitable, and helped developing needed conditions
to carry out the physical experiments but the adequacy of the
quasi-steady model, itself, is questionable. Therefore, the RL
algorithm was implemented on a dynamically scaled model
to determine its use for true unsteady aerodynamics. This
paper focuses on the findings from this experiment.

The remainder of this paper is organized as follows.
Section 2 describes the dynamically scaled model in detail.
Section 3 describes the experiment procedure and implemen-
tation while section 4 summarises the evaluation and results.

II. DYNAMICALLY SCALED MODEL

In the case of insect flight, the building of a dynamically
scaled model will provide conditions that would be compa-
rable to the real insect by conserving the underlying aero-
dynamics. The theory behind conserving the aerodynamics
while scaling the geometric dimensions of a problem is com-
monly used in fluid mechanics studies (the basic concept can
be found in a standard textbook on fluid dynamics such as
[10]). The theory and design details of building the apparatus
is previously discussed in [11] and therefore is not repeated
in this paper. In this section we summarize the prototype and
model specifications as well as the experimental setup.

A. Prototype and Model Specifications

The basis for specification of the scaled model is
a typical Drosophila melanogaster, and the parameters
are adjusted to geometrically and kinematically scale the
Drosophila flight. Specifications for prototype and model
are shown in Table I. “Prototype” refers to the biological
Drosophila melanogaster and “model” refers to the dynam-
ically scaled apparatus. Note that some parameters are not
known before the end of experiment as the flapping motion
is yet to be achieved.

B. Experimental Setup

The experiment setup is shown in Fig. 1. The base-
joint is immersed in a 40′′ × 20′′ × 20′′ container filled
with a mixture of glycerine and water to give the desired
kinematic viscosity. The three stepper motors are able to
provide pitch, roll and yaw motions2 and are controlled by
a PC through a GALIL DMC-2183 motion controller board.
Force measurements are read from a sealed ATI NANO17
6-axis force/torque sensor installed on the wing base-joint.

2Only roll and yaw motions were used in the this experiment.
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TABLE I

MORPHOLOGICAL AND FUNCTIONAL PARAMETERS OF THE PROTOTYPE AND THE MODEL.

Symbol Parameter Prototype (p) Model (m)
b Wing span (mm) 4.94 Fixed: 400
A Aspect ratio 5.487 Fixed: 5.487
r̂22(S) Non-dimensional second moment of wing area 0.328 Fixed: 0.328
Φ Stroke amplitude (deg) 148 − 169 Range: 0–160 160†
n Stroke frequency (Hz) 190 − 212 Range: 0–0.420 0.325†
|dφ̂/dt̂|max maximum non-dimensional angular velocity 5.50 Bounded: 6.25‡
(|dφ̂/dt̂)2 Mean square of non-dimensional angular velocity – – 21.0†
|dφ̂/dt̂| 52 Mean 5

2
-power of the absolute value of the non-dimensional

angular velocity
– – 48.9†

t̂rot Non-dimensional rotation time – – 0.25†
FL Mean lift force (N ) – – 1.82†
ρ Fluid density (kg m−3) 1.2 Range: 999–1261 1235†
ν Fluid kinematic viscosity at 20◦C (cSt) 15 Range: 1–1180 160†
Re Reynolds number 165 Constraint: 165

Rep calculated based on values of this table.
Ap and r̂22(S)p calculated from wing shape depicted in [27]; νp from [24]; all other prototype data from [12], [13].
Ranges are for the model and are based on model limitations.
†Parameters are found for the model after algorithm convergence.
‡The bound on maximum non-dimensional angular velocity is discussed in §III-A.
5
2

-power of the absolute value of the non-dimensional angular velocity is calculated for future reference.
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Fig. 1. Photo of experimental setup showing the aluminum frame reinforced
for vibrations, single-wing driving mechanism and controller boards.

Wing Adapter

Sealed

Sensor

Wing

Fig. 2. The actual wing used in experiment, fabricated from a flat 1
8

′′
plate

of acrylic, shaped to have a planform geometrically similar to the wing of
Drosophila melanogaster.

Forces are filtered using a zero-phase-delay, digital low-
pass Butterworth filter with cutoff frequency of 2.5 Hz.
The wing is fabricated from a flat 1

8

′′
plate of acrylic,

shaped to have a planform geometrically similar to the wing
of a Drosophila melanogaster (wing shape from [27]). The
wing, attached to the wing adapter and the sealed sensor, is
shown in Fig. 2.

As can be seen from the Fig. 2, part of the wing proximal
to the base rotation joint is missing due to the space occupied
by the force sensor and other attachments. The aerodynamic
force contribution of a differential wing element is propor-
tional to the fourth power of its distance from the rotation
axis. Thus, although the missing portion of the wing may
appear to be large, its actual contribution has been estimated
to be +3.5% so it is neglected (for more detail, refer to [15]).
Another possible source of error is from the tank side walls,
surface and ground. The total effect of the side walls, surface
and ground on the mean lift-force coefficient calculated to be
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+13.5% and the forces were corrected accordigly (for more
detail, refer to [15]).

III. EXPERIMENT

The Q-learning algorithm used to carry out the experiment
is previously explained by authors in [17]. All software were
written in MathWorks’ MATLAB R©.

A. Power Requirement

The scaled-model apparatus, described above, ensures the
underlying aerodynamics of Drosophila’s flight is conserved
by matching the Reynolds numbers between the prototype
and the model. Since the learning algorithm explores all the
possible actuations it can make, one more attribute has to
be matched before forces from the scaled model can be
compared to Drosophila’s flight forces. Drosophila’s flight
muscles have limited abilities to accelerate and decelerate
the wing and therefore the scaled model, in our experi-
mental case, should be made limited in software to enable
future comparisons with Drosophila. In order to make the
scaled model comparable to Drosophila in terms of actuation
abilities, a maximum angular velocity has been found for
Drosophila and is used as an upper bound on joint velocities
in scaled model. From the mean specific inertial power, P ∗

acc

(= Pacc/mg) from Ellington’s formulation of power in [7],
we have3:

P ∗
acc =

ρn3Φ2R3(dφ̂/dt̂)2max

2pw

[ρw

ρ
ĥr̂2

2(m)+
πv̂r̂2

2(v)
2A

]
, (1)

where pw is the wing loading. The two terms in the brackets
represent the moments of inertia for the wing mass and
virtual mass. These are determined by ρw, the density of
cuticle, ĥ, the non-dimensional wing thickness, r̂2

2(m), the
non-dimensional second moment of wing mass, v̂, the non-
dimensional virtual mass, and r̂2

2(v), the non-dimensional
second moment of virtual mass. Virtual mass takes into
account the inertia of the air around the wings that must
be moved during the flapping motion. The parameter of
interest in this equation is the non-dimensional angular ve-
locity, (dφ̂/dt̂), defined in [4] from the dimensional angular
velocity, (dφ/dt), as:

(dφ̂/dt̂) =
2

nΦ
(dφ/dt). (2)

|dφ̂/dt̂|max is the observed maximum non-dimensional
angular velocity and can be used to find a theoretical upper
bound on maximum non-dimensional angular velocity, i.e.,
|dφ̂/dt̂|bound. The actual value for |dφ̂/dt̂|bound can be
derived from |dφ̂/dt̂|max of Drosophila in its maximum
flight performance. Lehmann and Dickinson [12] investigated
power requirements of Drosophila in its minimum, hover-
ing and maximum performances. However, they assumed
a constant maximum non-dimensional angular velocity of
|dφ̂/dt̂|max = 5.50 in all three cases. Hence, for our

3For the definitions and derivations of all the parameters in this equation,
see [3] and [7].

purposes, there is no advantage in using their results on
Drosophila’s maximum flight performance over other works
on hovering Drosophila. Another way to estimate the non-
dimensional angular velocity is from two simple models: in
the sawtooth model, the wing-tip velocity follows a constant
profile, and in the harmonic model, it follows a half-cosine
profile [26] [4]. The values for non-dimensional angular ve-
locity for each of these models has been calculated to be 4.00
and 6.28 respectively. Lehmann and Dickinson discussed that
the actual value falls somewhere between these two extremes
[12]. Consequently, the value |dφ̂/dt̂|bound = 6.25 has been
selected to give a reasonable, yet practical estimate of the
bound on non-dimensional angular velocity. This value is
non-dimensional and therefore stays constant between the
model and the prototype. We assume the same bound on the
angular velocity for the muscles/motor of the other DOF, i.e.,
|dα/dt|bound = |dφ/dt|bound = 6.25.

B. Learning on Scaled Model

The state, action and reward functions are defined in the
same way as previously stated in [17]:

s =




φ
α

φ̇
α̇


 , a =

[
∆φ̇
∆α̇

]
, (3)

r = R(s,a) =

{
−Rmax if |φ̈| > Φ̈threshold,

FL(s,a) otherwise.
. (4)

Due to algorithm limitations (refer to the algorithm in [15]
for more detail), each of the two angular velocities has been
quantized in 9 steps, that is:

{φ̇, α̇} ∈ {−4, −3, −2, −1, 0, 1, 2, 3, 4}. (5)

Reynolds number can be estimated from a modified equa-
tion derived by Ellington in [7] that uses the time-averaged
velocity of the wingtip instead of the flight velocity:

Re =
Φb2n

νA
. (6)

The actual flapping frequency and stroke amplitude is not
known until the agent reaches the end of its learning episode
and converges to a flapping trajectory. This is because the
flapping motion is being learned by the agent and the
parameters of this motion are not assumed beforehand. This
introduces some difficulties into how well the Reynolds
numbers can be matched. At the end of each run of the
experiment, a new run has been started with a new kinematic
viscosity to achieve matching Reynolds numbers. Therefore,
the process of parameter matching (between prototype and
model), in our case, is inevitably iterative. However, the
simulation data presented in [17] provide insight into the
possible ranges of these values, and has been used to estimate
Φ and n and reduce the number of iterations.

The experiment was carried out for the last third part of
the learning episode (i.e., 100K cycles) because of three
reasons. First, the quasi-steady model is believed to be able
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Fig. 3. Graph of εt, γt and λt used in experiment. The experiment was
carried out using λ = 1 and ε and γ varying by equations described in
[17]. As can be seen from the figure, the exploration rate ε is decreased
and the discount factor γ is increased by the time step. The former implies
decreased exploration near the end of the simulation, and the latter indicates
increased reliability on expected future reinforcements as the agent becomes
more “experienced”.

Translator
Ethernet

Interface

Motion

Controller

Dynamically

Scaled

Model

Serial

Interface
Calibrator

Digital

Filter

Lift-Force

Extractor

Q-learning

Agent

X
�������

Control loop: 128 ms

�
�

�
�
�

	





�
�
�

�

f = T(f-b)c f

FLift

ff

�	��
��

���
��	�

�
�
���	�

�����	���

����	�

�����
��
��

Fig. 4. Control loop of the experiment showing different components
involved in actuation and sensing.

to sufficiently approximate the environment for the first two-
thirds of the learning episode. This way the agent can learn
the essential properties of the environment and then perform
a more detailed search on an actual physical environment
to fine-tune its behaviour. Second, the total learning episode
could be very long considering the speed of the scaled model
(e.g., an experimental episode would have taken more than
10 hours). And third, as the scaled model was not designed
primarily to carry out such long experiments, the wear and
tear on the mechanical parts was a concern. Fig. 3 shows
how ε, γ and λ change over time. The three parameters are
fed into the simulation for the first two-thirds of the learning
episode, and then are used in the experiment for the last third
of the episode.

Fig. 4 shows the data flow in the control loop that runs at
fcontrol = 7.81 Hz. The Q-learning agent is connected to
the scaled model via actuation and sensing lines. A control
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Fig. 5. Wing chord representation of the optimal policy found by the
agent maximizing lift force in the experiment. The agent makes use of its
full stroke amplitude. The rotations have been delayed until the start of the
next half stroke, with a duration of t̂rot ≈ 0.25 of the stroke cycle. The
dashed lines indicate the approximate start and end of rotations and show
how the rotations are delayed. The arrows on the wing chord show only the
instantaneous lift forces.

cycle is initiated by the Q-learning agent issuing an action
which in turn actuates the motors on the scaled model.

The force measurements at the wing base consist of
gravitational, inertial and aerodynamic components. The lift
force is the vertical aerodynamic component and should be
extracted from this measured force. The inertial components
represent the acceleration forces due to the mass of the
sensor and the wing as well as the added mass4 of the
fluid around the wing, and are harder to isolate, since they
are trajectory-dependent. However, as the stroke plane is
horizontal, only the horizontal component of the total force
is assumed to be affected by inertial forces. Moreover, since
the base is fixed, inertial forces do not affect the mean
aerodynamic forces, and the mean total force over a cycle can
be obtained without calculating the inertial forces. Therefore,
The vertical component of the net force can be derived
by a coordinate transformation, followed by subtracting the
gravitational contribution of the masses of the wing holder
and the wing, calculated during the calibration process, from
the vertical component. The lift force is then calculated by
accounting for the total effect of the side-walls, surface and
bottom of the tank.

IV. RESULTS

A. Experimental Results

Without any a priori assumptions on the desired trajectory,
the agent converged to a smooth flapping motion as shown in
Fig. 5 and 6, similar but slightly different than the one found
from the simulation [17]. The agent preferred to accelerate
at the beginning of each half stroke and to decelerate at the
end to avoid sudden stall and at the same time to generate
as much lift as possible to maximize the cumulative reward.

4When a wing accelerates, it sets the surrounding fluid in motion, causing
in inertial forces by the fluid. This phenomenon is called the added mass
effect.
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Fig. 7. Improvement on lift generation and jerk avoidance from the
experiment. The graph shows the mean lift increasing by steps until it
reaches the maximum mean lift force of FL = 1.82 N . The graph also
shows the agent minimized the frequency of jerk associated with a motion-
range violation.

Fig. 7 shows that the algorithm converges to a mean lift
of FL = 1.82 N in about 300K steps. From the figure it is
also clear that the agent minimized the frequency of out-of-
range motions due to associated punishment, as described in
the algorithm [17].

As can be seen in Fig. 5, the rotations initiated before the
end of each half stroke and the duration of each rotation
occupy about one-quarter of the total stroke cycle. More
technically, by defining non-dimensional time as t̂ = nt, we
have t̂rot ≈ 0.25. The rotations are almost delayed until the
start of the next half stroke, as can be seen from the dashed
lines of Fig. 5.

The experiment took approximately 3.5 hours5 to learn the

5Texp = 100, 000 (steps) × 0.128 (s/step)

flapping flight. The speed of convergence was not an issue
in this work, and the program has not been optimized for
time.

The optimal policy has converged to the length of Nexp =
24 steps. That is, the final flapping motion cycle is completed
in 24 time steps. The flapping frequency, then, calculated
to be nm = 325 mHz. The agent made use of the whole
available stroke motion range, as expected, and therefore
Φm = 160◦.

Given nm and Φm, we can confirm that the actual
Reynolds number is matched making the scaled model com-
parable, in this sense, to a typical Drosophila melanogaster.
We have:

Rem,actual =
Φmb2

mnm

νmAm
= 165, (7)

As can be seen, the Rem,actual and Rep are matched.
The final parameters for the the dynamically scaled model
are summarized in Table I. The model parameters were set
after several iterations to give a complete match with the
prototype.

As qualitatively illustrated in Fig. 7, the experiment on the
scaled model have successfully demonstrated the applicabil-
ity of the control framework (presented in [17] and [15]) for
the case study of lift generation.

B. Comparison with Drosophila melanogaster

In order to provide some assessment of the quantitative
results, in this section, we compare some of the exper-
imental findings from the scaled model to those of the
fruitfly, Drosophila melanogaster. These comparisons must
be prefaced with the cautionary warning that the uncertainty
in the extrapolations are not insignificant, making some
comparisons questionable. The scaled model is not intended
to scale every attribute of biological insects, since the final
goal of building an MAV capable of sustained flight will
not be achieved by replicating biological insects (as also
acknowledged in [16] and [15]). There are fundamental
technological differences in mechanism and design (e.g.,
actuation) between the prototype (i.e., nature) and model
(i.e., engineering). Moreover, there is a significant difference
between the goal functions of the RL agent and an insect:
The agent was not concerned with minimizing energy (and
therefore had a greater freedom in generating aerodynamic
forces), while it is believed that flapping power consumption
certainly played a role in the evolution of biological insects.
One can argue that based on this discussion, the promise of
the findings from this experiment will not be realized until
an actual MAV is built. In the meantime, however, nature
can still be regarded as an intuitive guideline for confirming
the final achievements and to some extent identifying the
promise of the results.

The purpose of building any dynamically scaled model
is to scale the prototype, gather information difficult to
obtain in the prototype scale, and scale the results to get
the corresponding results for the actual use on a smaller
scale MAV. Therefore the comparison is made between a
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TABLE II

PARAMETERS FOR THE BIOLOGICAL Drosophila IN ITS MAXIMUM PERFORMANCE AND FOR THE EXTRAPOLATED MAV USED IN COMPARISON.

Symbol Parameter Drosophila m. (p) Extrapolated MAV (MAV )
b Wing span (mm) 4.94 40
A Aspect ratio 6.18 5.487
r̂33(S) Non-dimensional second moment of wing area 0.242 0.230
Φ Stroke amplitude (deg) 169 160
n Stroke frequency (Hz) 212 3.04

|dφ̂/dt̂|3 Mean cube of the absolute value of the non-dimensional
angular velocity

104.6 114.9

Ft Mean total force (µN ) 13.8 18.53
ρ Air density (kg m−3) 1.2 1.2
ν Air kinematic viscosity (cSt) 15 15
κ Rankine-Froude correction factor 1.28 1.28
Re Reynolds number 165 165

biological Drosophila (denoted by subscript p, as before)
and an extrapolated Drosophila-based MAV6 of 4 cm in
wingspan7 (denoted by subscript MAV to distinguish it from
the scaled model denoted by subscript m).

To compare the generated force, it is more appropriate to
compare the mean lift-force coefficients. This is because CL

is not affected by different scaling factors in different works,
and can be directly compared to that of a biological insect.
Since the prototype and the model have different policies
for expending power, it is logical to compare the mean
aerodynamic efficiencies of the two flapping trajectories in
parallel8. Therefore, pairs of (CL, ηa) give a better metric
for comparison.

The mean lift-force coefficient, CL, can be found from the
following equation (modified from [5]):

CL =
64FL

ρΦ2n2b4A−1(dφ̂/dt̂)
2
r̂2
2(S)

. (8)

As mentioned earlier, the force coefficient stays unchanged
with scaling; therefore, in order to find (CL)MAV , model
parameters can be plugged into (8).

The mean aerodynamic efficiency, ηa, can be defined
as the minimum power required to hover divided by the
aerodynamic power expended (from Weis-Fogh [25] and
Ellington [7]). That is:

ηa =
P ∗

RF

P ∗
a

, (9)

where P ∗
RF is the minimum power calculated for a steady

downward Rankine-Froude momentum jet. P ∗
RF for a hori-

zontal stroke plane can be written as:

P ∗
RF =

( 2pw

ρΦA

) 1
2
, (10)

6That is, extrapolated from the Drosophila-based scaled model.
7The choice of wing span was arbitrary.
8It can be argued that the mechanical efficiencies of the two systems

should be compared. However, the inertial power depends on the actuation
mechanism and design, and therefore can be quite different for an MAV
and an insect.

where pw (= FL/S where S = b2A−1) is the wing loading.
The mean specific aerodynamic power, P ∗

a , is the sum of the
mean specific induced power, P ∗

ind, the mean specific profile
power, P ∗

pro and the mean specific parasite power, P ∗
par (For

more detail, refer to [7]). P ∗
par, the parasite power required to

move the body through the air is commonly neglected when
flight speed is assumed to be zero [7], and for tethered flight
[12]. The power equations are therefore (modified from [12]
and [7]):

P ∗
ind = κ

( 2Ft

ρΦb2

) 1
2

, (11)

P ∗
pro =

ρΦ3n3b5A−1|dφ̂/dt̂|3r̂3
3(S)

128
CD,pro , (12)

P ∗
a = P ∗

ind + P ∗
pro , (13)

where Ft is the mean total force, and κ is the Rankine-
Froude correction factor required because of the periodic
nature of vortex shedding in the wake [6]. The value for
κ has been taken from [12]. r̂3

3(S) is the third moment of

wing area, |dφ̂/dt̂|3 is the mean cube of the absolute value of
the non-dimensional angular velocity and CD,pro is the mean
profile drag coefficient which according to the approximation
of Ellington in [7] can be estimated as 7/(

√
Re).

The parameters needed to calculate the lift and power
for the extrapolated MAV of wingspan bMAV = 4 cm
are summarized in Table II. Plugging into the lift and
power equations yields (CL, ηa)MAV = (3.56, 0.40). The
maximum observed lift coefficient for Drosophila can be
found from [13] (also mentioned by Sane and Dickinson
[21]) to be (CL)p = 1.9. The parameters needed to calculate
the power for a biological Drosophila are summarized in
Table II (from [12]). Using the same equations of power,
(ηa)p = 0.25. Therefore, (CL, ηa)p = (1.9, 0.25).

The comparison is summarized in Table III. From
the table, the first row indicates that the extrapolated
MAV has demonstrated promising capability in gen-
erating a mean lift coefficient in the range of the
Drosophila melanogaster prototype and beyond. In this
comparison case and using the same equations for power,
the second row suggests that the MAV has achieved a higher

WeB12.5

753



TABLE III

COMPARISON RESULT BETWEEN A FRUIT FLY AND THE EXTRAPOLATED

MAV IN TERMS OF LIFT GENERATION (CL) AND AERODYNAMIC POWER

EFFICIENCY (ηa).

Drosophila m. extrapolated MAV

CL 1.9 3.56

ηa 0.25 0.40

mean aerodynamic efficiency. This increase was unexpected,
considering the unlimited power budget of the MAV versus
the limited budget of the biological insect. The reader is
advised not to conclude a subtle but important implication of
this sentence, that is the MAV being overall more efficient
than Drosophila. Several reasons can be mentioned. First,
the flapping trajectories were not the same. Second, the
flapping trajectories compared do not represent the overall
performances of either the MAV or the Drosophila. Finally, it
is not discussed how much the biological insect has sacrificed
power, in its maximum performance, to temporarily generate
high aerodynamic forces.

Nevertheless, the comparison with the biological insect
shows promising results and great confidence in the actual
values achieved by the extrapolated MAV.
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