
Combining Texture and Edge Planar Trackers based on a local Quality
Metric

A. H. Abdul Hafez 1,2, Visesh Chari 1, and C.V. Jawahar 1

Abstract— A new probabilistic tracking framework for in-
tegrating information available from various visual cues is
presented in this paper. The framework allows selection of
“good” features for each cue, along with factors of their
“goodness” to select the best combination form. Two particle
filter based trackers, which use edge and texture features, run
independently. The output of the master tracker is computed
using democratic integration using the “goodness” weights.
The final output is used as apriori for both tracker in the
next iteration. Finally, particle filters are used to deal with
non-Gaussian errors in feature extraction / prior computation.
Results are shown for planar object tracking.

I. INTRODUCTION

Object tracking is an important task in robotic vision,
particularly for visual servoing [1]. The tracking problem
in the robotic literature has been modeled as a motion
estimation problem. Thus 3D model based tracking is con-
sidered as a pose estimation problem and 2D planar object
tracking as a homography estimation problem. This class of
trackers differs from the popular class of algorithms which
aim at drawing a bounding box for an object of interest,
for every successive frame. There are two major sources of
visual features that are used in marker-less visual tracking:
edges and texture. Both visual features have advantages and
disadvantages that make them suitable/unsuitable in many
scenarios.

For scenes with sharp edges and high spatial gradients,
contour features are very informative. Active contours can be
used to track complex shapes in 2D tracking systems as in [2]
and [3]. Straight lines are more suitable for model-based 3D
tracking applications [4]. When the scene is very cluttered
or textured, contours may be absent. In addition, shadows
may considerably affect the edge detector performance. The
tracker may deviate towards the edge of the shadow itself.
Texture-based methods are required in such situations.

Interest points are useful for tracking of textured scenes.
The Shi-Tomasi algorithm [5] for detecting “good” feature
points is considered as an effective algorithm for identifying
texture points that are tractable. Unfortunately, tracking of
interest points is sensitive to the quality of the image. In the
presence of poor and noisy images, the tracking process fails.
Another inconvenience is the effect of the size of the tracking
window. Errors in the tracking process may also occur as a
result of large displacements or changes in illumination.

1 Center for Visual Information technology, International Insti-
tute of information Technology, Gachibowli, Hyderabad-500032, India
{ukvisesh@students,jawahar@}iiit.ac.in

2 Dept. of Computer Science and Engineering, University col-
lege of Engineering, Osmania University, Hyderabad-500007, India
hafezsyr@ieee.org

To perform accurate edge tracking, an accurate prior of the
motion model is needed. Points are robust to large motion
and the dynamic model of their distribution can be learned
easily. Indeed, whenever we have a better prior of feature
(point or edge), it is more useful for the tracker. In general,
weights corresponding to feature goodness can be assigned
to features. Each feature can contribute to the distribution
proportionally to its goodness factor value.

Statistically, the posterior of line or edge measurements
is non-Gaussian; so we need a nonlinear filter like particle
filter to model the posterior. In addition, we need a robust
technique to withstand large aspect changes. For example,
large changes in illumination can cause changes in the
intensity of interest points, making them inappropriate for
tracking. Another example is the large rotation motion which
may result in an incorrect edge correspondence.

Considering the complementary advantages and inconve-
nience of each of the two methods, it is matured to consider
both edges and textures together [1],[6], [7]. In most of the
integration cases between contour and texture, the integration
is done sequentially. For example, [8] uses the result from
the texture point tracker to provide better positioning of the
edge location.

In this paper, we propose a robust integration framework
using both edge and texture features. This framework prob-
abilistically integrates the visual information collected from
contour and texture. The integration is based on probabilistic
goodness weights for each type of feature. The weighting
functions have been developed starting from the dissimilarity
of point features. In fact, we also use this measurement to
identify good edge features. The motion posteriori is then the
weighted sum of the posteriors computed from each feature
likelihood separately. The likelihood models of texture and
contour are defined in a robust fashion to meet the large
aspect changes. It is the point wise mth smallest value of the
classical likelihood model. Integration of cues results in good
performance even in situations with widely varying scene
illumination. The integrated tracker shows impressive results
due to the robust likelihood function and the integrated
trackers.

There have been many recent attempts at 2D tracking
using integration of multiple cues. Integration of 2D cues like
color, motion, and edges using fuzzy-based voting technique
was considered by Kragic and Christensen in [9]. Li and
Chaumette [10] probabilistically integrated the visual cues
like color, structure, and contour. They use particle filter for
maximizing a likelihood function that fuses probabilistically
the mentioned cues. Other probabilistic methods for integra-

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrE2.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 4620

tion of edges and texture are those presented in [11], and [6],
they are based on some priority criteria for each of contour
and point features. In the context of minimizing a determin-
istic cost function, the work presented in [1], [12] is the most
recent one. They proposed a first-order optimization process
to minimize the error between the image measurements and
the reprojected one from the reference frame onto the current
frame.

II. MOTION ESTIMATION FOR PLANAR OBJECT
BAYESIAN TRACKING

A. Motion Model

Given an initial image I0 and an image It of a planar
object at time instant t, there exists a homography Ht relating
these images. If the vector x0 = [u0, v0, 1]T represents the
homogeneous coordinates of a point in the first image and
the vector xt = [ut, vt, 1]T represents a point in the second
image, the relation between these two points is written as
xt = Htx0 or

xt ∼

 h1

t h2
t h3

t

h4
t h5

t h6
t

h7
t h8

t h9
t


x0. (1)

Estimating the homography can be posed as estimating the
parameters of Ht, represented as a vector

ht =
[

h1
t h2

t h3
t h4

t h5
t h6

t h7
t h8

t h9
t

]T
. (2)

If we assume that the camera/object motion is smooth, then
ht can be written as an increment over the homography
computed in the previous frame. Thus if ĥt is the current
homography estimate, change in this vector owing to inter
frame displacement can be written as

ĥt = ĥt−1 + ∆ĥt. (3)

Now, let us consider a set F0 of M visual features
F0 = {f1

0 , . . . , fM
0 } in the reference image I0. This set of

features is mapped by the transformation ĥt to the estimated
set of features Fht

= {f1
ht

, . . . , fM
ht
} in the current image.

The true estimate of the vector ĥt can be computed by
minimizing an error function of the form

G(ĥt) = F(Fht
− Ft), (4)

where Ft is the measured visual feature vector and F is the
distance measure. The optimal value ĥt is given as

ĥt = arg min
ht

F(Fht
− Ft), (5)

When the errors in feature correspondence are non-
Gaussian, there exists no direct linear analytical method that
can minimize this error function. Particle filter algorithm or
what is called Condensation algorithm[13] is preferred here
because it provides an efficient probabilistic framework to
take care of such uncertainties.

Fig. 1. Left: Contour features in the current frame are obtained by searching
along lines perpendicular to the contour estimated in the previous frame.
Right: Contour extraction shown in practice.

B. Particle Filter based Bayesian Tracking

We now present the Bayesian filter [10] formulation for
computing homography ht. Let π(ht) be the belief of the
random vector ht at time t represented by posterior prob-
ability p(ht | F1,...,t) based on features F1,...,t. Expanding
using Bayes rule

p(ht | F1,...,t) =
p(Ft | ht)p(ht | F1,...,t−1)

p(FT | F1,...,t−1)
. (6)

Considering that p(FT | F1,...,t−1) is a constant we marginal-
ize the probability p(ht | F1,...,t−1) and apply Bayes’ rule
again to obtain the Bayesian estimation p(ht | F1,...,t) as

α p(Ft | ht)
∫

p(ht | ht−1)p(ht−1 | F1,...,t−1)dht−1. (7)

Equation (5) can be understood as the maximum posteriori
(MAP) of (7). Thus, equation (4) is the likelihood p(Ft | ht)
and equation (3) represents the motion model prior p(ht |
ht−1). while p(ht−1 | F1,...,t−1) is the posterior estimate in
the the previous iteration.

The basic idea of particle filters is to approximate posterior
density p(ht | F1,...,t) by a set of samples (particles) hi

t with
associated weights or importance factors wi

t. The M particle-
weight pairs {hi

t−1, w
i
t−1}M

i=1,chosen to approximate density
p(ht−1 | F1,...,t−1), are propagated to pairs {hi

t, w
i
t}M

i=1

using the motion model prior p(ht | ht−1). A detailed expla-
nation of particle filters and their use to represent probability
distributions can be found in [14]. The weights {wi

t}M
i=1

associated to the particles hi
t are computed proportional to

the likelihood function in case of using the bootstrap filter
as

wi
t = α p(Ft | hi

t). (8)

III. THE OVERALL ALGORITHM

In our approach, the visual feature F can be an edge of
contour feature FC or texture point feature FT . Thus, the
functions p(FC | hi) and p(FT | hi) are the likelihood func-
tions of the contour and texture point features respectively.

The overall algorithm using particle filters is explained
in Figure 2 and Algorithm 1. The input to the algorithm
is a sequence of images I1, . . . , It, initial features F1 =

FrE2.2

4621

f1
i : i ∈ 1, . . . , n and particle filter’s output i.e. the motion

estimate is initialized to identity (here the reference frame
is the current one). The algorithm undergoes one iteration
of particle filters for each frame of the sequence, in order
to produce a homography estimate between the current and
reference frames, using features belonging to the current
frame, and previous frames.

At each time instance t, M particles from the priori
distribution ht−1|t−1 are drawn where 0 is the reference
frame. Two sets of particles are drawn for evaluation. These
particles are propagated to the current frame using the a
priori motion model ht|t−1. This motion model may be
calculated from edge or texture features. Here, one set of
particles is propagated using texture based motion priors,
the other set is propagated using edge based ones. In both
cases, this motion model is calculated using a least squares
minimization. In case of edge features, the motion apriori
is approximated using an affine motion model. Once the
particles are propagated to the current frame, edge and
texture likelihoods, (see (17), (19) and (20) in Section V),
are used to evaluate the particles and select the appropriate
homography (Algorithm 1). Finally, edge-based and texture-
based homographies are combined using democratic integra-
tion. The combination weights WT and WC are calculated
adaptively as in Section IV.

Algorithm 1 Visual Tracking based on Goodness Weight

1: Input: I0, . . . , It, F0 = {f0
i : i ∈ {1, . . . , n}}.

2: Output: ht = {h1
t , . . . , h

9
t}

3: NumParticles: M = {MC + MT } {Set the number of
particles needed to sample the space effectively}

4: for k ∈ {1, . . . , t} do
5: F = ExtractFeatures(Ik)
6: Fk = TrackFeatures(Ik, F, Fk−1)
7: {hi

k−1}
MC

i=1
= DrawSamples(hk−1,MC)

8: {hi
k−1}

MT

i=1
= DrawSamples(hk−1,MT)

9: {hi
k−1}

M

i=1
= {{hi

k−1}
MC

i=1
, {hi

k−1}
MT

i=1
}

10: hk|k−1 = MotionPrior(Fk, Fk−1)
11: {hi

k}
M

i=1 = PropogateParticles({hi
k−1}

M

i=1
, hk|k−1)

12: {QC}MC
i=1 = log(CLikelihood(Fk, {hi

k}
MC

i=1))
13: hC

k = arg mini{QC}MC
i=1

14: {QT }MT
i=1 = log(TLikelihood(Fk, {hi

k}
MT

i=1))
15: hT

k = arg mini{QT }MT
i=1

16: WC = GoodEdges(Fk, Fk−1)
17: WT = GoodTextures(Fk, Fk−1)
18: hk = WC ∗ hC

k + WT ∗ hT
k {Democratic Integration}

19: end for

IV. THE WEIGHTED GOOD FEATURE

Shi and Tomasi [5] developed a method that measures the
dissimilarity between image point features. They found out
a measurement matrix whose eigenvalues are large when the
dissimilarity is less. In other words, if the measurement ma-
trix has a large enough eigenvalue, the feature is considered

Fig. 2. Steps in one iteration of our algorithm. The motion posterior
hk−1|k−1 computed in the previous frame/iteration is propagated separately
using texture and contour/edge information to get the initial priors hC

k|k−1

and hT
k|k−1

. Particles are then drawn from these two distributions separately
and the features observed in the current frame are evaluated on these
particles using robust likelihood functions. The resulting posteriors hC

k|k
and hT

k|k are then combined using democratic integration. The weights WC

and WT are computed based on the “goodness” of features.

as a good feature to track. We generalized this concept about
points, given by Shi and Tomasi, to the case of edge features
located on a measurements line. Thus, we start from these
goodness measurements to define a function that associate
a probabilistic weights for the edge (contour) and texture
features.

A. Good Features to Track

Similar to [5], the affine image motion between successive
frames is computed as one that minimizes the intensity
dissimilarity

ε =
∫ ∫

W

[J(Ax + d) − I(x)]2w(x)dx (9)

where W represents the feature window around a Harris
corner and w(x) is a weighting function. Using Taylor
expansion and after a few simplifications, we arrive at the
following equation for determining a “good” feature.

Zd = e

where Z represents the covariance of the image derivative

Z =
[

g2
x gxgy

gxgy g2
y

]

For a tractable feature, it is required that the matrix Z has
large eigenvalues.

FrE2.2

4622

1) Good Texture Features:: Texture features essentially
represent a pattern in which intensity change within a feature
window is present along both x and y-directions. Thus, the
two eigenvalues are both large and comparable in magnitude.
Thus ensuring that the minimum eigenvalue is above a
threshold suffices to find “good” texture points. This is
expressed by the equation

min(λ1, λ2) > λp (10)

where (λ1, λ2) are the eigenvalues and λ is a chosen constant.
2) Good Edge Features:: In case of edge features, the

intensity pattern in the feature window is unidirectional.
Since the feature window needs large eigenvalues to be
resilient to noise, the above condition for texture applies here
as well. However, due to the uni-directional nature of edges,
one eigenvalue is significantly smaller than the other. Thus,
we may impose the following additional constraint to acquire
“good” edge features

max(λ1, λ2) > λe. (11)

B. Assigning weights to features

Given a set of good texture and edge features, we may
define the goodness of each type of feature by measuring
the amount of features that are tracked along the sequence
of frames. Let us remember that we consider here two types
of visual features. They are contour feature FC and texture
feature FT . Texture feature is essentially an image point;
while contour feature is a gradient peak along a measurement
line. We develop a goodness function for texture point
features and the one for contour features is analogous.

Assume we select N0 texture point features in the initial
frame. Only Nt features in the current frame have been
selected as good features and matched to its corresponding
points in the initial frame. Let the set Nt = {ni | i =
1, · · · , Nt} be the set good features tracked in the current
frame. The probability that a point feature ni is in this set
can be given as a function of the dissimilarity measurement
given in (9) as

WT = p(Nt ∈ N0) = p(Nt ∈ Nt−1) p(Nt−1 ∈ N0) (12)

p(Nt ∈ Nt−1) =
1

Nt−1

Nt−1∑
i=1

1
2πσ2

exp
[
− εT

i εi

2πσ2

]
(13)

To simplify the computation, let p(Nt−1 ∈ N0) ≈ Nt−1
N0

and
finally we write

WT =
1

N0

Nt−1∑
i=1

1
2πσ2

exp
[
− εT

i εi

2πσ2

]
. (14)

For edges, assume that there are N0 measurement lines on
the object contour in the initial frame and Nt matched good
feature measurement lines in the current frame. Analogous

to texture point features, the weighting function for edge
features can be written as

WC =
1

N0

Nt−1∑
i=1

1
2πσ2

exp
[
− εT

i εi

2πσ2

]
. (15)

This allows us to get a quantitative evaluation of the
feature’s reliability. The higher the weight, the more reliable
a feature is. By comparing the weights, we may decide upon
the most reliable feature.

V. FEATURE LIKELIHOOD

A. Contour likelihoods

Let Ct−1 be the contour representing the object in the
previous frame at instant (t−1). This contour, for simplicity,
has been assumed to be an edge. Let ht−1 be the vector
representing the homography that relates Ct−1 to a reference
contour C0. A suitable discretization of the both contours
Ct−1 and C0 is represented by the set of image points
{pm}M

m=1. Points belonging to the current contour Ct can be
searched along lines lm perpendicular to the previous contour
Ct−1 centered at points {pm

t−1}M
m=1. Points {pm

t−1}M
m=1 are

called principle points and lines lm are called measurement
lines.

Fig. 1 demonstrates the measurement process to estimate
the contours in the current frame. The object contour repre-
sents the object edge at the previous frame. The measurement
lines are drawn normal to, and centered around the previous
edge. In the figure, there are three normal measurement lines
with one or more edge points detected on each line. Two
edge proposals are shown and only the nearest edge point
measurement to the edge proposal is considered. In case the
measurement line does not intersect the edge proposal, as the
line L3, the data from this line will be nullified and will not
be used in the likelihood function. Note here that by using
short measurement lines, we reduce the effect of spurious
contour points in cluttered environments.

A generic model of the contour likelihood was proposed
in [3]. We start from this model to develop our robust contour
likelihood model. Let the hypothesis hi

t be a proposal of
the state of the contour Ct that intersects the measurement
line lm at a distance dm from the same principle point
(Fig. 1). Starting from the generic likelihood model after
some development and enforcing certain assumptions [3],
we write

p(FC | hi) =
M̄∏

m=1

(
1√

2π σ

nm∑
k=1

exp(− (Dm)2

2σ2
)

)
=

M̄∏
m=1

Qm,

(16)
where Dm = min{vk − dm}k=1

nm
represents the sum along

each line approximated by its large value to speed the
process. The number of measurement lines that intersect the
contour Ct is M̄ . Taking log to simplify multiplication, we
can write

QC = log(p(FC | hi)) =
M̄∑

m=1

log(Qm). (17)

FrE2.2

4623

B. Texture likelihoods

Harris detector is a method that detects interest point in
scale-space based on the Laplacian. A popular tracker of
Harris points is Shi-Tomasi-Kanade tracker [5]. In fact, the
point locations of the features in the initial frame are selected
as those points that show more tractability than others. The
higher singular values are, the more interesting the point
feature is.

One can note that the most detected features are the
corners and similar entities where its high spatial gradient
gives robust information about its 2D properties.

The model used for the texture likelihood is the point-wise
re-projection error, most suitable for Harris [15] points. Let
a set of texture features FT be extracted from the image at
time t using Harris’ detector. These features are matched to
the corresponding features F0 in the initial frame. Given a
proposed motion model hi, the probability density function
of the likelihood is given as

p(FT | hi) =
Np∏
k=1

(
1√

2π σ
exp(− (Dk)2

2σ2
)

)
=

Np∏
k=1

Qk,

(18)
Here, Np is the number of texture points under consideration,
the error Dk is the Euclidean distance Dk = Fkht

− FkT

between the kth measured point FT and the projection of the
kth point F0 from the initial frame to the current frame(Fht

).
Again taking log, QT can be written as

QT = log(p(FT | hi)) =
Np∑
k=1

log(Qk). (19)

C. Robust likelihood models

The likelihood functions QC and QT presented in Eq.(17)
and Eq.(19) are robust to Gaussian noise but are sensitive to
outliers. To handle outliers, we use Qm

C and Qn
T . These error

functions are the mth and nth smallest values of the error
vectors QC and QT respectively.

Qm
C = mthi {QC}i Qn

T = nthi {QT }i (20)

The objective functions that belongs to this class are highly
robust to outliers. For example, when m = M/2 and n =
Np/2, these are the median operator and the minimization
process leads to least median optimization [16], which can
handle noisy measurements with upto 50% outliers.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

Our tracker has been tested using different video se-
quences to show the performance over different qualities of
texture and edges. The tracker has been aligned with edges
of the object in the initial frame. Objective is to follow the
object borders along the sequence. The proposed integration
tracker is compared to texture-based one and edge-based
one using the same video sequences. The edge tracker is
based on moving edge algorithm and the texture tracker
is based on Harris points. The state vector is estimated
and tracked probabilistically using particle filter. The tracker
works approximately on 15-18 frame per second speed using

0 10 20 30 40 50 60 70 80 90

0.4

0.5

0.6

0.7

0.8

0.9

1

Frames

E
dg

e
W

ei
gh

t

Fig. 6. Goodness weights for edges in the ”Book-newspaper” video
sequence. The decrease in weights explain the failure of the edge tracker.

laptop system with 1.6 GH AMD processor and 256 MB
RAM memory.

The ”Book-newspaper” sequence is a video sequence
which includes a book with highly textured front face. The
book is also surrounded by a textured background. The
sequence also contains a considerable amount of motion. In
addition, changes in the illumination was introduced with a
good amount of shadow. Fig. 3 shows six sample images
from a total 94 images. The first row (a) shows the results
from the edge tracker. The second row (b) contains the
texture tracker. The results of the proposed integration tracker
are shown in the last row (c). It can be seen that the edge
tracker has lost the object due to the large aspects changes
like motion, shadow and illumination. The texture tracker
gives good results. However, the integration tracker gives
more perfect and precise performance. Figure 6 shows the
edge goodness weight along frames.

Figures 4 and 5 show the results of testing the inte-
gration based tracker using ”Not-book” and ”Panoramic-
book” sequences respectively. In the former the tracker works
properly due to the texture feature availability. The later one
skewed a little due to the absence of the texture and the
presence of considerable amount of edge shadow.

VII. CONCLUSIONS

In this paper, we have presented an integration framework
that integrates edge and texture points for planar object
visual tracking. The integration process is done between two
sub-trackers using democratic integration based on goodness
weights. The weights are computed with respect to each type
of feature adaptively. Selection of “good” features ensures
reliability of the tracker under a variety of conditions. On
the other hand, robust likelihood models ensure accurate
computation of motion. Application to 2D planar tracking
is shown.

REFERENCES

[1] M. Pressigout and E. Marchand, “Real-time planar structure tracking
for visual servoing: a contour and texture approach,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, IROS’05, vol. 2, Edmonton,
Canada, August 2005, pp. 1701–1706.

FrE2.2

4624

(a)

(b)

(c)

Fig. 3. Image samples of testing the three edge-based (a), texture-based (b), and integration-based (c) trackers on the ”Book-newspaper” Sequence. A
tracker is aligned to the object boundaries (red color). The edge tracker failed to follow the object due to shadows and changes in illumination. Texture
tracker gives better alignment in case of changes in illumination and motion. The integration-based tracker outperforms the other two.

Fig. 4. Image samples of testing the integration-based tracker on the ”Notebook” Sequence. A tracker is aligned to the object boundaries (red color).

Fig. 5. Image samples of testing the integration-based tracker on the ”Panoramic-book” Sequence. A tracker is aligned to the object boundaries (red
color).

[2] A. Blake and M. Isard, Active Contours. Springer-Verlag, April 1998.
[3] M. MacCormick, “Probabilistic models and stochastic algorithms of

visual tracking,” Ph.D. dissertation, University of Oxford, U.K., 2000.
[4] A. Comport, E. Marchand, and F. Chaumette, “Robust model-based

tracking for robot vision,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, IROS’04, vol. 1, Sendai, Japan, September 2004, pp.
692–697.

[5] J. Shi and C. Tomasi, “Good features to track,” in IEEE International
Conference on Computer Vision and Pattern Recognition, CVPR’94,
Seattle, Washington, June 1994, pp. 593–600.

[6] E. Rosten and T. Drummond, “Fusing points and lines for high
performance tracking.” in IEEE International Conference on Computer
Vision, vol. 2, October 2005, pp. 1508–1511.

[7] L. Vacchetti, V. Lepetit, and P. Fua, “Combining edge and texture
information for real-time accurate 3d camera tracking,” in Interna-
tional Symposium on Mixed and Augmented Reality, Arlington, VA,,
November 2004.

[8] E. Marchand, P. Bouthemy, F. Chaumette, and V. Moreau, “Robust
real-time visual tracking using a 2d-3d model-based approach,” in
IEEE Int. Conf. on Computer Vision, ICCV’99, vol. 1, Kerkira, Greece,
September 1999, pp. 262–268.

[9] D. Kragic and H. Christensen, “Cue integration for visual servoing,”
IEEE Transactions on Robotics and Automation, vol. 17, no. 1, pp.

19–26, February 2001.
[10] P. Li and F. Chaumette, “Image cues fusion for contour tracking

based on particle filter,” in Int. Workshop on articulated motion
and deformable objects, AMDO’04, ser. Lecture Notes in Computer
Science, J. Perales and B. Draper, Eds., vol. 3179. Palma de Mallorca,
Spain: Springer-Verlag, September 2004, pp. 99–107.

[11] Spengler and B. M., Schiele, “Towards robust multi-cue integration
for visual tracking,” Machine Vision and Applications, vol. 14, no. 1,
pp. 50–58, April, 2003.

[12] M. Pressigout and E. Marchand, “Real-time 3d model-based tracking:
Combining edge and texture information,” in IEEE Int. Conf. on
Robotics and Automation, ICRA’06, Orlando, Florida, May 2006, pp.
2726–2731.

[13] M. Isard and A. Blake, “Condensation - conditional density propaga-
tion for visual tracking,” International Journal of Computer Vision,
vol. 29, no. 1, pp. 5–28, August 1998.

[14] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo in
Practice. Springer-Verlag, 2001.

[15] C. Harris and M. Stephens, “A combined corner and edge detector,”
in Alvey Conference, . 1988, pp. 189–192.

[16] Z. Zhang, “Determining the epipolar geometry and its uncertainty:
A review,” International Journal of Computer Vision, IJCV, vol. 27,
no. 2, pp. 161–195, 1998.

FrE2.2

4625

