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Abstract— We present a novel method for the localization of a
legged robot on known terrain using only proprioceptive sensors
such as joint encoders and an inertial measurement unit. In
contrast to other proprioceptive pose estimation techniques, this
method allows for global localization (i.e., localization with large
initial uncertainty) without the use of exteroceptive sensors.
This is made possible by establishing a measurement model
based on the feasibility of putative poses on known terrain given
observed joint angles and attitude measurements. Results are
shown that demonstrate that the method performs better than
dead-reckoning, and is also able to perform global localization
from large initial uncertainty.

I. INTRODUCTION

The problem of localization using visual features has been
widely studied in recent years. A typical approach is to use
a known map of the environment and update pose online
using a combination of odometry and observation of known
features in the scene. In another approach, the process of
localization and choosing the right set of features is carried
out simultaneously giving rise to the approach known as
SLAM. In all this work, localization relies heavily on the
use of an exteroceptive sensor, such as a camera, GPS unit
or laser scanner. Proprioceptive sensors, such as joint en-
coders and angular rate gyros provide odometry information
while accelerometers can be used (at rest) to determine
the direction of gravity. Very little work has addressed the
problem of localization in known environments using only
proprioceptive sensing.

In this work, we will address the problem of localization of
a quadruped robot using only proprioceptive sensing. A good
analogy to motivate and explain this concept is that of human
motion in a dark but familiar room. Initially, humans have
no sense of where they are in the room but taking a couple
of steps and encountering, for example, a familiar feature
like a step or rise instantly localizes us in the room. There is
still an element of uncertainty in the estimate of position
in the room, for example, it may be difficult to localize
along the length of the step. However, even the limited pose
information gleaned from this data is often enough to make
meaningful decisions. This technique, that we will henceforth
refer to as proprioceptive localization, can also prove very
useful in situations where the primary external sensors of a
robot fail.

We are specifically motivated by the application of this
technique to legged robots. Legged robots can sense rich
ground features and, if appropriate sensors are available, also

(a) Feasible configu-
ration

(b) Infeasible config-
uration

(c) Feasible configu-
ration

Fig. 1. Illustration of how proprioception might be used to distinguish valid
poses from invalid ones. Fig. 1(a) illustrates a body pose that is consistent
with proprioception, given the assumption of static stability; the zero pitch
of the body is consistent with all legs being extended on a flat surface.
Fig. 1(b) illustrates a body pose that is inconsistent with proprioception
and the given terrain; since the front legs have nothing to rest on in that
configuration, we would expect the robot to be pitched forward were it in
a statically stable pose, as in Fig. 1(c).

actively probe the environment. Although the set of features
is not as rich or unique as visual features, the technique
provides sufficient information to localize the robot even with
reasonable uncertainity in its initial position. Internal sensors
(gyroscopes and accelerometers) provide the necessary local
information to determine the local pose of the robot, i.e. its
roll, pitch and height above the ground. Internal joint sensors
provide joint angles for the legs. Fig. 1 briefly illustrates how
this data might be used in a localization strategy.

The method we present in this paper could be used to
provide robustness to failure of a primary exteroceptive
sensor like a camera or GPS system. While the method may
not provide enough information to localize the robot very
accurately in such a situation, it may still provide enough
information to move the robot to a safer location.

This paper is organized as follows. In Section II, we look
at related work in other areas of research. In Section III,
we present the robot and associated hardware used for this
effort. In Section IV, we present the gait controller used
to make this robot walk over different types of terrain. In
Section V, we present details of the particle filter used
for localization. In Section VI, we present details of the
experimental procedure and results from the experiments. We
conclude with a discussion of the results in Section VII.

II. RELATED WORK

Existing research in localization for legged robots might
be divided into approaches that are based primarily on
exteroception and those that are primarily based on proprio-
ception. Methods in the former category have primarily been
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Fig. 2. The LittleDog robot (with retroreflective markers) on a terrain
board.

explored in visually structured environments with vision-
based localization approaches. Often times these approaches
do not take particular advantage of the structure provided by
legged locomotion (such as in [1]). Hoffman et. al. describe
a legged robot localization system that uses both vision and
proprioceptive data [2]. In this case, proprioception is used
to improve the motion model such as to more accurately
update uncertainty predictions from odometry. However, pro-
prioceptive data by itself is insufficient to localize the robot
in this scheme. The critical difference in our work is that our
method allows for global localization from proprioception;
i.e., localization uncertainty can decrease in time given the
observations.

Lin et. al. demonstrate a form of proprioceptive pose
estimation for a hexapedal robot in [3]. Their robot is
equipped with a leg pose sensor and an inertial measurement
unit. A Kalman filter is used to fuse these measurements,
and different process models are considered for different
phases of the gait. Again, in contrast to our method, Lin’s
model does not allow for global localization based only on
proprioceptive data and terrain information.

Another closely related line of research relates to local-
ization for robotic assembly, where the goal is to physically
assemble parts with fine precision in the presence of uncer-
tainty. Chhatpar ([4]) describes a method for localization in
such a scenario using particle filtering. Similar to our method,
Chhatpar’s method relies on computing likelihoods of contact
configurations in order to localize an object, given a prede-
fined map of possible contact configurations. Our method
differs in that we consider how a similar technique applies
to legged locomotion, and how the localization problem is
aided by the particular characteristics of legged locomotion.

III. EXPERIMENTAL HARDWARE

In this work, we use a quadruped robot called LITTLEDOG
(Figure 2) manufactured by Boston Dynamics Inc. The
robot has four legs with three joints in each leg. The robot
can be powered by onboard batteries or by an external
power system. Communication is through a wireless 802.11a
connection with a host computer. Onboard sensing includes
an accelerometer and gyroscopes. Each foot also has a single
axis force sensor at the bottom.

Our experimental setup includes a VICON motion capture
system. The system consists of 6 high speed cameras operat-

ing at approximately 100 Hz. A set of reflective markers on
the body of the robot allow the system to track the position
and orientation of the robot. Terrain boards measuring 60
cm by 60 cm are used for testing the robot. The terrain
boards are accurately scanned, providing an elevation map
of each board. The boards are also registered with respect to
a local coordinate system marked out by reflective markers.
The reflective markers register the terrain board accurately in
the global coordinate system defined by the motion capture
system.

IV. GAIT CONTROL

In this section, we present details of the gait for the robot.
It is important to mention that this controller is executed with
feedback provided by the motion capture system. The motion
capture system provides information about the complete pose
of the robot itself while internal sensors provide information
about the joint angles of the robot. The data from the
motion capture system was used only for control and not
in the estimation process. The experimental procedure for
collecting and analysing data from the trials will be described
in more detail in Section VI. It should be noted that the focus
of this work was on validating the localization procedure and
not on the gait control procedure. Hence, we will present the
gait control technique only in brief.

The controller implements a statically stable gait with no
more than one foot off the ground at any point of time.
Figure 3 shows the phasing of the legs for walking. There are
two separate parts to the motion of the robot, the motion of
the body itself and the motion of individual legs through the
air. Our implementation requires the body to stay stationary
while a leg is swinging. The gait can be easily adapted to
achieve different types of walking (crawl, trot) using just a
few parameters. Splines are used to specify smoother motion
profiles for the robot body and leg motion. Zero velocity
boundary conditions are used to specify smooth touchdowns.

The controller follows the following algorithm:
1) Choose next foot to lift based on phasing sequence

(FL,HR,FR,HL).
2) Choose foothold for next foot by choosing a nominal

foot position (based on current velocity). Check quality
of foothold based on local flatness of area around point
chosen, quality of next support triangle and kinematic
feasiblity.

3) Execute foot motion - motion executed is spline based
with zero velocity conditions at beginning and end of
rise, fall and swing.

4) Execute body motion - body is moved to centroid of
next triangle of support. Checks are performed on the
kinematic feasibility of the motion and only a kinemat-
ically feasible motion is executed while ensuring that
a sufficent stability margin is achieved for foot pickup.

5) Return to Step 1.
The duty cycle for the motion is thus 0.875 since each leg
spends only 1/8 of each whole cycle off the ground. The legs
are phased 0.25 apart. The net motion of the robot in a run
is shown in Figure 4. The markers in the figure represent the
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Fig. 3. Phasing diagram for gait. The shaded areas represent parts of the
gait cycle when the feet are on the ground. The feet are labeled as FL (front
left), FR (front right), HL (hind left) and HR (hind right).

Fig. 4. A trial run for the robot over rough terrain.

position of the center of mass of the robot at the end of each
footfall. Also visible is the lateral oscillation of the robot’s
body, effected in order to achieve a good margin of stability.

V. PARTICLE FILTERING

Particle filtering [5] has emerged as the estimation method
of choice for many difficult problems in robotics due to its
flexibility and ease of use. We employ a particle filter in this
work as our localization method for these reasons and others
that will be made apparent in this section. We will briefly
review particle filtering methods here; for a more detailed
description of these methods, the reader is advised to consult
one of many instructive references on the subject, such as [6]
or [7].

A. Preliminaries

Our ultimate goal is to obtain an estimate of the six-
degree-of-freedom pose of the robot body with respect
to a global coordinate frame, given prioprioceptive sensor
measurements and prior knowledge of the dynamics of the
legged robot. This problem can be expressed in a Bayesian
setting via the following probabilistic equation:

p(xt|z0:t) = αp(zt|xt)
∫

dxt−1p(xt|xt−1)p(xt−1|z0:t−1)

(1)
This expresses that we wish to obtain a probability dis-

tribution over the pose at the current time (xt) given all
previous measurements z0:t. This distribution is a function
of the measurement likelihood function p(zt|xt), the sys-
tem dynamics p(xt|xt−1), and the prior pose distribution
p(xt−1|z0:t−1). The normalization factor α can be computed
from the constraint that

∫
dxtp(xt|z0:t) = 1.

The general difficulty in computing Eq. 1 follows from the
intractability of the integration and the computation of the
normalization factor. Unless strong restrictions are placed on
the system (i.e., linearity), approximations must generally be
used. Particle filtering approximates the posterior distribution
by a weighted sum of point mass distributions (known as
particles). The following is an informal description of how
the method works. Substituting the point mass approximation
into Eq. 1 yields the following, where the superscript i refers
to the ith particle, and the wi are weights associated with the
particles.

p(xt|z0:t) = . . .

∫
dxt−1

∑
i

p(xt|xt−1)wi
t−1δ(xt−1 − xi

t−1)

=
∑

i

wi
t−1p(zt|xt)p(xt|xi

t−1) (2)

Here the properties of the Dirac delta function δ(·) have
been used to perform the integration. The resulting mix-
ture distribution in Eq. 2 can be sampled to yield another
point mass distribution for the posterior. The most common
method simply samples xt from the dynamics distribution,
p(xt|xi

t−1), since a closed-form distribution for the right
hand side of Eq. 2 might not exist. This yields

p(xt|z0:t) =
∑

i

wi
t−1p(zt|xi

t)δ(xt − xi
t) (3)

where xi
t is a sample from p(xt|xi

t−1). This sampled
posterior distribution can then be used as the prior at the
next time instant, yielding an efficient recursive inference
procedure.

B. Particle filtering for proprioceptive localization

One drawback of this sort of particle filter is the curse
of dimensionality; the volume of the state space grows
exponentially with the dimension, making it generally very
difficult to apply particle filters with state spaces of more
than a few dimensions. It is therefore crucial to choose a
minimal representation of the state if a particle filter is to be
applied.

We exploit several features of legged locomotion over
rough terrain in order to find this minimal parameterization
of the state. Again, we are ultimately interested in the 6-
DOF pose of the robot body. The first assumption we make
is that the robot is using a statically stable gait, such as
that previously described. This is a reasonable assumption to
make for a robot with unknown pose attempting to traverse
rough terrain, since this represents the “safest” class of
gaits. This assumption allows us to neglect dynamic effects
for which we might have to maintain linear and angular
velocities and accelerations as part of the state. Although
unwanted dynamic effects are still possible regardless, we
expect them to be small enough to characterize as noise in
an otherwise static gait.

The previous assumption leaves us with a six-dimensional
state consisting of the 6-DOF body pose. However, it can
be reduced to just three given the fact that not all poses
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are realizable at all positions given the assumption of static
stability, and given known terrain and leg poses. For example,
any pose with more than three legs off the ground is unrealiz-
able, as is any pose that requires legs to penetrate the terrain.
This inefficiency is resolved by choosing a three-dimensional
state vector consisting of two-dimensional translation parallel
to the ground (pt) and a one-dimensional yaw angle θt. We
reasonably assume height, pitch, and roll can be estimated via
other means; the precise rationalization for this assumption is
made more clear when the measurement model is described
later in this section. The complete state vector is therefore
given by xt = [pT

t θt]T .
Our dynamics model is specified by the desired, com-

manded movement that induces the motion of the robot’s
center of mass; we refer to this as “odometry” in analogy to
the case of wheeled robots. Due to the nature of the static
gait used, odometry updates are only specified at certain
time instants. These instants correspond to the periods of
quadruple support, where all feet are stationary and the center
of mass is moving to the new support triangle centroid; at
all other instants of time, the center of mass is stationary.
Assuming that the robot wishes to reach a point pt + ∆p
with yaw angle θt+∆θ (equivalently, xt+∆x), the dynamics
model for the periods of motion is simply

p(xt+1|xt) = N (xt+1;xt + ∆x,Σod) (4)

The notation N (x;µ,Σ) indicates a Gaussian distribution
in x with mean µ and covariance Σ. This indicates that
in order to sample from the motion model, we sample
a Gaussian distribution with mean equal to the expected
destination and covariance Σod set according to the amount
of uncertainty in the movement.

C. Formulation of measurement likelihood function

The observations in our model consist of measurements
from “proprioceptors:” in our case, accelerometers, angular
rate gyros, and joint encoders. Assuming that gravity is
the dominant force on the robot body, the roll and pitch
of the robot can be recovered fairly accurately by fusing
and filtering the accelerometer and gyro readings with a
method such as that presented in [8]. We can therefore
transform the inertial observations into observations of roll
and pitch, which will be much more useful in formulating a
measurement likelihood function.

The measurement likelihood function is then based on the
feasibility of a particular pose given the terrain and filtered
state, and observations of roll, pitch, and joint angles of the
robot. The more infeasible the conjunction of all these things,
the less likely the observations are given the state, and vice-
versa. We therefore need to specify a distribution over the
feasibility of overconstrained configurations specified by all
these variables. Figure 5 illustrates how this is accomplished.

Measurements are taken when three feet are thought to be
on the ground and one in the air (swing phase), according
to the known phase of the gait. Applying the discussed
constraints on translational coordinates, body Euler angles,

(a)

ERROR_FR

ERROR_HR

ERROR_HL = 0

SWING LEG

(b)

Fig. 5. An illustration of the measurement model for the system. The robot
is “skewered” on an axis through the position of the particle, with yaw angle
fixed from the particle as well. Roll and pitch are recovered from inertial
readings and are fixed as well. Feasibility of the pose is then expressed in
terms of the sum of distances of stance feet from the ground after grounding
one of the stance feet.

and joint angles yields only one free degree of freedom—the
height of the robot in the global workspace. Thus, the robot
can be considered to be moving vertically up and down along
a prismatic actuator that acts only in that direction as shown
in Figure 5(a). Since the feet in contact with the ground
are known at any point of time, we move the robot down
along this actuator until one of the feet in contact touch the
ground. This is illustrated in Figure 5(b) where the hind left,
hind right and front right feet are supposed to be in contact
with the ground.

However, for the given pose, moving the robot down the
prismatic actuator grounds the hind left foot first. At this
point errFR, errHL and errHR define the errors in the
positions of the front right, hind left and hind right feet
respectively with errHL = 0. These errors can be used as a
measure of the feasibility of this pose. If the pose were fully
feasible, all these errors would be zero.

Now, the likelihood function is defined for the particular
case in Figure 5(b) as a zero-mean Gaussian on the error with
an appropriate covariance Σz that captures the uncertainty
due to inertial and encoder error:

zt =
√

err2
FR + err2

HR (5)

p(zt|xt) = N (zt; 0,Σz) (6)

Given this measurement model, the particle filtering algo-
rithm is briefly summarized in Algorithm 1.

VI. EXPERIMENTAL RESULTS

In this section, we will present experimental results for
the technique described in this paper. We will first present
the experimental procedure used to carry out the trials.

As noted earlier, the trials are carried out with the motion
capture system being used to provide feedback for the
position and orientation of the body. Thus, the controller has
full knowledge of the terrain and the position of the body.
All the data from a trial is logged. The system has the ability
to playback trials using the logged data. All our localization
experiments are carried out offline using the proprioceptive
data from the log. It should be noted that the localization
could just as easily be performed online without the use of
motion capture data; however, this was not possible here due
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for i = 1 to N = number of particles do
x0 ∼ p(x0) // draw poses from initial distribution

end
while zt = new accelerometer, ∆xt = new odometry do

for i = 1 to N do
// randomized deviation from nominal motion
x̃i

t ∼ N (0,Σod)
// apply motion model
xi

t ← xi
t−1 + ∆xt + x̃i

t

// update particle weights with measurement
wi

t ← wi
t−1p(zt|xi

t)
// p(zt|xt) represents the measurement
likelihood function
// resample if necessary

end
end

Algorithm 1: Particle filtering for proprioceptive local-
ization

to LittleDog’s lack of adequate touchdown sensors. Without
these sensors, the controller must rely on motion capture data
to detect touchdown.

The trial starts with the motion capture system turned on
and the robot placed at the starting point on the terrain.
The trial is then run and the robot proceeds to walk from
the starting position to the goal position. Data from all the
sensors on the robot, the motion capture system and data
corresponding to the odometry is continuously logged as the
robot completes the task. The localization algorithm is then
run offline using the logs.

The measurement model requires knowing positions when
three feet are on the ground and also knowing which foot is
off the ground. Since the cycle time of the gait is fixed, this is
easy to determine (under the assumption of a statically stable
gait). There may be cases where the dynamics of the motion
result in the use of spurious data from the logs where a
different foot is off the ground. However, such data could be
looked at as a noisy measurement which should get filtered
out by subsequent observations.

Figure 6 shows snapshots from one offline estimation trial
run. The initial position and orientation of the particles is
chosen randomly around the starting position of the robot.
All the particles have equal weights in the beginning.

Figure 7 plots the actual, filtered and odometry based
state of the robot during the trial. The filtered state was
calculated as a weighted mean of the state of all the particles.
The odometry estimate was calculated separately using only
odometry information. The actual position of the robot is
obtained from the motion capture system. In Figure 7, x and
y represent the position of the robot in a global coordinate
system while the yaw represents the yaw of the body of the
robot in the global coordinate frame.

Table I shows estimation error statistics from multiple
trials with varying terrain configurations. Data from these
trials demonstrates a marked improvement in localization
performance over dead reckoning, with the improvement

INITIAL POSE
DISTRIBUTION

TRUE
POSE

TERRAIN

(a) (b)

(c) (d)

ODOMETRY

(e) (f)

Fig. 6. Visualization of experiment with localization from offline data.
Fig. 6(a) shows the initial, highly uncertain pose distribution. Each particle
is represented by a semi-opaque “stick figure” robot. The true pose is
represented by a solid black robot, as is the odometry estimate. Upon
approaching the step (Fig. 6(b)), particles that have already passed the step
are eliminated. Note the lateral ambiguity present as the robot approaches
the second terrain board (Fig. 6(d)). The ambiguity begins to be resolved
as the robot steps over the more informative terrain. The final distribution
estimate is consistent with the true final pose, whereas the estimate from
odometry is significantly off (Fig. 6(e)).

averaging 45% over the course of a trial.

A. Discussion

The results demonstrate that the use of this technique for
localization is feasible. The technique works best when the
terrain is uneven since this helps in resolving the ambiguity
in the pose of the robot. Flat terrain is featureless and our
technique is incapable of localizing the robot when walking
over such terrain. As seen in Figure 7(a), when a step is
detected the x position of the robot converges to the x value.
However, there is still an ambiguity in the y position of the
robot and the yaw of the robot (reflected by the spread of
the particles along the length of the step in Figure 6(c)). As
the robot moves over rougher terrain, its pose estimate gets
better since there are now richer features available to get
observations from.

It is possible that the pose of the robot could converge to
a different trajectory where the terrain features are spatially
and temporally similar to the actual trajectory of the robot.
If the terrain features are sufficiently rich, as is the case
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Fig. 7. Plots of actual, filtered and odometry based position (x, y) and
yaw of the robot. Note exaggerated scale for plot of y-position.

with the terrain boards used for our trials, the possibility
of this happening will be lower. However, on flat terrain,
the uncertainty in the estimate will grow with time since
there are no features available to correct the estimate and
the estimate will be no better that one computed using only
odometry information.

VII. CONCLUSIONS AND FUTURE WORK

We have studied the novel problem of global localization
for a quadrupedal robot using only proprioceptive sensors,
assuming known terrain. We have demonstrated a solution to
this problem that is informed by the particular characteristics
of legged locomotion over rough terrain. Specifically, this
is accomplished using particle filtering with a minimal state
representation and a novel measurement model that combines
proprioception with terrain information. Our results show
that the method is able to perform global localization.
Comparisons with dead-reckoning also show a significant
improvement in pose estimation can be achieved using the
method.

The proprioceptive localization problem contains many
interesting issues that we have not yet been able to fully
explore. One such avenue for further research is the ac-
tive localization problem [9], which was also investigated

Trial Mean distance Mean distance Improvement
error (filter) error (odometry) (percent)

1 0.099 0.177 43
2 0.108 0.259 58
3 0.157 0.214 26
4 0.115 0.242 52
5 0.123 0.223 44
6 0.131 0.264 51
7 0.131 0.209 37
8 0.177 0.360 51
Average 0.122 0.227 45

TABLE I
ESTIMATION PERFORMANCE OVER SEVERAL TRIALS WITH VARYING

TERRAIN CONFIGURATIONS

in Chhatpar’s work [4]. In active localization, the robot
chooses to perform the actions that are expected to minimize
localization uncertainty. In this setting, the resulting behavior
would be much like the earlier example of the person in
a dark room; the robot would “grope around” in order to
orient itself. This might greatly aid the performance of any
navigational tasks in situations with high initial uncertainty.

Another future avenue of research is the SLAM problem.
In a realistic setting, it is expected that the map would
not be given a-priori. Existing SLAM algorithms might be
used to simulaneously build the map and localize the robot.
Additionally, the problem contains interesting structure that
could be used to help the process. For example, if there is
some notion as to the general expected shape of the terrain,
this could be used as a prior to aid the mapping process. We
have yet to fully investigate these interesting aspects.
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