
The Process Information Space:
The Importance of Data Flow in Robotic Systems

Aaron Morris
Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Email: acmorris@andrew.cmu.edu

Abstract— Data flow describes the motion of information
through a robotic system. As this work investigates, data flow
can also provide system-critical information about the robot that
is useful for failure recognition, fault recovery and improved
robot dependability. The approach developed in this paper
applies a planning formulation to the observation and control
of data flow through the reconfiguration of robot process
connections. Simulated results are presented and a subterranean
robot application is discussed.

I. INTRODUCTION

Data flow describes the motion of information through
a system: a temporal data stream that moves, collects, and
transforms from one computational process to another. In
a robot, this flow begins at the sensory level and finishes
with actuation. As such, the tendency when programming a
robot is to focus intently on the causal relationship between
sensory data and action. For example, how does a particular
pixel intensity or range measurement effect whether or not a
mobile robot moves forward? While the link between sensor
data and actuator is undeniable, this research is less concerned
about the actual data and more interested in observing the
effects that data induce upon a computational system. Thus,
this paper describes how process information can be extracted
and exploited to improve robot decision-making in uncertain
working conditions.

For this work, the term process denotes the running in-
stance of a program within a robot’s computational frame-
work. A robot will have a number of processes, which are
divided into three classes: sensors, inters and motors (Figure
1). Sensor processes interface with sensor hardware, inter-
processes interface with other processes and motor processes
interface with hardware devices such as actuators, speakers
or displays. Each process may have multiple inputs for a
single output, although this output can take the form of a
data structure with multiple values. Data flow is therefore
identified as the creation of new output along a chain of
processes that stretches from sensor to motor.

To achieve this end, multiple, redundant variations of these
process chains are defined to channel the robot’s sensory data
streams. These streams are thereby observed and controlled
through virtual sensors and actuators placed inside the ro-
bot’s computational system. A virtual sensor is sensitive to
particular computational stimuli just as external sensors are

Fig. 1. Robots and data flow. Inside the computational framework of every
robot resides three classes of processes: sensors (Si), inters (Pi), and motors
(Ai). These processes can be linked to form process configurations, which
direct data flow from sensor to motor.

receptive to physical stimulus. In a similar context, a virtual
actuator analogously acts upon a computational system as
an electro-mechanical actuator would create action in the
physical world. Together, these virtual mechanisms form the
basis of a scheme that regulates data flow throughout a robotic
system.

Why is data flow regulation important? Flow regulation is
a way to estimate and change the state of the robot without
dealing directly with large streams of raw and processed
sensor information. For example, imagine that a scanning
laser-range sensor feeds a series of processes responsible for
navigating a robot. If this sensor should fail, every process
upstream from this data source can no longer function as ex-
pected. In the best case, each upstream process may recognize
the corrupted or absent data and shutdown; however, a system
shutdown is not the preferred option for a robot operating
beyond the reach of human assistance. A robot in such a
situation requires a redirection of sensor information: that
is, an alternative source of sensory data that can sustain the
navigation system until the robot is recoverable. By watching
data flow, identification and mitigation of such problems is
feasible without the overhead of direct data analysis.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeA10.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 293

Data flow regulation also offers potential utility for im-
proving the selection of robot behaviors over time. If, for
example, the aforementioned mobile robot has a process that
identifies obstacles from laser-range measurements, knowing
that this process is not producing output could indicate no
obstacles lie ahead of the robot along its intended path. Such
knowledge may be useful for selecting between a cautious
path-planning process and a fast reactive-steering process.

The application for this work extends to all robots regard-
less of the operational scenario; although, such a scheme is
particularly valuable when a robot becomes unrecoverable
upon failure. Environments such as space and the subter-
ranean domain specifically fit within this profile. The subter-
ranean world is of interest in this research since underground
operation has tremendous application for robotic utility; how-
ever, the vast distance and limited communication between
robot and human necessitates trustworthy robot autonomy [1].

II. THE PROBLEM

The core problem addressed in this paper is in determining
when and how to switch a robot’s operational context. An
operational context is a set of processes actively contributing
to the robot’s performance. These processes establish the
data streams that flow through a robot’s decision-making
facilities. An alternative way to speak of this context is in
terms of process configuration. Process configuration rep-
resents a linked series of processes that are running in the
computational system at a certain instance in time. When a
robot switches its operational context, this translates into a
reconfiguration connections between processes.

The trigger for this switch can take any number of
forms during robot task fulfillment. As mentioned in the
introduction, the failure of sensor hardware is one instance
that necessitates reconfiguration. Other triggers could include
corrupted sensor data, data that violates assumptions made by
a process, problematic code, or changes in the environment.
Most of these triggers are related to an even more common
problem among robotics: decision-making under uncertainty
and incomplete information.

In order to clarify this problem, the following scenario is
described for a mobile robot engaged in an exploration task.
To align with the themes of subterranean robotics, imagine
this robot is operating in an abandoned coal mine.

A robot, similar to the one pictured in Figure 1, is tasked to
explore and map an abandoned mine corridor. This corridor,
unmaintained for many years, stretches beyond the reach of
radio communication and is filled with mud, mine equipment,
explosive gases, and mine debris. Outfitted with scanning
lasers, inertial sensing and gas detectors, this mobile robot
navigates and maps the rugged mine terrain until a large
obstacle blocks further progress into the mine, forcing the
robot to return to the mine entrance. Soon after beginning
its return, the robot encounters what seems to be another
large obstacle, this one obscuring its path to the exit. Did
something change in the environment? Did a sensor fail and

allow a phantom obstacle to appear? Did a process fail or
misinterpret the sensed world?

Without additional information regarding the robot’s true
state, the navigation system has no chance of disambiguating
these scenarios. Even if the navigation system possessed the
capacity to assess the situation, such knowledge would not
achieve the robot’s goal to exit the mine. What the robot can
ascertain from its predicament, however, is that the current
operational mode (e.g. the current set of active processes) is
not facilitating the robot to escape the mine.

In this problem scenario, knowledge of data flow is key
in diagnosing the situation and contributing to a possible
solution. For example, if the problem were truly a laser
failure, the sensor process along with all downstream inter
and motor processes would essentially cease to generate valid
output. On the other hand, if the laser remained operational,
the data flow would restrict downstream toward a path-
planning or obstacle-avoidance process. As a result, the first
case requires alternative sensing or blind navigation to exit
the mine whereas the second case requires switching to an
alternative path-generation process or temporarily disabling
the obstacle avoidance procedure.

Once a robot has encountered a “bad” configuration, how
will it measure the quality of alternative configurations?
History and prior information are inevitably needed to guide
the selection process. For this reason, process information
from virtual sensors must be collected and compiled into a
format that can govern the process reconfiguration.

III. RELATED WORK

In general, sensory data decreases uncertainty regarding
the robot’s state; however as has been discussed in the
problem scenario, there are some situations where sensor
data or invalid assumptions can lead to increased uncertainty.
Approaches to address uncertainty with regards to robot
decision-making span everything from action without sensing
to action based on constructed histories of all the information
available to the robot. Research in sensor-less manipulation
by Akella, Erdmann, and Mason [2] have shown how action
models can be applied to reduce uncertainty without sen-
sor feedback. A more classic approach to reasoning about
action under uncertainty employs (POMDPs) [3], [4], as
demonstrated by Pineau and Smith[5], [6] on robotic systems.
Such methods attempt to utilize all available sensor, state,
and action information; however, for this intense dependency
on information, such methods tend to become intractable in
practice, Roy [7].

More recently, many of the methods that deal with uncer-
tainty are converging into unified theory of planning with
uncertainty, as described by LaValle [8]. Known as the
information space, this formulation is tailored for problems
that involve reasoning under ambiguous sensing. Evidence to
support this claim is demonstrated in the information space’s
ability to represent a large class of problems including those
that estimate robot state as well as those that need no state
information whatsoever. As such, the theoretical formulation

WeA10.2

294

of the information space presents a natural way to describe
problems that involve uncertainty and will be utilized in this
work.

If dealing with uncertainty is the problem, data stream
observation and manipulation is the solution offered in this
paper. Popular approaches to exploit reconfiguration among
processes are the ASyMTRe-D architecture by Parker and
Tang [9], Networked Robotics by McKee and Schenker [10]
and OCP by Wills [11]. ASyMTRe-D is a multi-robot ap-
proach for coalition formation by sharing sensor information
across teams of robots. In this respect, ASyMTRe-D can be
viewed as a single robotic entity that reconfigures its process
structure to meet the specifications of its tasks. Networked
Robotics is also an architectural paradigm designed to share
resources across robotic teams through explicitly define re-
source configurations where resources represent sensor, inter
and motor processes. OCP stands for open control platforms
and is designed to coordinate complex interaction among
software components in real-time.

All of these paradigms describe the benefits of reconfigu-
ration (robustness to failures, architecture abstraction, adapt-
ability, etc.) thereby supporting the process reconfiguration
concept of this work. Unlike this research, however, the key
research problem they address relates to task description as
configuration, rather than observation of configuration for
failure diagnosis and recovery. In addition, ASyMTRe-D and
Network Robotics are not designed for an individual robotic
systems and none relate the nature of reconfiguration to a
problem of uncertainty.

Finally, prior research in the field of subterranean robots
has significantly contributed to the development of this pa-
per’s concepts. In particular, a mobile robot named Ground-
hog utilized a small set of operational modes (i.e. process
configurations) to autonomously map an abandoned mine
near Pittsburgh, PA[12]. These operating modes included a
path planning navigation scheme, a wall following behavior,
and a risky, albeit affective, scheme that blindly engaged the
robot’s motors. Such simple and diverse schemes proved to be
essential in recovering the robot from trouble. The approach
presented in this paper generalizes this scheme into a broader
framework.

IV. APPROACH AND FORMULATION

Process observation and reconfiguration is formulated as a
search/planning problem over the space of possible process
configurations. That being said, a process configuration is
defined as the specific binding of individual processes to
one another. Recall from the introduction that processes are
divided into three categories: a sensing and/or perception
process S, an inter process that takes the form of a planning,
behavioral or reactive process P , and a controller or actuator
process A. Each process will have a specific interface that
will allow them to connect to particular classes of processes
S, P, A or the environment E.

Figure 2 provides an example of process configuration
and illustrates how configurations project actions into the

Fig. 2. A simple example of process configuration. Sensor processes are
circles, inter processes are diamonds, and motor processes are squares.

workspace of a robot. On the right side of this figure,
three processes of each class define the robot’s configuration
building blocks. The upper row of each class represents
processes capable of handling large data streams whereas
the lower processes handle thinner data streams. For this
example, assume that configurations are constrained to single
data paths every time step of the robot’s operation. Also,
assume that class S processes can only bind to P and P to
A. Altogether, this robot has 27 possible configurations.

On the left side of Figure 2 is a mobile robot defined in a
3D workspace (e.g. 2D position and heading). The processes
configurations, as seen of the right, enable the robot to move
in this workspace. Depending on the configuration, however,
a variety of behaviors is possible. For example, ConfigA =
S1 : P1 : A1 describes a heavy data flow where S1 outputs
all the robot’s sensory data to a sensor integration/planning
process P1, which then provides a plan to controller A1.
The resulting path created from this configuration is therefore
choppy due to the sampling required to efficiently handle the
data load. Another configuration, ConfigB = S2 : P2 : A2,
describes a sensor-feed back configuration that relies on much
less information to drive the vehicle. The resulting path from
this configuration is therefore smoother.

On a cautionary note, while ConfigB seems like a better
choice for vehicle control, ConfigA will likely perform
better than ConfigB when obstacles or rugged terrain are
introduced. Why? ConfigA retains memory of prior in-
formation while ConfigB is only concern with immediate
sensor values. ConfigB is therefore more susceptible to local
minima than ConfigA.

With a basic outline of process configuration and their
relevance to robot behavior, the following definitions describe
the formulation of process reconfiguration. The notation and
formulation is adapted from the information space [8].

Processes. Let pi ∈ P define a process of any class for N
robot processes. Although not formalized in this paper, each
process has a set of inputs and a single output that defines if
two process can bind.

Process Sensors. Let yi ∈ Y define a process observation
from a set of process sensors for each pi. Note: these observa-
tions reflect process status as seen by a virtual sensor such as
memory and processor consumption; process state (i.e. active,

WeA10.2

295

blocked or sleeping); or even algorithmic feedback such as
percentage of algorithm completion.

Process Configuration State. Let xi ∈ X define the state
of all processes interactions for M configurations. One can
imagine this being a snapshot of the robot’s internal memory
and, similar to the robot’s physical environment, is much too
large and complex for explicit representation. Each xi is de-
fined by a unique connection pattern of

{
ph : pi : pj : . . .

}
⊂

P

Process Reconfiguration. Let ui ∈ U define a recon-
figuration over the set of possible configuration. Here i is
bounded such that 0 ≥ i ≤ M . If i = 0, U allows no
reconfiguration, which implies a static system. If i = M ,
U allows switching from one configuration to any other
configuration. Note: constraints on reconfiguration may be
defined to limit these configuration switches. For example,
one possible constraint could be to only allow reconfiguration
if the future configuration has a subset of the processes from
the current configuration, or xk

i ∩ xk+1
i 6= ∅ for stage k.

Process Sensor and Reconfiguration Histories. Let ỹk =
(y1, y2, . . . , yk) denote a history of observations and ũk−1 =
(u1, u2, . . . , uk−1) denote a history of reconfigurations up to
stage k.

Process Configuration Cost Functional. Let the cost of
reconfiguration be

L(x̃K+1, ũK) =
K∑

k=1

l(xk, uk) + lF (xK+1) (1)

where l(xk, uk) is the cost to reconfigure and lF (xK+1) is
the total cost of all prior configurations.

Process Information State. Let ηk = (η0, ỹk, ũk−1) be all
the process information up to stage k.

Initial Process Information. Let η0 define the start con-
figuration of the robot at k = 0, which implies an initial start
configuration x0 and sensor observation y0.

With the general problem formulated, two additional com-
ponents are necessary for the problem definition to be com-
plete: a definition of data stream sensors and the character-
ization of goal states. Although a variety of virtual sensors
are possible, consider:

• A stimulation sensor. Every process has a set of inputs
that must be present and valid as a precondition for
output generation. For example, an obstacle avoidance
process requires range data in order to generate an
output signal. As such, ystimi

k = 1 if an output has
been generated for pi at stage k; otherwise, ystimi

k =
max(0, ystimi

k − ε) where ε is a constant decay rate.
• A satisfaction sensor. Every process has a rating that

signifies the quality of its output. For example, a local-
ization process that is confident in its position estimate
(i.e. low reported error) would output a high satisfac-
tion rating whereas an estimate of low confidence will
receive a poor degree of satisfaction. As such, let ysati

k

fall within the range [−1, 1] for pi at stage k.

The second component under consideration is goal ex-
pression. Unlike traditional planning/search problems that
express goals explicitly in terms of the state space, process
reconfiguration goals require additional information. The
reason for this condition is that achieving a particular process
configuration does not imply the robot will operate properly.
As such, the information space formulation of this problem
becomes important. Robot goals can be expressed in terms of
information states and these states include sensor and action
information. A desired goal is therefore expressed in terms of
observations: let ηgoal ⊂ ỹk such that ysati ≈ 1 ∈ ỹk. This
means that the robot’s goal is to achieve a high satisfaction
observation (within ε of 1) for process pi by the stage k.

The interesting characteristics of defining process sensors
and goals in these terms is that (1) sensor observations are
not necessarily predictable and (2) a variety of possible
solutions exist for a goal that extend beyond the robot’s
“real” task specification. To elaborate on point (1), config-
uration is measured by stimulation sensors, which become
stimulated if all the process inputs are present and valid.
Sensor processes take input from the environment and thus
will become stimulated by changes in the environment. As
such, the observed process configuration can fluctuate even
without reconfiguration. Point (2) means that prior to the goal
stage k, the process configuration at stage j where j < k
is not required to include the observed goal process pi. As
an example, a robot involved in a navigation task may be
required to satisfy a process that compares its current position
to a goal position. During this navigation task, the robot may
need to call for help, open a gate, or recharge its batteries,
which are not typically within a navigation problem domain;
however, all of these situations do in fact reside along a
solution path expressed in the context of process information
states.

V. SIMULATED RESULTS

For these experiments, a simulator with a simple
differential-drive robot was used to explore process obser-
vation and reconfiguration. This robot was provided five
sensors: a range sensor, a bump sensor, a global position
sensor, a sensor to translate user input, and a sensor that
directs the robot to a particular landmark (i.e. a flag). The
robot also has four mapping processes and five behaviors.
These include (xmap): a prior map handler, a null mapper
(has no map), an evidence grid mapper and a reflectance
mapper; and (xbehave): two different grid planners, a control
law drives the robot directly to the flag, a behavior that
dodges obstacles and a behavior that bumps into obstacles
and chooses a random direction to head afterward.

The robot is allowed to choose one mapper (xmap
i) and

one behavior process (xbehave
j) to define a configuration. As

such, X is every possible map-behavior pairing. This paring
yields twenty selectable configuration states. A stimulation
decay rate of ε = 1 is used to force stimulation to be either
1 or 0. Thus, for the observed configuration states, three of
the five robot’s sensors (e.g. the range sensor, bump sensor

WeA10.2

296

Fig. 3. The three game boards for this experiment. The robot is the square
object, which is trying to capture a flag denoted as the small triangular
object. The left board has no obstacles (World 1), the middle board has a
wall in the middle (World 2), and the right board has a line of balls that can
be moved if the robot pushes them (World 3).

Fig. 4. These three images show a ratio of success-to-trials for each map-
behavior pair. White cells indicate an averaged high percent of success over
the trials whereas black cell indicate no success. Key: (A) Prior map, (B)
No map, (C) Evidence grid, (D) Reflectance mapping, (1) Brushfire search,
(2) A* search, (3) Servo control law, (4) Obstacle avoider, (5) Bump and
random motion

and proximity sensor) can be stimulated by the environment
yielding 23 = 8 observed stimulation configurations. Each of
the 20 process pairs can also be stimulated such that when
multiplied by the number of sensor stimulation configurations
yields 3280 unique stimulation observations. In reality, this
number is far less since many processes will always be
stimulated when active.

The robot is given the task to drive to a randomly placed
flag using each possible configuration. This task is to be
carried out in three different worlds: one with no obstacles,
one with a fix obstacle and one movable obstacles (Figure 3).
The task is repeated 100 times for each configuration on each
world. The robot is timed and if the robot does not succeed
in stimulating its flag proximity sensor within the time limit,
the task is labeled a failure.

Fig. 5. These three images show a normalized average time for task
completion given the configuration was successful. The key from Figure
4 applies also to this figure.

Figure 4 presents a series of gray-scaled images denoting
the success-to-trial ratios for each static configuration pair
for each world. As shown, configurations with heavy data
streams and planning processes consistently perform the best
when all the available information is correct as seen in cells
A1 and A2. Processes that use smaller data streams (i.e.

less information) consistently preform the worst (i.e. generate
the most failures) as indicated by columns 4 and 5. Aside
from these intuitive observations, there are three noteworthy
occurrences in these plots. First, due to randomness in the
environment, “mindless” routines that do not actively seek
the objective, occasionally manage to be successful as seen in
the last two columns of World 1. Second, what would seem to
be a “good” map-behavior pairing (cell D1 that corresponds
to a map generation routine and path planner), did not form a
compatible data stream, which caused the robot to freeze. The
third observation shows that when “good” algorithms obtain
“good” data but the algorithmic assumptions are violated, the
best configurations perform with a success ratio equal to the
worst configurations as seen in cells C1, C2 and D2 of World
3. This situation is caused when active mapping registers the
balls as obstacles, which forces the planner to declare the
goal unobtainable. The control law in column 3 of World 3,
which does not use a map or laser data, pushes through the
obstacles because it is unaware of these data streams.

Figure 5 shows the performance times over all X given the
map-behavior pairing successfully obtained its objective. As
presented, these results agree with intuition. On the random
chance the flag was in the right place at the right time, the
unreliable configurations of columns 4 and 5 achieved the
goal fastest. The data-heavy streams performed consistently
slower than the simpler behaviors as seen in columns 1 and
2. The middle ground, which employed the minimal amount
of data to accomplish the goal, was the servo control law
seen in column 3.

Equipped with these configuration priors, can data flow
observation and reconfiguration improve the robot’s chance at
obtaining the flag? To answer this question, a cost functional
and configuration search routine is required. For the next set
of results, the following cost functions and selection routines
were employed.

Experiment 1: No cost function or search routine is used.
The static configuration data is analyzed to emulate the
systematic trial of every possible configuration. Experiment
2: No cost function is used. After k/3 stages, where k is
predetermined last stage, select a new configuration from a
uniform distribution. Experiment 3: Let L(x̃K+1, ũK) =
E(Kx) be the expected success stage for each configura-
tion. Order configurations by ascending expected stages and
choose each configuration for its number of expected stages.
Experiment 4: Compute a joint probability distribution from
prior data. At each stage, choose the configuration that
maximizes P (Success|ỹK), the probability of success given
the observation history up the current stage K. To simplify
this computation, the Markov assumption is made, making the
calculated value P (Success|yK), which is computed using
the Bayesian recursive algorithm.

The results from these experiments is reported in Table I.
For Experiment 2 through Experiment 4, each reconfiguration
approach was applied to each world for 100 trials to be
consistent with the prior experiment. The metrics addressed
in this table are the number of unique configuration observa-

WeA10.2

297

TABLE I
PRELIMINARY RESULTS

Key Sys Random Expected Bayesian
Observed 109 191 162 110

AV E(Success) 39% 54% 76% 77%

P (Success) 0.46 0.59 0.79 0.8

AV E(t)|S 170s 203s 356s 341s

tions: Observed, the averaged success-to-trial ration across all
worlds and configurations: AV E(Success), the probability
of success: P (Success), and the average task completion
time given the trial was successful: AV E(t)|S.

Starting with the first row, the data shows that as the
configuration search becomes more sophisticated, a fewer
number of unique observations are made. The underlying
cause for this phenomenon is related to the switching routine.
Random configuration selection will pick poorer performing
pairs, thereby allowing a variety of previously un-encountered
observations to be made. The second and third rows reflect
the success rates of reconfiguration. Row 2 reflects how,
on average, a reconfiguration would perform given one of
the three worlds. This average, however, may be somewhat
misleading since only a few particularly poor configurations
(such as the incompatible pair) bring down the rest. The
third row puts perspective on this value by showing that, on
average, a configuration drawn from this distribution should
perform better than the average. The difference between these
values, however, becomes less significant the more optimized
the selection routine becomes. Finally, the last row is a
relative gage of system performance. Similar to what was
observed Figure 5, the more specialized the selection routine,
the longer it takes for reconfiguration to be successful.

Overall, these results present a clear case in favor of
data flow regulation through process reconfiguration over
static process configuration. Reconfiguration clearly leads
to systems that can handle a larger class of problem in
a variety of working conditions. On the other hand, one
conclusion that seems to resonate with these results is that
simple and specific statically configured data flows will work
and, in general, outperform a reconfigurable system if most
algorithmic assumptions hold true. Although, these results are
still in a preliminary form - more conclusive formalism and
experimentation are necessary to reinforce these claims.

VI. CONCLUSIONS AND FUTURE WORK

The described system has shown promise in simulation,
demonstrating that even simple restructuring strategies have
great impact upon the success of robot to perform a specified
task. The question that remains is to what degree is such a
system technically feasible on a real robotic platform? While
implementation and evaluation on real robots is underway,
process reconfiguration has been achieved through a modular
software design using standard interprocess communication
utilities such as shared memory, message queues and sockets

to enable data-flow routing. The actual cost and reconfigura-
tion strategies will be no different that the simulated system
since both reside at the computational level. Therefore, the
greatest potential downfall of this system resides in the
quality of the underlying processes.

The three key directions important to the future of this
work are (1) a continuation of the formalism and theoret-
ical principles of this work (2) investigation of alternative
process sensors and (3) a demonstration of this approach
on a robotic system in a real operational scenario. First, the
graphical nature of data flow lends itself well to a number
of analytical modeling methods. One of particular interest is
a Bayesian network model since the inputs of one process
form dependencies on other processes’ outputs. Under this
model, the system could be asked to compute the probability
that a planning process is causing a failure verses a laser
failure. In addition, the ability to automatically label failure
configuration states verses successful configuration states
opens the possibility of applying on-line learning methods
to process reconfiguration.

ACKNOWLEDGMENT

This work acknowledges Red Whittaker, Scott Thayer, Chuck
Whittaker, and Zachary Omohundro. Special thanks also extends to
Jame Kuffner and Steve LaValle for providing insight and assistance.

REFERENCES

[1] A. C. Morris, D. Ferguson, Z. Omohundro, D. Bradley, D. Silver,
C. Baker, S. Thayer, C. Whittaker, and W. R. L. Whittaker, “Recent
developments in subterranean robotics,” Journal of Field Robotics,
vol. 23, no. 1, pp. 35–57, January 2006.

[2] S. Akella, W. Huang, K. Lynch, and M. Mason, “Sensorless parts ori-
enting with a one joint manipulator,” in IEEE International Conference
on Robotics and Automation (ICRA ’97), vol. 3, April 1997, pp. 2383
– 2390.

[3] K. Astrom, “Optimal control of markov decision processes with
incomplete state estimation,” Journal of Mathematical Analysis and
Applications, vol. 10, pp. 403–406, 1965.

[4] E. Sondik, “The optimal control of partially observable markov deci-
sion processes,” Ph.D. dissertation, Stanford University, 1971.

[5] J. Pineau, “Tractable planning under uncertainty: Exploiting structure,”
Ph.D. dissertation, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, August 2004.

[6] T. Smith and R. Simmons, “Heuristic search value iteration for
pomdps,” in Proc. of UAI 2004, Banff, Alberta, 2004.

[7] N. Roy, “Finding approximate pomdp solutions through belief com-
pression,” Ph.D. dissertation, Robotics Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA, September 2003.

[8] S. M. LaValle, Planning Algorithms. Cambridge University Press (also
available at http://msl.cs.uiuc.edu/planning/), 2006, to be published in
2006.

[9] L. E. Parker and F. Tang, “Building multi-robot coalitions through
automated task solution synthesis,” Proceedings of the IEEE, special
issue on Multi-Robot Systems, 2006.

[10] G. T. McKee and P. S. Schenker, “Networked robotics,” in Proceedings
of SPIE - Sensor Fusion and Decentralized Control in Robotic Systems
III, vol. 4196. SPIE, October 2000, pp. 197–209.

[11] L. Wills, S. Kannan, S. Sander, M. Guler, B. Heck,
V. Prasad, D. Schrage, and G. Vachtsevanos, “An open
platform for reconfigurable control,” 2001. [Online]. Available:
citeseer.ist.psu.edu/wills01open.html

[12] C. Baker, A. Morris, D. Ferguson, S. Thayer, C. Whittaker, Z. Omo-
hundro, C. Reverte, W. Whittaker, D. Hähnel, and S. Thrun, “A
Campaign in Autonomous Mine Mapping,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), New
Orleans, LA, 2004.

WeA10.2

298

