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Abstract— Imitation learning, or programming by demon-
stration (PbD), holds the promise of allowing robots to ac-
quire skills from humans with domain-specific knowledge, who
nonetheless are inexperienced at programming robots. We
have prototyped a real-time, closed-loop system for teaching
a humanoid robot to interact with objects in its environment.
The system uses nonparametric Bayesian inference to determine
an optimal action given a configuration of objects in the world
and a desired future configuration. We describe our prototype
implementation, show imitation of simple motor acts on a
humanoid robot, and discuss extensions to the system.

I. INTRODUCTION

Imitation learning has become increasingly popular as a

mechanism for imparting complex skills to robotic systems.

A majority of the imitation learning systems presented in

the literature perform off-line learning: first, a knowledgeable

instructor demonstrates a skill; second, the system processes

the data to permit deferred imitation. In contrast, this paper

presents a preliminary implementation of a system for imi-

tation learning that learns and reproduces behaviors in real

time using motion capture and a humanoid robot.

We believe that on-line interaction is critical for prac-

tical imitation learning systems. Human instructors’ time

is a precious resource, making immediate feedback on the

ability of a robot to imitate demonstrated actions potentially

important. The system we present runs in real time on a

single laptop (with an additional PC for performing mo-

tion capture). We employ various approximations to ensure

real-time performance. We begin by describing the system

architecture, including software and hardware components.

Next, we describe the inference and learning algorithms

we employ. Finally, we show results from our prototype

implementation and mention numerous improvements we

intend to implement in the future.

II. ARCHITECTURE

Figure 1 diagrams the architecture of our system. The

major components include a Vicon motion capture system1,

a HOAP-2 humanoid robot, and the databases which collect

world state information gathered from the Vicon system. The

system can operate in one of 3 modes: i) “mimicry,” where

the upper body of the robot exactly matches the joint angles

of the human instructor using real-time inverse kinematics

computed by the motion capture system and a linear mapping

solution; 2 ii) “watching,” where the system observes the

1http://www.vicon.com/
2Included in attached video

human instructor and computes an approximate policy being

followed by the human from joint angles and object states;

and iii) “imitation,” where the system attempts to use learned

policies to reach a desired goal state, and continues to collect

data from the motion capture system regarding the effects of

the robot’s actions in the world.

A. Action encoding

The system captures training data from the human instruc-

tor using a Vicon vision-based (reflective marker) motion

capture system. We chose Vicon over other non-marker

vision-based approaches for two reasons: i) real-time perfor-

mance and ii) high accuracy of reconstructed poses. Using

marker-based motion capture allows us to focus on learning

and control algorithms rather than state estimation. This

setup allows us to simultaneously store joint angles (strictly

for action reproduction and recognition), and object state

information (to recognize how instructor and robot actions

impact the world state, as described below).

In watching mode, the system begins recording human

motions and object motions when the human starts moving.

When the human stops, models are trained to encode the

human’s motion and the effects that motion had on objects in

the world. Later, in imitation mode, the system will use these

models to compute which actions are needed to transition

from a current world state to a desired next state. For the

results shown here, we used manual action segmentation

(i.e. the human presses a key to indicate the beginning and

end of motion). Alternatively, the system allows automatic

motion segmentation. Automatic segmentation computes the

variance of each human DOF over a sliding window, and

compares each DOF’s variance to a threshold. When all

DOF variances fall below threshold, the human is no longer

considered moving. Automatic segmentation potentially im-

proves the flow of recording actions, at the cost of some

additional noise in the action encodings.

Presently we use only the arms and waist of the HOAP-

2, giving a total of 9 degrees of freedom. Inverse kine-

matics software provided by the Vicon system and a sim-

ple linear mapping translates in real time from human

movement at time t to an observation of joint angles fit

to the robot DOFs, St = {θ1 . . . θ9}. We employ Hid-

den Markov Models (HMMs) to encode and recognize

actions executed by the human instructor. To ensure real-

time training, we disregarded model selection, and found

empirically that left-to-right HMMs with 10 states sufficed

to encode the actions of interest here. The observation
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density of each HMM state i is modeled as a Gaussian:

Pi(St) ∝ 1
det(Σi)

exp
(

(St − µi)
T
Σi

−1(St − µi)
)

, with µi

a mean pose and Σi a covariance matrix. The Baum-

Welch algorithm trains HMM parameters given sequences of

training data [12]. When a sequence of length T , S1 . . . ST , is

observed, the system evaluates its database of known gestures

to determine the log likelihood that each HMM generated the

observed sequence (computed using the well-known Viterbi

algorithm). The observed sequence is assigned to the model

with the highest log-likelihood, and the winning model is

retrained using the sequences assigned to it thus far. This

assignment of trajectories to HMMs effectively performs

hard clustering in the space of human joint angle sequences.

If the log likelihood is below a threshold ǫ for all models,

we create a new HMM, train it on the sequence, and add

the model to the gesture database. This approach is an

approximation to the true estimate of each HMM generating

an observation (in particular, it does not account for different

prior probabilities of each model), but is quick to execute

and works well in practice for a variety of gestures we

have tested; empirically we found that ǫ = 0.0 suffices

to determine whether or not an observed sequence of data

represents a novel action.

B. Replaying actions

In imitation mode, the system selects one of the actions

learned during watching according to the process detailed

below. When an action is selected, the associated HMM is

recalled from the gesture database. We play out the joint

positions encoded by the mean of each HMM state in left-to-

right order, linearly interpolating the joint positions between

each to produce smooth movement over the entire action. To

avoid damage to the robot, all target poses are first checked in

a physics simulator3 to ensure that no self-collisions occur.

If a collision is detected, the robot simply remains in its

previous state.

Figure 6 shows the bounding boxes used for collision

detection. The collision detection step is performed in-line

as a last check. The realtime system does not know whether

a collision has occurred and can only observe effects on

the world state; it assumes that any motor command sent

succeeds in being replayed. Actions that have predicted

collisions will not be replayed and will consequently be

marked by the system as not succeeding.

C. State encoding

Let Oi(t) denote the coordinate frame of a single rigid

3D object i at time t; the motion capture system returns an

observation vector Oi(t) = {X, Y, Z, θx, θy, θz, σx, σy, σz}.

σx, σy, σz represent linear scaling factors for each spatial

dimension. This vector is relative to one of 3 origins,

Ov, Oh, Or, respectively denoting the Vicon system origin,

human origin, and robot origin. All observations are trans-

lated, rotated, and scaled to match the current coordinate

origin; in watch mode, Oh is used, and in imitation mode,

3Webots, from: http://cyberbotics.com/

Or is used. While our previous work explored nonlinear

regression models for matching whole body poses [16], we

found that simple linear transformations sufficed for the

upper body imitation shown here.

To perform computation in our model, we discretize

the observation vector. We represent all state distributions

nonparametrically using sparse grids. This representation is

motivated by real-time concerns, since learning simply in-

volves updating histogram counts. Histograms also facilitate

integration and convolution between arbitrary distributions,

which are important for implementing Bayes-optimal action

selection as described below. The drawback of histograms is

their lack of generalization, though this disadvantage dimin-

ishes in the limit of many training samples. We are currently

investigating alternative representations for forward and prior

model distributions, including Gaussian processes [19].

III. BAYESIAN INFERENCE AND LEARNING

Our previous work described algorithms for combining

forward models of environmental dynamics with priors over

actions to yield a distribution over actions to take given a cur-

rent state of the environment, a subgoal, and a desired goal

state [15], [13]. The approach represents a greedy approx-

imation to the problem of inferring actions using imitation

in a model-based Markov decision process framework [18],

and has been used to train software agents in a first-person

shooter game that imitate human play strategies [17].

A. Action selection

Let st, st+1, sG respectively denote the state of the world

at time t, the desired next state at time t + 1, and a final

goal state. Our framework attempts to compute the following

distribution over a discrete set of actions: P (at|st, st+1, sG).
That is, calculating the distribution over possible actions

given the current state, a next state (in a potentially multi-

step goal), and the end goal. For many purposes st+1 and

sG can be collapsed into a single step goal. We identify this

distribution with an inverse model [10], and note that Bayes’

rule allows us to compute an MAP (maximum a posteriori)

estimate of the distribution using two other distributions:

P (at|st, st+1, sG) =
P (st+1|at, st, sG)P (at|st, sG)

P (st, st+1, sG)P (st, sG)
(1)

∝ P (st+1|at, st, sG)P (at|st, sG) (2)

∝ P (st+1|at, st)P (at|st, sG) (3)

P (st+1|at, st) is a forward model, predicting how the envi-

ronment will react to actions taken in the world; P (at|st, sG)
is a prior model encoding a preference for certain actions

given that the world is in state st and the goal is sG. The

MAP estimate in this case represents a greedy approximation

to the general solution for planning in a Markov decision

process, where sG can be identified with a state whose value

function estimate is high.

B. Learning from experience

As the robot acts on objects, it updates its estimate of

actions’ effects based on their sensory consequences (world
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Fig. 1. System architecture: (a) During “watching” mode, the system con-
tinually updates conditional distributions Pv(at|st, sG), Pv(st+1|at, st)
for each object v (stored in the “Prior” and “Forward Model” databases,
respectively), a distribution P (at|O1 . . . Ot) for the action the human
teacher is showing based on motion capture frames O1 . . . Ot (the “Action”
database), and a distribution P (st+1|st) that encodes a sequence of
subgoals over time (the “State sequence” database). (b) One time slice of the
underlying graphical model for imitation. White nodes’ values are directly
observed from the environment; black nodes’ values must be inferred,
either from observation of the human teacher (while “watching”) or from
the Bayesian-optimal action selection described below (during “imitation”).
Due to our system’s real-time requirement, we compute a 1-step greedy
approximation of node values in the model rather than full backward
smoothing over all time steps.

state in this case). When learning starts, the robot employs

the forward model learned by watching the human; as

it accumulates more samples from the environment, the

robot begins to use its own internal forward model. Denote

the model derived from human actions Ph(st+1|at, st); the

model derived from robot experience is Pr(st+1|at, st).
During imitation mode, after executing an action, the robot

updates Pr(st+1|at, st) to reflect changes in environmental

state. When computing the MAP estimate of each action’s

chance to succeed according to Equation 3, the system uses

Ph if the number of samples collected for Ph(·|at, st) ≥
Pr(·|at, st), and Pr otherwise. This allows the robot to

sample widely from Ph until the more robot-reproducible

actions are encoded in Pr.

IV. RESULTS

Figure 2(b) and our video show examples of upper body

mimicry using the Vicon system. Mimicry is useful for

testing correspondences between the human’s body and that

of the robot, as well as for determining how variations in

motion will be classified by the gestures database. Next we

describe forward model learning and goal-directed imitation.

a) b)

Fig. 2. Setup and mimicry mode: (a) Experimental setup. 12 motion
capture cameras fit marker positions to a skeletal model in real time (∼
120 frames/sec). (b) Example snapshots of mimicry mode, in which the
robot matches human body poses in real time. Mimicry is useful for testing
out actions without committing them to the model databases.

A. Learning forward models

Figure 3(a) shows a top-down view of using the system to

learn actions and the sensory consequences of those actions

on an object. The human exhibits one of three actions (push

box forward, push left, push right). The system automatically

determines that 3 HMMs explain the observed paths, and

successfully labels all 90 action examples. The figure shows

normalized histograms that represent where the box ends

up at the completion of each action, to a resolution of 1

cm2. All state variables are integrated out except for the X-

Y positions; that is, each histogram plots:
∑

Z′

∑

θ′

x

∑

θ′

y

∑

θ′

z

P
(

{Z ′, θ′x, θ′y, θ′z}|{Z, θx, θy, θz}, ât}
)

(4)

where {Z . . .}, {Z ′ . . .} respectively denote state vector com-

ponents at times t and t+1. As might be expected, errors on

this simple example approximate normal distributions. For

more complex objects, or more abstract actions and state

spaces, we expect that nonparametric representations will be

critical for predicting future world state.

Figure 3(b) shows an equivalent forward model overlay for

box pickup as gathered from our main real time experiment.

As our aim was consistency, the distribution has much less

variance than the top-down example.

B. Imitation

To illustrate our algorithm for Bayesian action selection,

we show results on a simple task: picking up a large box.

The goal is to lift the box off a table surface and hold

it at chest height (taking into account the linear scaling

that compensates for size differences between human and

robot). The human shows two broad types of action, lifting

the box with one hand, and lifting with two hands. 25

example trajectories of the human lifting the box comprise

the training data. At the end of training, the human also

captures the desired goal state using the motion capture

ThD3.2
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Fig. 3. Learning forward models from motion capture: (a) Forward
models learned by the system after observing 3 different actions performed
by the human (push box forward, push left, push right). 30 samples were
collected for each action’s consequences, all starting from the same initial
state. Grayscale indicates probability of the human’s action moving the box
to a particular 1 cm2 grid cell in the X-Y plane. The system used HMMs
to automatically create a separate model for each gesture, and correctly
classified each of the total of 90 actions to update the model shown here.
(b) Forward model learned by the system for the box lift experiment (as
described below).

system (by pressing a key). The robot’s small size prevents it

from lifting the box with one hand. Because this task involves

just one step, we collapse sG and st+1 into a single state. Our

action selection algorithm therefore finds the MAP estimate

of P (st+1|st, at)P (at|st) rather than using the multistep

approach described in our previous work.

Figure 4 shows how the robot combines prior information

from the human instructor with the effects of its own actions.

Although 8 total actions were discovered by the gestures

database (based on log likelihood estimates), we show the

two with the highest prior probability (a one-hand lift and a

two-hand lift). The remaining 6 actions are minor variations

of the one-hand lift and two-hand lift that were classified

differently by the action database. In 4(a), we show the total

log likelihood of each action. The robot interacts with the

box for a total of 40 iterations. Each time, it computes the

Bayesian MAP estimate of the optimal action. 4 At iteration

14, the robot has acquired sufficient samples to use its own

forward model estimate rather than the estimate acquired

from the teacher. Because the robot is incapable of lifting

the box with one hand, its forward model estimate causes

the log likelihood of the one hand action to drop. The two

hand action is much more reliable (shown as an increase in

log likelihood), although sometimes this action fails as well

(shown as slight dips in the plot).

In 4(b), we give snapshots of how the log likelihood of

each action is determined at iterations 1 and 40. The bar

graphs show the log prior ln (P (at|st)) (black bar) and

the log probability of the forward model ln (P (st+1|at, st))

4When the robot significantly disturbs the box (e.g. when it knocks the
box off the table), the human replaces the box to its initial state. One goal of
a more complete system would clearly be to consistently restore the world
to its original state so as to avoid disturbing the human instructor.

(gray), which together yield the total log likelihood of

executing each action. A smaller total bar size means the

action has a higher log likelihood according to our action

selection algorithm. Photos show the robot attempting each

action. Note that while the prior distribution does not change

over time (expressing the human’s preference for how to

execute the action), the forward model does change over time

(reflecting the robot’s estimate of which action is likely to

reach the correct goal state). The prior distribution encodes

the human’s preferences over which actions to take in a

situation, and could be used, for example, to privilege certain

actions as socially or contextually desirable.
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Fig. 4. Using Bayesian inference to discover which actions to imitate:

(a) The robot learns over a series of 40 interactions with the box. Initially,
the forward model learned from watching the human has more samples
than the model gleaned from the robot’s own experiences. Based on a
prior bias toward one-handed lifting, the system selects a one-handed lift
that is impossible for the robot to execute successfully. After iteration 14,
the number of samples in Pr(st+1|at, st) > Ph(st+1|at, st) for the
one-handed lift action, and the system reevaluates the action’s chances of
success. At this point, the system instead begins to execute a two-handed
lift. Once it has observed 3 samples of the two-handed lift, it begins to use
Pr(st+1|at, st) for the two-handed lift as well. Occasional mistakes in
lifting cause small dips seen in the log likelihood, but overall the estimated
a posteriori probability of success for the two-hand lift is higher than the
one-hand lift. (b) Breakdown of log likelihoods into the prior distribution
P (at|st) (black bar) and the forward model distribution P (st+1|at, st)
(gray bar) at two points in the learning process. At iteration 1, the robot
attempts to use a one-handed lift (photo at right). After 40 iterations, the
robot’s estimate of each action’s log likelihood of success has changed: the
two-handed lifting action is much more likely to yield the desired goal state.
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Total time to train the system and for the robot to deter-

mine reliability of its actions in this simple task is on the

order of 10 minutes. Due to the system’s realtime nature,

the human can intervene if necessary and show the robot a

new action for executing the task at any time. There is no

time or learning penalty for switching between system modes

(mimicry, watching, imitation).

C. Multiple instructors

In 5, we see how different instructors can be used be

the system to encode the same actions. As only joint-angle

and world state information are used to encode actions, if

one instructor closely mirrors another’s demonstration, the

system can correctly classify both as the same action. The

same design that allows for intra-instructor variation with

the same goal also helps with inter-instructor variation: with

enough observations the system can use the best action (as

learned through imitation and the robot’s prior model Pr)

while continuing to observe a different action. Only st, st+1,

and sG are relevant.

4
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1
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3
2

1

4

3
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1

4

3
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LL = 210.476374

Time

One−Handed Pickup
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 S

ta
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Fig. 5. Matching actions from multiple instructors: Viterbi paths for
the one-hand pickup action, as observed from two different instructors at
two different velocities. The similarities show the robustness of the system
when presented with minor variations, and also illustrate how action models
learned from one user can be recognized when observing another. There are
10 states in each chain and a variable number of time datapoints. Four key
joint-angle states within the actions are also displayed on the robot.

V. CONCLUSION

We have described a prototype system for real-time, inter-

active imitation between a human teacher and a humanoid

robot. The system learns to cluster human motion patterns

into discrete actions. The system also learns predictive mod-

els of how motor acts affect objects in the environment,

and uses its models to compute which action it should take

given the state of the environment. By allowing the human

to intervene at any point in the learning process, and by

allowing the robot to use priors imposed by the human to

guide during its own learning process, robotic skill learning

can be achieved while ensuring efficient use of the human

instructor’s valuable time. Adding an element of self-directed

learning also means the correspondence between human

and robot actions need not be perfect; the robot itself can

figure out, to some degree, which actions are most effective.

Despite the presently limited repertoire of the system (see

future extensions below), it serves as a proof of concept for

combining self-directed learning, turn-taking interaction, and

imitation using objects in a real-time framework.

Fig. 6. Collision simulator: A virtual view of the robot showing the
bounding boxes used for collision detection. Each pair of links that can
possibly collide is checked before any new motor command is sent to the
robot.

A. Related work

Despite the overall dearth of efforts for real-time imita-

tion learning of actions on objects, systems with similar

goals to ours have recently appeared. Some systems have

concentrated on full- or upper-body mimicry in real time

using inverse kinematics [14], [4]. Examples of goal-directed

efforts with a HOAP-2 humanoid are [3], [2], [1], where

HMMs encode target positions for the robot’s joints and

hands. When imitating, the system attempts to minimize

a cost function (using Lagrangian optimization) consisting

of an accuracy term bringing the robot’s hands close to a

target point and a set of kinematic constraints. The system

differs from ours in three important respects: i) teaching is

performed through backdriving the robot’s limbs, an option

that may not be possible for certain robotics systems; ii)

the system uses probabilistic models to encode actions, but

does not learn probabilistic forward models for manipulated

objects; and iii) Lagrangian optimization is employed rather

than finding a Bayesian MAP estimate of action suitability.

Additionally, the system’s focus does not appear to be a

closed-loop, teaching framework as we have described here.

In another system [8], real-time imitation is performed using

a humanoid robot. Actions are encoded as HMMs, and per-

formed subject to one of several preprogrammed kinematic

constraint profiles announced by the user at training time

(indexed via a speech recognition system). Like ours, this
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system focuses on closed-loop interaction between a robot

and a motion-captured instructor; however, it does not focus

on learning models of objects in the environment. In [9], a

humanoid reproduces gestures shown by a human instructor

using an onboard vision system and a neural network based

on findings from the mirror neuron system in primates.

The self-directed learning aspect of our work is similar

to [6], where a humanoid uses optic flow to autonomously

learn how its manipulator changes the state of objects in

the world. Finally, [5] uses Bayesian methods to learn a

forward model for a robotic gripper, and to imitate a human

waving gesture. It differs from our system in not focusing on

object manipulation, and on learning the forward model from

environmental experience alone rather than bootstrapping

from models given by the human.

B. Extensions

Future work will concentrate on both low-level and high-

level aspects of the model. Inclusion of an inverse kinematics

solution will allow the system to modify paths from the

HMM encoding of actions so that constraints such as relative

distance from hands to objects is obeyed. Although we

currently select the MAP action from the Bayesian estimate,

in highly stochastic environments it might be advantageous

to sample from the posterior distribution (a strategy known

as “probability matching” in the biological literature [11],

[7]. At the higher level, encoding longer-term subgoals using

several hierarchical layers (rather than the 2 shown here)

will enable more complex behaviors. We also anticipate

implementing the algorithm for plan recognition described in

[15], [13] to predict intent given observations of the human

instructor’s actions. In the long term, the system’s model

databases could facilitate acquisition of a library of goal-

directed behaviors and predictive models of actions’ effects

on objects in the world.
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