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Abstract— This paper applies the modified Fisher Informa-
tion Matrix (FIM) motion algorithm previously proposed by the
authors to the task of locating a circular biochemical source.
We develop the diffusion model for a circular source and
perform control theoretic analysis of the resulting FIM motion
algorithm. While in our previous work we established that the
source location is an equilibrium point of the system, in the
present paper we show that due to the consistency of the maxi-
mum likelihood (ML) estimator, the equilibrium point is unique.
Simulations are presented that compare our motion algorithm
to conventional concentration gradient motion algorithms. The
simulations confirm that by using our motion algorithm, the
circular biochemical source is located with a high degree of
accuracy.

I. INTRODUCTION

Biochemical source localization is an important task for
various fields such as public safety, environmental monitor-
ing, and the military. Systems using sensors that can detect
low concentration vapors have found use in applications
such as landmine detection and localization [1], and the
monitoring of the ocean’s dynamic physical characteristics
and chemical distributions [2]. These sensors also have the
potential to be used in other applications such as detec-
tion of biochemical weapons and drugs, sensing leakage of
hazardous chemicals, pollution sensing and environmental
studies [3], [4].

It is envisioned that in the near future many of the
previously mentioned sensing tasks will be performed by
using groups of robots working together through ad-hoc
communication networks due to technological advances in
networking and the miniaturization of electromechanical
systems [5]. However, the coordination algorithms for such
mobile sensing networks are difficult to develop since they
must conform to the spatially-distributed nature and lim-
ited communication capabilities of the network. A different
approach to network communication known as distributed
or localized networking takes advantage of the physically
distributed nature of the sensors by designing coordination
algorithms that allow sensor nodes to only communicate with
other nodes within some neighborhood. These networks have
the advantage that the communication overhead scales well
with increases in network size, and they are robust to failure
due to the lack of a central data processing node [6].

Previous work on the problem of tracing an odor plume
to its source has been done by [7]–[10]. Many of the early
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motion algorithms were based on the observations of the
motions of animals following a scent [11]–[13]. One of the
approaches that came out of this work was the use of the
concentration gradient to find the source [14]. In [15], an
alternative approach was proposed, where the robot moves
so that in each step the information that its sensors pro-
vide is maximized. The algorithm outperforms concentration
gradient based schemes, but it requires more sophisticated
modeling and estimation.

Using this information based approach, [15] describes how
a single vehicle equipped with vapor sensors can estimate
the location of a source emitting vapor at a constant rate in
an infinite volume. Estimation is performed using maximum
likelihood (ML) estimator, and the vehicle is controlled by
moving the vehicle in the opposite direction of the gradient
of the Cramér-Rao bound (CRB) on the location error. Since
ML estimates are asymptotically efficient (their variance
approaches the CRB as the data length goes to infinity), it
is expected that the actual accuracy of the estimation will
be close to the CRB. Hence, by minimizing the CRB the
actual estimation error is expected to be minimized. The use
of the CRB or Fisher information (the inverse of the CRB) as
an optimality criterion for other control problems has been
explored in [16] and [17]. Other authors have used Kalman
filter estimation [18], or Levenberg-Marquardt optimization
[19] for estimating unknown parameters. However, with
such methods, there is no guarantee of achieving the lowest
possible estimator variance.

The diffusion of a chemical in a medium is well under-
stood mathematically [20], [21]. Previous authors working
on this subject [4], [15], [22] have assumed the biochemical
source to be a point source. While such an assumption sim-
plifies the mathematical modeling of the chemical concentra-
tion considerably, assuming the chemical source to have zero
volume is unrealistic, and at the same time creates difficulties
in stability analysis due to the singularity in the concentration
function at the source location. In [23] the authors attempt
to model the diffusion from a circular source through a
function that resembles in shape the theoretical concentration
function from such a source. They go on to develop another
information based motion algorithm named the modified
Fisher Information Matrix (FIM) motion algorithm and show
that for any concentration function with a maximum at the
source location, the motion algorithm has an equilibrium
point at the source location. In this paper we develop the
concentration model for a circular source through the theory
of molecular diffusion. This will make our problem more
challenging numerically, but on the other hand the model is
more realistic while all the stability results of [23] still apply.
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Furthermore, we use the ML estimator’s property of
consistency (the ML estimate approaches the true value as
the data length approaches infinity), to argue that the only
equilibrium point of the system is the center of the circular
source. It is shown through simulations that with the use
of the modified FIM motion algorithm the vapor source
is located with a high degree of accuracy and outperforms
conventional gradient algorithm techniques.

II. MATHEMATICAL MODELING

In this section we describe the physical and measurement
models for the case of a circular source in an infinite volume
emitting vapor at a constant rate.

A. Physical Model

Let c(~r, t) be the concentration of a diffusing substance at
a point ~r = (x, y, z) at time t. Assuming that the diffusivity
κ of the medium is space-invariant, the evolution of c(~r, t)
is described by the classic diffusion equation for a source
free volume

∂c

∂t
= κ∇2c. (1)

For a point source at ~r◦ = (x◦, y◦, z◦) in an infinite
medium, releasing a diffusing substance at a constant rate
of µ, starting at time t◦, the solution to (1) is given by [20]

c(~r, t) =
µ

4πκ|~r − ~r◦|
erfc

(
|~r − ~r◦|

2
√

κ(t− t◦)

)
(2)

where erfc(x) = (2/
√

π)
∫∞

x
e−y2

dy is the complementary
error function. To find the solution for a circular source,
we must integrate (2) over the area of the source. Let ~r′ =
(x′, y′) be a point on the source. We will assume throughout
this paper that the source is located on the ground (z =
0), and likewise all points of observation. Then the solution
to (1) for a circular source can be written as

c(~r, t) =
∫ 2π

0

∫ a

0

µ

4πκ|~r − ~ρ◦|
erfc

(
|~r − ~ρ◦|

2
√

κ(t− t◦)

)
ρ dρ dφ

(3)
where ~ρ◦ = (x◦+ρ cos(φ), y◦+ρ sin(φ)) and a is the radius
of the source. Unlike the solution for the point source, the
concentration function in (3) does not have a singularity at
~r = ~r◦, as illustrated in Figure 1. This is important, because
otherwise the stability analysis at the center of the source
would not be possible.

B. Measurement Model

Although chemical sensors are designed to be highly
sensitive to the substance of interest, and as insensitive as
possible to undesired substances, no sensor can be com-
pletely insensitive to foreign materials [15]. It is therefore
reasonable to model the response of the sensor located at
the point ~r by

y(~r, t) = c(~r, t) + b(~r, t) + e(~r, t) (4)

where c(~r, t) is the concentration of the substance of interest
given by (3), b(~r, t) is the bias or “clutter” term, representing
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Fig. 1. A realization of the one dimensional cross-section of the concen-
tration function given in Eq. (3)

the sensor’s response to foreign substances, and e(~r, t) is
the sensor’s noise. The source location ~r◦, its intensity µ,
the diffusivity κ, and the release time t◦ are all unknown
parameters. The bias term is assumed to be unknown, time
invariant, and uniformly distributed in space. This means
the substances interfering with the desired measurement
are modeled as being in a steady state and the result of
many sources, so they have reached both temporal and
spatial equilibrium. The noise is modeled as Gaussian with
zero mean and unknown variance σ2

e , uncorrelated in time,
and independent from sensor to sensor. The assumption of
Gaussian noise is not quite physical since y(~r(t), t) must be
a non-negative quantity. However for σe much smaller than
c(~r(t), t) + b(~r(t), t), the Gaussian model is a reasonable
approximation.

III. PARAMETER ESTIMATION

Here we review the maximum likelihood approach to
estimating the unknown parameters Ψ = [~r◦, κ, t◦, µ, b, σ2

e ]T

and the Cramér-Rao lower bound. This is presented in detail
in [4].

Let the available measurements be {y(~r(tk), tk), 1 ≤ k ≤
p}, where p ≥ 2, and partition the parameter vector as Ψ =[
θT ,xT , σ2

e

]T
, where θ = [~r◦, κ, t◦]

T and x = [µ, b]T . With
this notation the measurements can be transformed into the
following vector form

y = A(θ)x + e (5)

where y and e are p-dimensional vectors whose k-th compo-
nents are y(~r(tk), tk) and e(~r(tk), tk) respectively, and A(θ)
is a p× 2 matrix whose k-th row is given by[∫ 2π

0

∫ a

0

ρ

4πκ|~r(tk)− ~ρ◦|
erfc(

|~r(tk)− ~ρ◦|
2
√

κ(tk − t◦)
)ρdρdφ, 1

]
.

The maximum likelihood estimates θ̂, x̂, and σ̂2
e were

computed in [4] and are

θ̂ = arg max
θ
{yT PA(θ)y} (6)

x̂ = [AT (θ̂)A(θ̂)]−1AT (θ̂)y (7)

σ̂2
e = (p)−1yT P⊥A (θ̂)y (8)
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where PA(θ) = A(θ)[AT (θ)A(θ)]−1AT (θ) is the projection
matrix onto the column space of A(θ) and P⊥A (θ) = I −
PA(θ) is the complementary projection matrix. From Eq. (6)
it is seen that the ML estimate θ̂ is the θ that maximizes the
projection of the column space of A(θ) onto the data vector
y and vice versa.

By writing A(θ) in terms of its two columns as [a(θ),u]
where u is a vector of 1’s, the CRB’s for unbiased estimates
of the parameters are

CRB(θ) =
σ2

e

µ2

{
DT (θ)P⊥A (θ)D(θ)

}−1
(9)

CRB(x) = σ2
e

{
AT (θ)P⊥D (θ)A(θ)

}−1
(10)

CRB(σ2
e) =

2σ4
e

mp
(11)

where D(θ) = ∂a(θ)/∂θ is an (mp×5)-dimensional matrix.
These are derived in detail in [24].

IV. MODIFIED FIM MOTION ALGORITHM

In this section we briefly introduce the Modified FIM
Motion Algorithm. Please see [23] for the full details.

Suppose the sensor has taken n measurements at n known
locations and instants. Assume the measurements were taken
periodically with period T so that the time to take n
measurements is nT . With these n measurements, an es-
timate [x̂◦n, ŷ◦n]T of the source coordinates can be obtained
using maximum likelihood estimation. The accuracy of these
estimates can be estimated from the Cramér-Rao lower bound
if we assume that the algorithm is statistically efficient (or
the variances of the estimates are a small multiple of the
bound, if we allow for relative efficiency) [25]. While the
CRB depends on the unknown parameters θ so it can not
be computed, an estimate of the CRB can be obtained by
substituting the current estimates for all unknown parameters.
We first compute the Fisher Information Matrix (FIM) which
has the following form:

FIM(Ψ) =
1
σ2

e

µ2DT (θ)D(θ) µAT (θ)A(θ) 0
µAT (θ)D(θ) AT (θ)A(θ) 0

0 0 n
2σ2

e

 .

For a general parameter vector ξ, we may partition the
parameter space as ξ = [ξ1, ξ2]T where ξ1 is a vector
containing the parameters of interest, and ξ2 is a vector con-
taining all nuisance parameters. Then, with the probability
density function p(y; ξ) given, the FIM(ξ) has the following
structure:

FIM(ξ) =

−E[∂2 ln p(y;ξ)

∂ξ1∂ξT
1

] −E[∂2 ln p(y;ξ)

∂ξ1∂ξT
2

]

−E[∂2 ln p(y;ξ)

∂ξ2∂ξT
1

] −E[∂2 ln p(y;ξ)

∂ξ2∂ξT
2

]

 .

Using the formula for inverting block matrices [25], CRB(ξ1)
is

CRB(ξ1) = (−E[
∂2 ln p(y; ξ)

∂ξ1∂ξT
1

]+

E[
∂2 ln p(y; ξ)

∂ξ1∂ξT
2

]E[
∂2 ln p(y; ξ)

∂ξ2∂ξT
2

]
−1

E[
∂2 ln p(y; ξ)

∂ξ2∂ξT
1

])−1.

As can be seen from the equation, using the true CRB for
motion control adds extra complexity to the stability analysis
since it involves terms unrelated to the location coordinates
of the chemical source, which are the parameters of interest.
For this reason, we will devise a motion algorithm based on
the upper left-hand block of FIM(Ψ).

The upper left-hand block of FIM(Ψ) pertains to the Fisher
information of the parameter vector θ = [x◦, y◦, κ, t◦]T . We
will partition this block even further to remove the effects of
the nuisance parameters [κ, t◦]T . The piece of interest has
the following form:

µ2

σ2
e

[
dT

1 d1 dT
1 d2

dT
2 d1 dT

2 d2

]
= DT

1 (θ)D1(θ) (12)

where d1 and d2 are the first two columns of D(θ) and
D1(θ) is an n× 2 matrix of the form [d1d2].

If we compute the gradient of the inverse of (12) after n+1
measurements, and move the sensor in the opposite direction
to the gradient we are guaranteed to have an equilibrium
point at the source location. Going through the same process
as in [23], the gradient of (12) is found to be

∂

∂ζ

µ2

σ2
e

[DT
1 (θ)D1(θ)]−1 = −µ2

σ2
e

[DT
1 (θ)D1(θ)]−1· (13)

[
∂DT

1 (θ)
∂ζ

D1(θ) + DT
1 (θ)

∂D1(θ)
∂ζ

] · [DT
1 (θ)D1(θ)]−1.

To determine the direction of motion of the sensor, we
must devise a scalar criterion. It was shown in [23] that
the gradient will be zero at the source location no matter
which elements we choose, and thus we have chosen the
trace of (13). The motion algorithm is thus:

Algorithm 1 Modified FIM motion algorithm
1: while CRB≥ tol do
2: Take the concentration measurement.
3: Compute the ML estimates of unknown parameters.
4: Compute the Fisher Information Matrix (FIM).
5: Construct the modified FIM.
6: Compute the gradient of the trace of the modified

FIM.
7: Move in the direction opposite to gradient.
8: end while

Unfortunately, since the matrix D1(θ) depends on the
history of the sensor’s motion, it is not possible to determine
analytically through linearization the stability properties of
the equilibrium point at the center of the vapor source. How-
ever we can show through the properties of ML estimates that
the center of the vapor source is the only equilibrium point.

V. STABILITY ANALYSIS THROUGH CONSISTENCY

In this section we prove that the center of the circular
source is the only equilibrium point of the system. Previous
attempts at proving this point were difficult since the gradient
of the motion algorithm employed, namely the direction of
gradient algorithm [15], contained elements pertaining to
parameters that were not of interest to us. As was shown
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in [23], removal of these elements allowed us to show that
the location of the source was an equilibrium point of the
system. We will now show formally through a combination
of control theory and statistical analysis that this is the only
equilibrium point of the system.

An estimator is said to be consistent if it approaches its
true value in probability [26]. In other words,

lim
n→∞

P [|θ̂ − θ| > ε] = 0 ∀ε > 0. (14)

We will show here that this is the case for our estimate θ̂.
Recall that our estimate of σ2

e was

σ̂2
e =

1
n
yT P⊥A (θ̂)y. (15)

Through direct comparison it can be seen that (15) is
equivalent to

tr{P⊥A (θ̂)R̂} (16)

where R̂ = 1
nyyT . Inserting (15) and (7) into the log-

likelihood function

lnL(y|Ψ) = const−n lnσ2
e −

1
σ2

e

(y−A(θ)x)T (y−A(θ)x)

we obtain

lnL(y|Ψ) = const− n ln tr{P⊥A (θ̂)R̂}. (17)

Therefore the ML estimate of θ is the minimizer of

tr{P⊥A (θ̂)R̂}. (18)

Letting n →∞, we arrive to the following inequality

tr{P⊥A (θ̂)R̂}
= tr{P⊥A (θ̂)R} by Law of Large Numbers

= tr{P⊥A (θ̂)[A(θ)xxT AT (θ) + σ2
eI]}

= tr{P⊥A (θ̂)A(θ)xxT AT (θ) + σ2
eI − σ2

ePA(θ)}
= tr{P⊥A (θ̂)A(θ)xxT AT (θ)}+ nσ2

e − tr{σ2
eI2×2}

= tr{P⊥A (θ̂)A(θ)xxT AT (θ)}+ σ2
e(n− 2)

≥ σ2
e(n− 2).

(19)

By expanding out

tr{P⊥A (θ̂)A(θ)xxT AT (θ)} =

tr{[I − Â(ÂT Â)−1ÂT ]AxxT AT }

and using the shorthand notation Â = A(θ̂) it is clear
that (19) is minimized by A(θ̂) = A(θ), which shows that θ̂
is consistent when n →∞.

The trace of (13) can be written as

(
∂dT

1

∂ζ
d1 +

∂dT
2

∂ζ
d2)((dT

1 d1)2 + (dT
2 d2)2)

− (
∂dT

2

∂ζ
d1 +

∂dT
1

∂ζ
d2)(dT

2 d2dT
1 d2 + dT

1 d1dT
1 d2).

(20)

For a sensor location ~r to be an equilibrium point, the
gradient at that location must be zero for all times. Due to
the consistency of θ̂, it is enough to show that at any time
t, and θ̂ = θ, the gradient is zero only when ~r = ~r◦. This
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Fig. 2. An illustration of the motion gradient, with θ̂ = θ. The center of
the vapor source is assumed to be at the origin, and the vapor source has a
radius of 0.5.

is shown in Figure 2. Because of the circular symmetry of
the concentration function, a one dimensional illustration is
all that is necessary to illustrate the point. As can be seen in
the figure, the only point at which the gradient is zero is the
center of the vapor source. Thus, in the limit, as n → ∞,
only the point ~r = ~r◦ is an equilibrium point. Furthermore,
it is an unstable equilibrium point. Also notice that at every
point outside of the source, this motion algorithm drives the
vehicle towards the source, but not to the center of the source.
From Figure 2 it should be expected that as θ̂ converges, the
vehicle should be driven to the edge of the source.

This algorithm can be extended to the multiple moving
sensor case very easily. Using a distributed network, all
sensors transmit to their neighbors their current concentration
measurement. A neighbor can be considered to be any
sensor within a given communication radius for example.
Each sensor then computes their own ML estimates and
employs the modified FIM motion algorithm to determine
its next location. Once that location is reached, each sensor
determines who its new neighbors are, and then repeats the
process. This process is continued until one of the sensors
estimates the source location with some predetermined level
of accuracy. An example of such an approach is given in [22].

VI. RESULTS

In this section we employ the modified FIM gradient
algorithm. A vapor emitting source is placed at the coor-
dinates (-50,-50)m and has a radius of 0.5m. The diffusion
rate µ and diffusivity κ are set to 10 Kg/s and 25 m2/s
respectively. A bias b of 10−4Kg/m3 and zero-mean Gaussian
noise with standard deviation, σ=10−8Kg/m3 are considered
to be present in the measurements. The emission of vapor
begins 100 s before any measurements are taken. Beginning
at t=100 s the vehicle starts moving in a random path starting
at a distance of 200 m from the origin at a speed of 2.5 m/s
and collects measurements every 10 s.

The detection of the vapor is assumed to have occurred
at t=390 s and the modified FIM gradient algorithm begins,
using the measurements obtained from a random walk. In this
phase, the vehicle moves at a maximum speed of 2.5 m/s,
and a line search algorithm is employed to find the minimum
along the direction of the gradient up to the maximum
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Fig. 3. The sensor’s motion using maximum likelihood, Taylor series, and
Newton-Raphson methods for parameter estimation. The sensor’s motion is
also illustrated for concentration gradient driven motion.

distance the vehicle can travel, which is 25 m. The motion
algorithm stops once the CRB for both position estimates
goes below 10−6 m2.

Figure 3 illustrates the movement of the sensor using
the modified FIM gradient algorithm, using the different
estimation methods presented in previous work [22]. In
each case the sensor takes a circuitous path towards the
source, obtaining spatially diverse measurements that help
in pinpointing the exact location of the source. These results
are quite similar to the ones in [15] where the Direction of
Gradient (DOG) algorithm was employed. When maximum
likelihood estimation was used, a total of 290 s were needed
for the vehicle to complete the task. In the cases where
Taylor Series and Newton-Raphson estimation were used,
a total of 400 s and 280 s were needed respectively to
complete the task. It should be noted that in terms of real time
needed for the simulations to finish, both the Taylor Series
and Newton-Raphson simulations finished in under 5 min,
while the ML approach took over 20 min. This is due to the
fact that to compute the maximum likelihood estimates, one
needs to perform a nonlinear search which is computationally
expensive.

The first inset in Figure 4 illustrates the estimate of the
CRB of the position estimates for each of the estimation
methods. We have plotted the sum of the square roots of the
CRB’s of the position estimates on a log scale. The CRB’s
in all cases decrease monotonically in general, as in [15]
where the DOG motion algorithm was used with the tactic
of minimizing the CRB at every step.

The second and third insets in Figure 4 shows the distance
between the current estimate of the source position and the
source. In each case the algorithm converges to the source
location. In the case of maximum likelihood estimation, the
estimate is poor at first and hence a very high CRB estimate.
It may seem that this is a negative aspect of this approach,
however it is our experience that when the estimates become

poor for the other two estimation approaches, they almost
never converge to the correct value. It is very well known
that when someone uses the Newton-Raphson method to find
minima or zero crossings of a function, a good initial guess
is necessary so that one does not fall into local minima or
move towards another zero crossing of the function. Likewise
for the Taylor series method, a poor estimate of θ will give
a very poor fit between the model matrix A(θ) and the data
vector y.

A. Gradient driven robot motion

A number of previous approaches to locating a vapor
source rely on estimating the local concentration gradient
and moving the robot in the direction of the gradient’s
increase [10]:

Algorithm 2 Concentration gradient motion algorithm
1: while Gradient ≥ tol do
2: Take concentration measurement.
3: Compute gradient in x and y directions.
4: Move in direction of gradient.
5: end while

In practice the robot is equipped with two or more physi-
cally separated sensing units. In most cases it is assumed that
there exists wind, thereby making the concentration gradient
more pronounced. We performed a simulation of a robot
locating a vapor source with this technique. We assume our
robot is equipped with four chemical sensors, each 90◦ from
its nearest neighbor, and 38 cm away from the sensor that
is its diametric opposite. This distance is the diameter of the
Super Scout II robot which is commonly used in sensing
task experiments.

To account for the presence of wind, the diffusion equa-
tion (1) takes the form [4]

∂c

∂t
= κ∇2c−∇ · (c~v) (21)

where ~v is the wind speed vector. The solution to (21) is
given by

c(~r, t) =
µ

8πκ|~r − ~r◦|
e

(~r−~r◦)·~v
2κ ·[

e
|~r−~r◦||~v|

2κ × erfc

(
|~r − ~r◦|

2
√

κ(t− t◦)
+ |~v|

√
t− t◦
4κ

)
+

e−
|~r−~r◦||~v|

2κ × erfc

(
|~r − ~r◦|

2
√

κ(t− t◦)
− |~v|

√
t− t◦
4κ

)]
.

A wind speed of 1 m/s in the +y direction is used in
the simulation. All other parameters are as stated at the
beginning of this section.

A plot of the trajectory taken by the robot is given in
Figure 3 to compare to the trajectories using the modified
FIM algorithm. Using the concentration gradient technique, it
takes the robot 100 s to reach the vapor source, and its path to
the source is much more straightforward. The speed at which
it finishes the task can be attributed to its simplicity. The
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Fig. 4. Cramér-Rao bounds on the source location coordinates, and source location estimates as a function of time.

only calculations that it makes is computing the difference in
the concentration levels between the diametrically opposed
sensors. On the other hand, the modified FIM motion al-
gorithm is much more complicated. At each step, it must
perform numerical integration, multiple matrix inversions,
and possibly a nonlinear search for the unknown parameters.
The concentration gradient technique may be fast, however it
does not perform any estimation of the source location, and
therefore cannot be used in situations in which the source
must be located remotely.

VII. CONCLUSION

In this paper we have applied our modified FIM motion
algorithm to the task of locating a circular chemical source.
We provide the diffusion model for a circular source and
prove that due to consistency of the maximum likelihood
(ML) estimator, the only equilibrium point of the system is
the center of the circular source. Simulations demonstrate
that the robot is successful in locating the source using this
motion algorithm. While modeling a chemical source as a
circular source rather than a point source is certainly more
realistic, the model is not applicable to realistic settings
such as urban, or indoor environments. Future work entails
combining our motion algorithm with numerical modeling of
realistic environments to obtain methods that are both robust
and practical.
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