
Efficient Two-phase 3D Motion Planning for
Small Fixed-wing UAVs

Myung Hwangbo James Kuffner Takeo Kanade

The Robotics Institute
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
{myung, kuffner, tk}@cs.cmu.edu

Abstract— We present an efficient two-phase approach to
motion planning for small fixed-wing Unmanned Aerial Vehi-
cles(UAVs) navigating in complex 3D air slalom environments.
A coarse global motion planner first computes a kinematically
feasible obstacle-free path in a discretized 3D workspace which
roughly satisfies the kinematic constraints of the UAV. Given a
coarse global path, a fine local motion planner is used to compute
a more accurate trajectory for the UAV at a higher level of detail.
The local planner is iterated as the vehicle traverses and refines
the global path as needed up to its planning horizon. We also
introduce a new planning heuristic for 3D motions of fixed-wing
UAVs based on 2D Dubins curves, along with precomputed sets
of motion primitives derived from the vehicle dynamics model in
order to achieve high efficiency.

I. INTRODUCTION

Recent advances in sensor devices, communications, and

battery technology have made fixed-wing Unmanned Aerial

Vehicles (UAVs) smaller in size and cost-competitive. Small-

size UAVs are becoming an increasingly attractive solution for

a variety of scientific, civil, and military applications. While

some autonomous UAVs are employed successfully in security

and military services, urban applications such as infrastructure

monitoring demands small or even micro UAVs to maneuver

within complex obstacle-filled environments. Operating a UAV

under these conditions poses a number of difficult challenges.

Environments cluttered with buildings and overhangs require

high maneuverability and fast adaptation to dynamic and

unknown obstacles. Fixed-wing UAVs require a relatively high

minimum forward velocity to maintain lift. Thus, in order

to respond quickly to unknown obstacles, high-performance

real-time motion planning that respects the complex dynamic

constraints of the vehicle must be accomplished without any

significant delays.

We have been developing an unmanned aerial vehicle sys-

tem [1] designed to accomplish a 3D air slalom scenario in

Fig. 1. In this scenario, several labeled gates are arranged in

the environment. The gates are placed either on the ground or

in the air, and the UAVs are instructed to pass through each

of the gates sequentially in the order specified. Although au-

tonomously computing the UAV trajectory to accomplish this

task is the focus of this paper, many other system components

comprise the complete solution. The UAV maintains up-to-

date perception of the environment and its own state through

Fig. 1. 3D air slalom scenario for a small fixed-wing UAV: The
vehicle needs to autonomously pass through each of the gates in the
order specified.

onboard cameras, IMU and GPS. Each slalom gate requires

the UAV to pass through the target hoop with the correct 3D

position as well as aligned pitch and yaw angles.

Our goal is to build a real-time motion planner for 3D

slalom scenarios that allow the UAV to operate reliably in

the presence of fixed, moving or unknown obstacles. This

paper presents a novel two-phase approach to motion plan-

ning for the 3D air slalom scenario. First, a coarse global

planner computes a kinematically feasible obstacle-free path

in a discretized 3D workspace which roughly satisfies the

kinematic constraints of the vehicle. Then, a fine local motion

planner computes a more accurate trajectory for the UAV at

a higher level of detail. The local planner is iterated as the

UAV traverses and refines the global path as needed up to its

planning horizon. In order to achieve real-time performance,

we have developed new planning heuristics for fixed-wing

UAVs, and utilize precomputed sets of motion primitives

derived from the UAV dynamics model. The result is an

efficient planner that satisfies both the kinematic and dynamic

constraints of the UAV while navigating in complex partially-

known 3D environments.

II. RELATED WORK

There have been a number of research efforts in both the

robotics and computer animation literature related to planning

2D or 3D trajectories for guiding aircraft in known or unknown

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeC12.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1035

Global Grid Planner
(Kinematics)

Emergency Stop Plan

Precomputed
Motion Tree

Local Runtime Planner
(Dynamics)

Fail

Fail

Up to date Environment
(small, moving, and unknown

obstacles)

Fixed and known
Environment

Start & Goal
Configuration

Waypoint Controller

UAV

Environment
changed?

Waypoints NO

YES
Subgoal

Fig. 2. Overview of two-phase planning architecture: The coarse
global planning and the fine local planning compensate each other in
terms of associated constraint, size of planning horizon, and the type
of obstacles considered.

environments. Previous research for UAVs in robotics has

primarily explored vision-based navigation for UAVs [2],

or basic obstacle avoidance during flight [3]. A 3D local

trajectory planner has been presented in [4] for autonomous

navigation with a predefined global path. They also utilize a

two-stage strategy consisting of a decision mode and a trace

mode. The controller design in trace mode is heuristic, so

applying the method to other dynamic systems can sometimes

be difficult.

A more complicated nonlinear and high-dimensional hy-

brid system control architecture [5] was developed for an

autonomous helicopter. This planner utilized libraries of trim

trajectories, along with an efficient online replanning frame-

work based on Rapidly-exploring Random Trees (RRTs) [6],

which has been broadly used to plan motions for dynamic

systems subject to dynamic constraints.

In computer animation, reactive steering behaviors for flock-

ing, grouping and avoiding obstacles are presented in [7].

Although highly efficient, these techniques only use local

information. An autonomous vehicle animation and planning

system using online search and trajectory precomputation was

developed in [8]. Precomputed search trees were also used to

assemble planned sequences of human motion for animated

characters navigating in complex virtual environments [9].

In our work, we focus on developing an efficient motion

planner for solving the 3D air slalom task, with particular

attention to computing global paths that satisfy both the

kinematic and dynamic constraints of the UAV. The rest of the

paper is organized as follows: an overview of our two-phase

motion planning method is discussed in Section III; the details

for the global grid planner and the local runtime planner with

motion primitives are described in Section V and Section IV

respectively; experimental results in simulation is presented in

Section VI.

III. TWO-PHASE MOTION PLANNING

Two-phase scheme in motion planning is a natural and

popular method to overcome the planning complexity of

high order dynamical systems [10] [11]. At the first stage

constraints imposed on a system are relaxed to take sidestep

from its original planning complexity. For examples, limited

range of state, system dynamics, or nonholonomic constraint

is more likely to be ignored at this stage. The relaxation is

taken up at a level where the reduced order system can take

advantage of well-established planning algorithms [12]. The

relaxed constraints are recovered at the second stage so that a

final solution is feasible to the original system. Tge plan found

at the first stage makes an initial guess or confines search space

to its vicinity for a more sophisticated planner at the next stage.

Two main components of our planning architecture in Fig. 2

are the coarse global planner and the fine local planner. They

compensate each other in terms of associated constraint, size

of planning horizon, and the type of obstacles considered; The

global planner takes kinematic constraints of the vehicle into

account but neglects dynamic constraints which are considered

in the local planner at the subsequent stage. Then the local

planner selects a subgoal within its planning horizon from the

optimal path the global planner have found over all workspace.

The global planner works in 3D grid cells. The size of

each grid cell as well as allowable connections between grid

cells are elaborately designed to capture UAV’s kinematics in

workspace discretization process. As a result its output neither

violate given kinematic constraints such as a minimum radius

of curvature and a maximum climbing angle nor be trapped in

local minima by virtue of A* search. The local planner is built

on the top of the global planner. It complements the drawbacks

of the global planning, which are coarse discretization of

the configuration space(C-space) and negligence of small or

moving obstacles. With densely sampled motion primitives

a finer level of connection between two configurations is

achievable. This computationally intensive planning method,

however, limits the size of the planning horizon. In obstacle-

free regions from the global planner a general waypoint con-

troller is enough to follow the path. On the other hand, when

environmental change happens nearby the vehicle at a sudden

the local planner is switched to run so that vehicle dynamics

is taken into account to generate a new dynamically feasible

path associated with aggressive vehicle motions required for

avoiding unexpected obstacles.

When either planner fails to find a path with any reason

an emergency stop plan is called up immediately to escape

the critical situation. This backup plan moves the vehicle to

a pre-defined safe region(usually up to the sky). It must run

all the time at the background whenever either vehicle state

or environment is updated.

IV. GLOBAL GRID PLANNING ON A KINEMATICALLY

FEASIBLE SEARCH TREE

One of basic techniques in robot navigation is planning a

motion on a discretized workspace like 2D grid representation

for mobile robots. For an air vehicle we first perform motion

planning on a discretized 3D grid. Instead of extending the

conventional 4 or 8-connected neighborhood in 2D grids to

3D grids, a search graph for 3D grids is built along with a

new node definition and node connection rules which capture

WeC12.1

1036

P C
P

C

P

CC

P

(a) (b)

(c) (d)

(f)

Top view

P

C

(e)

Rmin

Fig. 3. Node definition and node expansion comprising a search tree
for the global planner: A node is defined by the location in 3D and
parent direction. One node corresponds to a discretized point in the
configuration space C = (x, y, z, θ, φ). The given vehicle kinematic
constraints, Rh,min and μmax, can be captured through the design
of node expansion rule in 3D grids. For instance, vehicle forwarding
motion enforces horizontal forward-only expansion in (a) and (b). The
vehicle maneuverability decides one of possible vertical expansion in
(c),(d), and (e).

the vehicle kinematics. Then A* algorithm on the search tree

guarantees to find an optimal path between starting and goal

nodes in terms of its designed cost. Consequently the output

path automatically satisfies given kinematic constraints of the

vehicle because the search tree is already kinematically fea-

sible in construction. Note that moving obstacles or obstacles

relatively smaller than the grid size are ignored at this stage.

A. Node definition and node expansion

From 3D grid representation of the workspace a node used

in the construction of a search tree is defined by the location

in 3D space as well as the parent direction indicating where

the node comes from. The parent direction is the directional

vector connecting a current grid location from one of 26

possible locations of a parent node. So each node can be

considered as a point in the discretized configuration space

C = (x, y, z, θ, φ). In other words a node corresponds to the

vehicle flying at (x, y, z) with pitch angle θ and yaw angle

φ. The vehicle attitude is discretized very coarsely with no

mention of roll angle ψ which cannot be taken into account

in this grid representation.

Two vehicle kinematic constraints are considered in this

planning stage, that is, horizontal minimum turning radius

Rh,min and vertical maximum climbing angle μmax. As

shown in Fig. 3 the proper choice of node expansion rules and

grid cell size can produce kinematically constrained vehicle

motions in 3D grids. For example, forward-only expansion

for the horizontal vehicle motion in Fig. 3(a)(b) illustrates the

fact that a fixed-wing air vehicle needs to keep a minimum

forwarding velocity. The vertical movement of the vehicle

can be one of Fig. 3(c)(d)(e) according to the level of vehi-

cle maneuverability. Especially when the straight upward or

downward motion is allowed as in Fig. 3(c) the grid planner

can find a path that performs a looping feat.

Note that node expansion rules should be designed to

encode the given maneuverability of the vehicle of interest

into a discretized grid space. For the rest of the paper we

focus on the expansion rules shown in Fig. 3(a)(b)(d) which

best describes the behavior of a small fixed-wing UAV.

B. Setting grid cell sizes

The grid cell sizes in x, y and z directions can be set

so that a directed search tree is kinematically feasible for

given constraints Rh,min and μmax. It is obvious to set the

grid sizes in x and y equal. Fig. 3(f) shows that repeating

horizontal forward-only node expansion generates a circle of

which radius is one and half times the grid size in x or y. And

the ratio between grid sizes in x and z decides the climbing

angle of the vehicle when straight upward or downward motion

is prohibited as in Fig. 3(d). The grid size in each direction is

set by

Sx = Sy =
1

1.5
Rh,min, Sz = Sx tan−1(μmax) (1)

where Si is the grid size in i direction. Finally the found path

from A* is always kinematically feasible because every branch

in the search tree satisfies the given kinematic constraints.

V. LOCAL RUNTIME PLANNING WITH MOTION PRIMITIVES

There are several demanding situations that the global plan-

ner cannot cope with mainly due to its coarse configuration

space representation. For example, grid sizes given by Eq. (1)

are definitely larger than that of motion resolution required

in general. Usually sub-meter level accuracy is demanded

in control and motion planning for UAV urban application.

Moreover the obstacles smaller than the grid size cannot be

dealt with appropriately. The local planner is, therefore, built

on the top of the global planner to overcome these problems.

A finer level of motion planning between two configurations

is achievable via interconnecting motion primitives which

are densely sampled from the vehicle dynamics. Because it

needs to response to local environmental changes as swiftly

as possible the local planning should be involved with vehicle

dynamics beyond the kinematics to generate aggressive mo-

tions as required.

The local planner we propose is sampling-based motion

planning under differential constraints [15]. Searching for a

feasible path via Dynamic Programming is vulnerable to the

exponential growth of a search tree. The use of a good and

computationally efficient heuristic function, an estimate dis-

tance to a goal state, is quite essential to prevent intractability.

Two new heuristic functions based on 2D Dubins curve are

proposed for motion planning in different C-spaces.

WeC12.1

1037

waypoints

Motion primitives

Fig. 4. Control-based action sampling: A grid of waypoints in front
of the vehicle at xo is given to a discretized feedback dynamic system
fd(x, u) as a set of inputs U . The resulting motion segments comprise
the sampled reachable set R(xo,U) from the state xo and recorded
in a look-up-table.

(a) (b)

Fig. 5. Generation of motion primitives: (a) A reachability tree for a
fixed-wing UAV stopped at the third depth (b) Precomputed motion
primitives at different starting states

A. Generating motion primitives

The motion primitives in Fig. 5(b) is a sampled set of feasi-

ble vehicle motions which hold the dynamic characteristics of

the vehicle at a given state. More complex dynamic behaviors

of the vehicle can be produced via interconnecting these

motion primitives. We are assumed to have both a dynamic

model of the vehicle and a waypoint controller to track a

point in 3D which can be expressed as xk+1 = fd(xk, uk)
in a discretized feedback dynamic system. Otherwise motion

libraries from real experiments would be needed. A grid of

waypoints in front of the vehicle is given as a set of inputs

to generate motion primitives. Some of waypoints cannot

be achievable because they are neither controllable state nor

dynamically feasible. See Fig. 4 for detail.

The motion primitives are precomputed and saved in a look-

up-table for the sake of fast computation. Since the size of

memory is easily blown up in terms of state dimension we

record only a final vehicle state and a middle point location

for collision checking. Fig. 5 shows a reachability tree for a

fixed-wing UAV stopped at the third depth and precomputed

motion primitives at different vehicle states.

(c) (d)

I G

C

S

C
C

C

C

(a)

(b)

x x

Gx
Ix

Ix

Ix

Gx

Gx

Fig. 6. Two heuristic functions to estimate the optimal cost-to-go:
(a)-(b) Examples for 2D Dubins curve which is the shortest length
path between xI ,xG ∈ SE(2), (c) h2 in C = {x, y, z, θ, φ}, (d) h1

in C = {x, y, z, φ}

B. Forward dynamic programming: greedy best-first search

In discrete planning one may use any graph search algorithm

such as depth-first or A* to find a path from a starting state

to a goal state. A search tree is incrementally constructed

through state transition which corresponds to a set of motion

primitives. A specific choice among search algorithms comes

with the fact that in our case the branching factor b, the same as

the number of motion primitives being used at state transition,

at each node is quite big (b = 40 on average). And a goal for

the local planner is placed at d steps (d = 10 ∼ 15) away from

a start in order to give enough chance in avoiding obstacles.

Since the goal is at the depth of d at a search tree, if we

build an exhaustive tree like Fig. 5(a), the tree size grows

exponentially with respect to d (O(bd)). Hence, in real time

application a greedy search method is preferred while the path

optimality is sacrificed.

A greedy best-first search sorts the queue according to a

heuristic function so that a node which is estimated to be

closer to a goal is extended first. The path obtained in this way

is not necessarily optimal. In many cases, however, far fewer

nodes are explored, which results in much faster running times.

Therefore, we invent new heuristic functions which are more

probable to avoid the worst case O(bd) in time complexity

and space complexity.

C. Heuristic functions based on 2D Dubins curve

Dubins curve [13] as a search heuristic is useful because

the kinematics of Dubins car is very close to that of a fixed-

wing air vehicle except for the dimensionality. Dubins curve

is a shortest length path between two configurations xI ,xG ∈

WeC12.1

1038

SE(2) when the car is constrained by a minimum turning

radius ρmin. Fig. 6(a)(b) shows this shortest path is composed

of no more than three motion primitives which are a straight

line and a circular path. The path length, called Dubins metric,

is obtainable without expensive computation thanks to phase

partitions [14]. In practice the discontinuity in Dubins metric

needs appropriately dealt with when a sampling-based motion

planning is used. A small change in configuration cause a

sudden jump in Dubins metric when crossing partitions. To

alleviate this problem we allow a small margin for the heading

angle of a goal when computing optimal cost-to-go.
Two new heuristic functions, h1 and h2, are proposed based

on the Dubins curve. They differ by whether the pitch angle θ
of the vehicle is considered or not in their configuration space.

h1 is for the case that vehicle motion is relatively smooth so

pitch angle at a goal can be thought as zero all the time.

1) h1 in C = {x, y, z, φ}: First consider a simple kinematic

equation [15] for a fixed-wing air vehicle. Two inputs are the

maximum yaw rate uw and the altitude change uz.

ẋ = cos θ, ẏ = sin θ, θ̇ = uw, ż = uz (2)

The constant inputs to Eq. (2) generate a helical motion as

seen in Fig. 6(d). We use the length of the path as a distance

function between two configurations with two parameters,

Rh,min and μmax. The path length can be easily approximated

as follows; First compute 2D Dubins metric �h,Dubins on the

horizontal plane by ignoring altitude change in z. Then, keep

adding a full circular motion of radius Rh,min until getting

enough horizontal traveling distance to satisfy the maximum

climbing angle μmax.

1 h1 ← �h,Dubins Δz ← |zI − zG|
2 While Δz/h1 > sin(μmax), h1 ← h1 + 2πRh,min

3 h1 ←
√
h2

1 + Δz2

2) h2 in C = {x, y, z, φ, θ}: The 3D vehicle trajectory

between two configuration is decomposed onto two orthogonal

planes. 2D Dubins curves are computed from both planes with

projected configurations as in Fig. 6(c). The horizontal plane

parallel to the ground and the vertical plane is oriented toward

the goal position. The horizontal motion is a Dubins curve that

aligns the yaw angle φ with a minimum radius Rh,min. The

vertical motion is also one that aligns the pitch angle θ with

a minimum radius Rv,min. An estimate distance to a goal is

computed by combining both paths as

h2(xI , xG) =
√
�h,Dubins

2 + w2�v,Dubins
2 (3)

where w = | sin(Δz/
√

Δx2 + Δy2)| accounts for the climb-

ing angle between two vehicle positions. Geometrically w
makes the vertical Dubins curve projected onto the gravity

z direction. Therefore, in case of no altitude change, Δz = 0,

h2 regards the air vehicle as the same as the Dubins car.

VI. SIMULATION RESULTS

The nonlinear F16 dynamic model available at [16] is

used for simulation model of a fixed-wing UAV. The low

(a) (b)

(c) (d)

G1

G2

S

S

G1 G2
G2

G1

G1

G2

S

S

Fig. 7. Obstacle-free paths found from the global grid planner: Two
air slalom gates are placed for the UAV to pass through in order. The
arrow drawn at the gate indicates the gate direction. The first gate
G1 has opposite orientations in rows while the second gate G2 is
placed at different locations in columns. The vehicle is allowed to
move horizontally with forward-only expansion and move vertically
with no straight upward or downward motion. See Fig. 3(a),(b) and
(d).

fidelity model which does not include the effect of the leading

edge flap gives a complete decoupling between longitudinal

and lateral direction. A simple PD waypoint controller that

can track a given waypoint makes the UAV considered as a

feedback dynamic system. To fit the F16 model to a small

air vehicle all units are scaled down by 100. By inspecting

behaviors of the dynamical system all kinematic constraints

required for motion planning are given as follows: vehicle

speed v = 2m/s, minimum turning radii Rh,min = Rv,min =
15m, maximum climbing angle μmax = 45◦.

According to Eq. (1) grid cell sizes for the global planning

are set to Sx = Sy = Sz = 10m, which is two-thirds of

Rh,min. Fig 7 shows how the global grid planner works in the

air slalom scenario. The arrow on the gate indicates which

way the vehicle needs to pass through. As expected the grid

planner returns totally different paths as the gate has different

directions or is placed at different locations. The vehicle is

allowed to move horizontally with forward-only expansion and

move vertically with no straight upward or downward motion

as in Fig. 3(a),(b) and (d).

The Euclidean distance is no longer a good heuristic even in

the grid planner because the node in its search tree contains a

direction. Precomputation of the optimal cost-to-go h∗ over the

region around a node helps much reduce planning time. The

h∗ is precomputed by the Dijkstra algorithm over a 9×9×9

grid region centered at a node. If the goal NG is outside of the

WeC12.1

1039

Fig. 8. Examples for the local path planner in free of obstacles:
The greedy best-first search explores motion nodes toward the gate
in a greedy way. The heuristic function h2, the extended 3D Dubins
metric, guides the node expansion efficiently toward the goal state.
All motion expansions queued in the search tree are displayed in
order to see which node has a best cost-to-go at every iteration until
it reaches the goal region. The gate has different yaw angles φ in
figures.

TABLE I

USE OF THE PRECOMPUTED HEURISTIC IN A* GLOBAL PLANNING

Euclidean dist Precomputed h∗ Speed-up
Iteration 65504 12038 5.44

No. of nodes visited 96230 23142 4.15
No. of nodes revisited 483562 83207 5.81

Avg. runtime(sec) 0.475 0.135 3.50

The optimal cost-to-go h∗ is precomputed over 9×9×9 grid region. The
average values are taken after 100 experiments with randomly selected initial
and goal nodes. The dimension of 3D grids for the whole workspace is
50×50×50 and the same obstacle environment in Fig. 4 is used.

region, the cost is the sum of the precomputed cost at N∗ and

the Euclidean distance between NG and N∗ where N∗ is a

closest node to NG within the region. Due to the symmetries

of the 3D grids one of 8 octants is enough. Table-I shows the

speed-up in the global grid planning when the precomputed

heuristic is used instead of the Euclidean distance. On average

it makes the planner run 3.5 times faster.

For the local motion planning 40 motion primitives on aver-

age are sampled at every 5 degrees for the pitch θ and rolling ψ
angle of the vehicle. Fig. 8 shows the basic performance of the

local runtime planner in finding a feasible path between two

configurations when the heuristic function h2 in Eq.3 is used.

The greedy best-first search explores motion nodes toward

the goal state in a greedy way while the vehicle also heads

on toward the goal direction. More node expansions occurs

near the gate in effort to get into the goal region, which is

fine adjustment to compensate discrete nature of the sampled

motion. All motions queued in the search tree are displayed in

order to see which node has a best cost-to-go at every iteration

until it reaches the goal region. The small number of expanded

(a) (b)

(c) (d)

Fig. 9. Obstacle avoidance of the local runtime planner: Two different
heuristic functions, h1 and h2, are used respectively in (a) and
(b) under the same environment. In (a) the vehicle moves in a
horizontal way to avoid the obstacle because h1 needs a enough
traveling distance for the change of altitude. In (b), on the other
hand, the vehicle moves vertically in obstacle avoidance because h2

can account for the pitch angle θ. In (d) the gate is too close for the
vehicle to make the gate direction so the heuristic function h2 drives
the vehicle to take a P-turn.

nodes during search proves the effectiveness of the heuristic

function we proposed.

Fig. 9 demonstrates how the local planner works in the pres-

ence of obstacles. In Fig. 9(a) and (b) two different heuristic

functions, h1 and h2, are used respectively under the same

environment. With h1 the vehicle moves horizontally to avoid

the obstacle because h1 needs a enough traveling distance for

the change of altitude. On the other hand the vehicle moves

vertically during obstacle avoidance because h2 can takes the

pitch angle θ into account. If the gate is too close for the

vehicle to make the gate direction the heuristic function h2

drives the vehicle to take a P-turn like Fig. 9(d).

In the context of the 3D air slalom scenario we simulate

the performance of the two-phase planner which combines

the global grid planning with the local runtime dynamic

planning in presense of unknown obstacles. In Fig. 10 the

global grid planner finds the kinematically feasible path drawn

by a dotted line with a priori known obstacles and gates.

While the vehicle follows the given global path by a waypoint

controller new unknown obstacles appear at points A and

C respectively. Subgoals are set at B and D which are on

the global path and 10 steps away from the current vehicle

position. The local planner generates the new obstacle-free

paths via interconnecting motion primitives.

WeC12.1

1040

A

B

C

D

A

D

C
G1

G2

S

G1

G2

S

Fig. 10. An example of the two-phase motion planning which
combines the global grid planning with the local runtime dynamic
planning: The solid boxes in light red are fixed and known obstacles
which the global planner considers. Two sets of spheres in light
blue are unknown for global planning and can be detected when
the vehicle arrives at points A and C respectively. A dotted line is
a path found from the global grid planner. In AB and CD the local
planner generates new obstacle-free paths. The actual path the vehicle
have taken on is drawn by a solid brown line. Top and bottom figures
shows the same result in different view angles.

VII. SUMMARY AND FUTURE WORK

We have presented an efficient motion planning method for

small fixed-wing UAVs in complex 3D environments. Two-

phase planning (global and local planners) are used to plan

motions in large cluttered areas while respecting the UAV’s

kinematic and dynamic constraints. By adding directionality

to the conventional 3D grid cell, a search tree in 3D space

can be constructed only with feasible node connections which

take into account for UAV’s forward-only motion constraints.

The path found in this search tree satisfies two important

kinematic constraints of the UAV: the minimum turning radius

and the maximum climbing angle. We also proposed two

new heuristics to estimate the optimal cost-to-go during local

planning, involving an approximation of the shortest path of

the UAV in 3D by projection of the full configuration space

into two planes which enable the application of Dubins curves.

Utilizing precomputed sets of available motion primitives for

discretized vehicle states, a best-first search local planner finds

obstacle-free paths that satisfies the dynamic constraints. We

have demonstrated the efficiency and effectiveness of the two-
phase planner in complex simulated 3D air slalom scenarios.

Our future work involves integrating the perception, planning,

and control systems and demonstrating our result on the actual

small fixed-wing UAV platform.

REFERENCES

[1] T. Kanade, O. Amidi, and Q. Ke, “Real-time and 3d vision for au-
tonomous small and micro air vehicles,” IEEE Conf. on Decision and
Control, pp. 1655–1662, Dec. 2004.

[2] B. Sinopoli, M. Micheli, G. Donata, and T. Koo, “Vision based navi-
gation for an unmanned aerial vehicle,” in Proc. IEEE Int’l Conf. on
Robotics and Automation, 2001.

[3] R. Zapata and P. Lepinay, “Flying amoong obstacles,” in European
Workshop on Advanced Mobile Robots, 1999.

[4] J. Sasiadek and I. Duleba, “3d local trajectory planner for uav,” Journal
Journal of Intelligent and Robotic Systems, vol. 29, no. 2, pp. 191–210,
Oct. 2000.

[5] E. Frazzoli, M. Dahleh, and E. Feron, “Real-time motion planning for
agile autonomous vehicles,” AIAA Journal of Guidance, Control and
Dynamics, vol. 25, no. 1, pp. 116–129, 2002.

[6] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” Inter-
national Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, May
2001.

[7] C. Reynolds, “Steering behaviors for autonomous characters,” in Game
Developers Conference, 1999.

[8] J. Go, T. D. Vu, and J. Kuffner, “Autonomous behaviors for interactive
vehicle animations,” Graphics Models, vol. 68, no. 2, pp. 90–112, 2006.

[9] M. Lau and J. Kuffner, “Precomputed search trees: Planning for in-
teractive goal-driven animation,” in ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, 2006.

[10] J. E. Bobrow, “Optimal robot path planning using the minimum-time
criterion,” IEEE Trans. on Robotics and Automation, vol. 4, no. 4, pp.
443–450, 1988.

[11] Y. Kuwata and J. How, “Three dimensional receding horizon control for
uavs,” AIAA Guidance, Navigation, and Control Conference and Exhibit,
Aug. 2004.

[12] J. C. Latombe, Robot Motion Planning. Boston, MA: Kluwer Academic
Publishers, 1991.

[13] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions and
tangents,” American Journal of Mathematics, vol. 79, pp. 497–516, 1957.

[14] X.-N. Bui, P. Soueres, J.-D. Boissonnat, and J.-P. Laumond, “Shortest
path synthesis for dubins nonholonomic robot,” in Proc. IEEE Int’l Conf.
on Robotics and Automation, 1994.

[15] S. M. LaValle, Planning Algorithms. Cambridge University Press (also
available at http://msl.cs.uiuc.edu/planning/), 2006.

[16] R. S. Russell, Nonlinear F-16 Simulation using Simulink and Matlab.
http://www.aem.umn.edu/people/faculty/balas/darpasec/SEC.Software.html,
2003.

WeC12.1

1041

