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Abstract— Hyper-flexible elements like tethers and ropes will
have various possibilities of novel manipulations. In this paper,
casting and winding maipulation of hyper-flexible manipula-
tors(HFM) is considered. The HFM is modeled and analyzed
as an underactuated multi-link system connected by non-
elastic passive joints. An iterative revision method of parameter
identification and state estimation is proposed. The method
obtains highly credible parameters and state profiles from
comparatively roughly visually sampled data using dynamic
simulation. Succeeded and failed results of casting motion are
analyzed by simulation and an energy-like function of position
and velocity of HFM tip is defined. A control method to
determine actuation timing to efficiently increase the energy-
like function is proposed.

I. INTRODUCTION

In this paper, a state estimation system and a casting

control method for winding manipulation on a distant object

using hyper-flexible elements are proposed. Conventional

‘flexible’ systems denote elastic systems as huge or light-

weight structures and their elastic vibration due to low-

stiffness are to be considered. Hence, control methods of

such elastic systems were based upon an assumption with

elasticity [1], [2]. Elastic systems fundamentally have equi-

librium at the point where their elastic potential become

minimal and stabilization of their elastic vibration should be

converging to these equilibrium points. On the other hand,

there are many highly flexible elements like strings, ropes,

wires, tethers, papers and cloths around human life. Those

flexible elements are extremely light, simple and deformable

with less elasticity, and control methods based on elasticity

are difficult to be applied to them. The authors called such

highly flexible systems as “hyper-flexible systems”[3] and

considered analysis and control of their nonlinear dynamics

aiming to construct novel manipulation methods with higher

performance of dexterity. Since they are light and often less-

expensive, such hyper-flexible systems are expected to enable

basically safe and easily diffusible systems in the field of

service or life-support robots.

Hyper-flexible systems like strings and ropes will not

generate self-vibrations but deform to the other shape, and, in

the case without gravity, can be settled at any configuration.

Dynamic motion of ropes and other similar flexible objects

and its control have been studied by many researchers[4].
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(No.16760192) and Toyota Physical and Chemical Research Institute.

However, the most of their models were based upon the

assumption with tension on the ropes (often by the weight

attached on tip) and are difficult to be applied to the situ-

ation including free-motion without tension. Hyper-flexible

systems like ropes were conventionally called as deformable

and studied mostly from geometric, kinematic or static

viewpoints without dynamics and often have considered as

objects to be manipulated [5], [6].

Arisumi et al proposed a casting manipulator, which has a

cable-like arm component connecting end-effecter and base

and can capture a very distant target by casting [7]. However

the cable’s mass or inertia were ignored and consequently

the dynamics of cable itself was not explicitly considered,

it originated an innovative idea to construct novel types

of robotic manipulators using hyper-flexible elements not

as objects, which liberate from bulky actuators and rigid

structures. The authors proposed hyper-flexible manipula-

tors(HFMs) which denote mechanisms composed of highly

flexible systems as deformable ones and are controlled using

their dynamic motion features to execute some tasks as a

manipulator[3]. For instance, the tasks for HFMs will be:

(a) whipping manipulation to provide an impact force to a

target, (b) inserting and reaching manipulation to explore

into narrow space, (c) casting and winding manipulation to

capture a distant target, and other possible manipulations as

shown in Fig.1. While force control and insertion tasks may

be considered to be basically difficult with softness, there

is possiblility to apply a compliance control with vibratory

input to the base as in [8].

(a) Whipping Control (b) Reaching into Narrow Space

(c) Casting and Winding

Fig. 1. Hyper Flexible Manipulation

In this paper, a HFM as a cable actuated by one motor at its

base is considered. The HFM is modeled as an underactuated
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multi-link model connected by passive joints without elastic-

ity While its validity was shown by comparing simulational

and experimental results [9], more precise and credible

parameters should be identified using its dynamics model.

Based on the model, an integration of iterative parameter

identification and state estimation is introduced for online

feedback of HFM. Dynamics of casting motion of HFM

is also analyzed by simulations based on the underactuated

model. Simulation analyses for succeeded and failed casting

motion results are developed and an energy-like function

of position and velocity of HFM tip is defined. A control

method to determine actuation timing to efficiently increase

the energy-like function is proposed.

II. NON-ELASTIC UNDERACTUATED MULTI-LINK MODEL

The HFM considered in this paper is a highly-flexible

cable-like system without stretching. The cable is assumed

to be constant in cross section and mass distribution. This

indicates that each link in the following multi-link model has

same dynamic parameters of length, mass, inertia, and so on.

The authors proposed a discrete multi-link model con-

nected by passive joints without elasticity[3], while the

validity of the proposed non-elastic model was not verified.

The dynamics of the multi-link model is represented as:
[

Maa MT
ua

Mua Muu

](

θ̈a

θ̈u

)

+

[

Ca

Cu

]

+

(

Pa

Pu

)

=

(

τ
0

)

+

(

Fa

Fu

)

(1)

where θ denotes the joint angles, M ,C ,P ,τ ,F denote the

inertia, centrifugal and Coriolis, potential, input-torque, and

friction terms, respectively. The indices a and u denote the

states or terms corresponding to the actuated joints and un-

actuated passive joints. Partially linearized dynamics of HFM

is derived from Eq.(1) as:

θ̈a = u

θ̈u = Au + Buu
(2)

where Au = −M−1
uu (Cu + Pu − Fu), Bu = −M−1

uu Mua

and:

u =
(

Maa + MT

uaBu

)

−1 (

τ − Ca − Pa + Fa − MT

uaAu

)

(3)

As stated above, elasticity on passive joints is assumed

to be enough small to be disregarded compared to inertia

and friction terms, while elastic potential can be included in

potential term in Eq.(1). While the authors showed an anal-

ysis of HFM via averaging method and proposed a control

method to stabilize onto an inclined posture against gravity

using vibratory input to its base[3], it is required to clarify

dynamic swinging motion for manipulation considered in this

paper.

However the dynamic model considered in this paper

is discrete one, continuum models also can be similarly

considered. Walker and Chirikjian have been proposed con-

tinuum models for hyper-redundant manipulators[10], [11].

Since the models are based on the idea of fully-actuated

systems, the author and colleague have proposed a continuum

dynamic model for hyper-flexible systems[12]. Although the

continuum model will be important to make precise analytic

studies on the dynamics in future works, the discrete model

is currently practical to handle finite numbers of observed

markers on rope and to draw simulation images.
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Fig. 2. HFM setup for experiment and simulation

Fig.2 shows the experimental and simulated HFM setups.

A cable, one-dimensional hyper-flexible element, is con-

nected on a short arm actuated by one motor. The lengths

of cable and arm are L = 2[m] and larm = 105[mm],

respectively. The radius and mass of cable are r = 2.5[mm]

and M = 0.125[kg]. The number of links in the simulation

model is set to n = 50, and then, the length and mass

of each link are l = 40.0[mm] and 2.50 × 10−3[kg]. The

number of links was determined considering the both of

simulation accuracy and computational cost. The less links

have difficulty to simulate precise motion especially on the

cable tip and the more links take much computational time

for simulation. The cable is actuated and cast by actuation

of the short arm.

While the length and mass of each link are easily de-

termined, the inertia moment J of each link and friction

coefficient η of each joint are difficult to be directly identi-

fied. Then, these two parameters are determined heuristically

partly by trial and error. The J is determined by assuming

that each link is a cylinder with constant mass distribution

as J = 3.37 × 10−4[kg·m2]. The η is then determined by

comparing the simulation results to the experimental ones

for free swing motion as η = 5 × 10−4[N·m·s/rad]. In the

previous paper, the authors showed the comparison between

experimental and simulation results for free swing motion to

show the validity of the non-elastic model [9].

III. PARAMETER IDENTIFICATION AND STATE

ESTIMATION

A. Dynamic parameter identification

When the joint friction is assumed to be viscous, Eq. (1)

yields:

M(θ)θ̈ + C(θ, θ̇) + P (θ) = τ − ηSθ̇ (4)

where joint angle θ is defined as absolute angle and S
denoted a transformation matrix from absolute to relative
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Let τ = 0 and devide Eq.(4) into the terms with known and

unknown parameters. The length and mass of rope are known

and the section shape and mass distribution can be assumed

to be constant in length. Then, unknown parameters are

considered to be the inertia moment J and viscous friction

coefficient η. Since these can be considered to be constant

for each link, there are two unknown parameters. The inertia

matrix M(θ) can be represented as M = Mknown + JIn

with known term Mknown and term with unknown inertia

moment J where In denotes identity matrix. Then, Eq.(4)

yields:

[

θ̈ Sθ̇
]

(

J
η

)

= −Mknown(θ)θ̈ −C(θ, θ̇)−P (θ) (5)

Let the left part in Eq.(5) as Λ =
[

θ̈ Sθ̇
]

, σ̂ =
(

J η
)T

, the right part as τid, Λ(i) and τ (i) denote Λ and

τid when t = ti, respectively, Λ̃ and τ̃ id denote the matrix

with m times measured data and σ̂ denote the estimated

value. Then, the minimum square-root estimated value is

known to be obtained as:

σ̂0 = (Λ̃
T

Λ̃)−1
Λ̃

T

τ̃ id (6)

B. State estimation and iterative revision of parameters

Its is difficult to obtain precise acceleration values through

directly calculation with the vision measurement system used

in this research with slow processing time of 7 − 8 [fps].

In this section, it is introduced an estimation method of

dynamically reasonable acceleration using the non-elastic

model of Eq.(4). Since states of HFM can be calculated by

the dynamics (4) with appropriate initial values and dynamic

parameters, the most appropriate initial values θ0 with least

deviation from measured data as shown in Fig.3 is to be

obtained and then, the most appropriate acceleration profile

is estimated. Namely, θ0 which minimize the square-root

error

E(θ0) =
m

∑

i=1

(θ̂(ti;θ0) − θi)
2 (7)

is to be obtained. Where θ̂(ti;θ0) denote the dynamic

simulation results with initial angles θ0 at t = ti and

θi denotes the measured data at the moment. Since it is

difficult to obtain analytic solution of Eq.(7) from Eq.(4),

the Downhill Simplex Method(DSM)[13] is adopted as an

optimization method.

In order to calculate mathematical solution of Eq.(7)

by simulation, precise estimation of dynamic parameters

is required. While, in order to identify precise parameters,

precise acceleration values is required. Hence, an iterative

revision method is introduced as shown in Fig.4 which iter-

atively revises acceleration profiles and dynamic parameters

alternately.

Fig. 3. Comparison between Measured Initial Value and Optimized Initial
Value

Fig. 4. Iterative Revision of Parameters and State Estimation

The procedure is as follows:

1) Provide measured data profile of angles θr, angular

velocities θr and heuristically estimated dynamic pa-

rameters as an initial values.

2) Calculate the most reasonable initial angles θ0 by

DSM.

3) Simulate from initial angles θ0 and calculate state

profile with θ, θ̇, θ̈ at each moment.

4) Identify dynamic parameters using calculated state

profile and return to 2.

C. Experimental result with iterative revision method

Fig.5 shows the measured angles of HFM tip θ5 and the

calculated values with the above iterative revision method.

The result shows the method succeeded to obtain reasonablly

estimated profile and the results for the other angles are

similar. Transition of identified dynamic parameters J and

η, and squared error E with them for each estimation

are shown in Table I. Please note that the rope used in

this identification experiment was different from that shown

in Fig.2 due to visual sensing environment. Nevertheless,

the difference is not substantial and the results show the

validity of the method. In the figure, blue circles show

Fig. 5. Sampled Data and Simulation Result (θ5)
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TABLE I

CHANGE OF J, η, E(θ0)

Calculation time 0 1 2

J[10−6kgm2] 5.09 0.143 0.143
η[10−3Nms] 1.26 0.631 0.631

E(θ0) 2.64 2.23 2.23

the moments with measured values. Since angular velocities

were calculated with three successive measured data, the

number of sampled angular values is less than the actually

measured angular data. The estimated dynamic parameters

are converged in twice of calculation as shown in Table I

and precise estimation of dynamic parameters and angular

acceleration was succeeded thanks to the iterative revision

of Fig.4 as shown in Fig.5.

Two other methods to obtain the inertia moment could be

considered to be compared to the above iterative revision

method. The first one, which is refered as ‘NF’ in the

followings, is as that HFM is regarded as a single rigid-

body pendulum and its inertia moment is calculated from

its natural frequency of swinging. The second one, which is

refered as ‘CM’, is as that each link of HFM is regarded as

a cylinder and its inertia moment is directly calculated with

its density. The Table II shows the squared error values with

inertia moments calculated by those methods. Note that the

value of viscous friction coefficient η was same as in the

above iterative revision method, which is refered as ‘IR’ in

the followings, since it is difficult to be obtained by those

two methods. Inertia moment used in NF was calculated by

Tnat = 2π

√

J + ml2
G

mglG
(8)

with the natural frequency Tnat = 1.61[sec] obtained from

Fig.5. The IR(θ0) in Table II shows squared error which

finally obtained in DSM computation loop. The result shows

TABLE II

COMPARISON WITH NF, CM AND IR

NF CM IR IR(θ0)

J[10−6kgm2] 102 5.09 0.143 0.143

η[10−3Nms] *** *** 0.631 0.631

E 16.3 2.62 2.22 2.23

the validity of the introduced method (IR). The other advan-

tage of IR is that it can systematically obtain viscous friction

coefficient which cannot obtained by the other methods.

However the validity of IR was shown, there is a problem

that computational time reached about 48, 000[sec] due to

unneccesary iteration.

In order to minimize computational load for parameter

identification, number of measured data used for identifica-

tion is considered to be minimized. Fig. 6 shows comparison

of errors between estimated angles and measured ones for

various numbers of measured data used for parameter iden-

tification. The horizontal and vertical axes denote number

of used measured data and squared error values between

estimated and measured angles, respectively. While the error

with all of 81 measured points were used for identification,

was about 0.04[rad2], the error with minimal 22 points

was about 0.046[rad2]. Hence, the difference among them

was at most 6 × 10−3[rad2]. The computational time for

identification in the case with quarter of measured points was

about 1,900[s] (nearly a half hour) and reduced to a fifth of

the above result. The 22 measured points corresponds to 3

seconds of measured motion and, namely, merely 3 seconds

of measurement succeeded in sufficiently precise parameter

identification. Such parameter identification method using

dynamic simulation will be applied not only to hyper-

flexible systems in this paper but also other complex dynamic

systems which is laid in future.

Fig. 6. Identification Error due to Used Number of Measured Points

D. Integration of sensing and online state estimaiton

In this section, an online state estimator by integration

of visual measurement and dynamic simulation using the

dynamic model identified in the above is proposed. Fig.7

represents the flowchart of this algorithm. First, it predicts

the next positions of markers based on dynamic simulation.

The visual processing with the prediction increases the

success rate of capturing markers. The predicted position

also can be substituted for captured one when the markers

fail to be captured. Then, state profile of positions, velocities

and accelerations can be obtained continuously including

arbitrary intermidiate states among measured data. For this

integration of measurement and state estimation, it is required

to determine how far the future state should be predicted by

dynamic simulation. Namely, in the case with a short-time

prediction simulated from t to t+tsim, the visual processing

and dynamic simulation should be completed in the time

tsim. The time for visual processing is considered to be

constant as Tv and the time for simulation is proportional to

the time to be simulated tsim and, then, will be αtsim. The

total time Tv+αtsim must be shorter than tsim and simulated

range should be shorter than ∆Tl so that simulational error

becomes smaller than an allowable limit. Thus, the predicted

period was determined as tsim = 0.13[sec].

The result of measurement by this algorithm is represented

in Fig.8. However the first two points failed in measurement

of the markers, the estimation error reduced and the success

rate of capture increased as measured data increased. Finally,

the success rate became very high close to 100 percent.

Of course, the concept of this algorithm is concerned with

Kalman filtering in terms of consideration of dynamics of
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Fig. 7. Integrated Real-Time State Estimator

Fig. 8. Capture Rate with Proposed Method

the system. However, common Kalman filter often considers

only the dynamics of sensors and does not predict the

object’s future position from its nonlinear dynamics. In the

future works, online parameter identification as mentioned

in the previous section which can find a large disturbance of

dynamics,

IV. CASTING MANIPULATION OF HFM BY SWINGING

A. Simulation of casting motion

In this section, casting motion of HFM, which is as shown

in Fig.2, is analyzed by dynamic simulations. The casting

motion is actuated by swing actuation that the actuated arm

is swung for several times to pump up the swinging motion of

cable enough large to succeed in winding onto a distant target

object. The actuated pattern of the base for a succeeded result
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Fig. 9. Actuation pattern (tc = 0.53[sec])

is represented in Fig. 9. The pattern was simple bang-bang-

like as in the figure and the actuation time ta when the arm

is actuated from θact = −π/2 to θact = +π/2 or vice-versa

was common for the pattern and the others as ta = 0.73[sec],

due to limitation of the experimental system. Experiments

with various rest time tc, which is the time when the actuator

arm stands still in the meantime of actuation, were executed

and one of succeeded results was in the case with tc =

0.53[sec] as in the figure, and simulations with these values

also showed similar results. The parameter identification as

stated in the above sections showed correspondence of HFM

behaviours between experiments and simulations in the terms

of shapesof HFM and position and velocity of each point.

Then, the following control methods can be constructed

based on simulational analysis.

B. Analysis of casting motion
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Fig. 10. Tip-position profile : succeeded & failed

Fig.10 shows the transition of tip-link position of HFM

(x, y) in succeeded and failed results. The solid and dashed

lines denote succeeded and failed results, respectively. The

results shows that increasing vibratory behaviours repre-

sented comparatively clearly in x direction and, on the other

hand, shapes of vibratory behaviour was not constant due to

gravity and other factors in y direction.

Define the following energy-like function E.

E =
1

2
Mẋ2 +

1

2
Kx2 (9)

where M denotes the total mass of HFM and K denotes a

constant heuristically determined. The second term in Eq.(9)

can be regarded as a kind of elastic potential term and K is

called as a pseudo-elastic coefficient in the followings. Using

this E, the phase of tip-link (x, ẋ) can be transformed into

polar coordinate systems (r, θ) as:

r =

√

2E

K
=

√

(cẋ)2 + x2 (10)

θ = tan−1 x

cẋ
(11)

where c =

√

M

K
. Fig.11 shows the transition of transformed

‘spiral’ coordinates r and θ with arbitrary c and K. The

solid and dashed lines denote succeeded and failed results. In

addition in Fig.11(a), the thin line denotes transition of base

actuator input θact and the thick line denotes transition of r
corresponding to it. Let c(=

√

M/K) = 0.40 for succeeded

result and c = 0.34 for failed one. While transition of θ is

almost straight line proportional to t as shown in Fig.11(b),
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Fig. 11. Spiral motion in normalized phase portrait

transition of r shows step-like increase as shown in Fig.11(a).

Namely, the pseudo-energy E increases step-likely with a

period corresponding to that of actuation. Especially, the

step-like increase was clear in the succeeded result while

in the failed result the height of step was lower and the

steps themselves were also decreasing. The behaviour can

be said as that the pseudo-energy E was pumped up by

actuation of the base. Hence, a control method for casting can

be considered as a kind of pumping control by determining

actuation timing so as to increase E efficiently.
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Fig. 12. Energy pumping on normalized phase portrait

Fig.12 represents tip trajectories for the above two results

on a normalized phase portrait (x, cẋ). The thick and thin

line denote actuation and stopping periods and the circles

and crosses denote the start and end points of actuation,

respectively. Since the length of actuation periods is common

for those results, difference of two results comes only from

the length of stopping time. In the figures, the trajectory

in succeeded result passed along contour circles of pseudo-

energy in the second and fourth quadrants while actuation,

and increased the radius of pseudo-energy contour in the first

and third quadrants while stopping.
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Fig. 13. Phase portrait of tip (sim.)

Fig.13 shows simulation results with a control method

which determines actuation timing by the phase of x coordi-

nate of HFM tip. Note that since there found to be slight loss-

time when passing across x = 0 and the actuation should be

started slightly before it, the simulated results were shown

for various offsets from tb = 0.0[sec] to 0.30[sec]. The solid,

dotted, dot-dash and chain double-dash lines correspond to

tb = 0.0, 0.10, 0.20, 0.30[sec], respectively. However the

case with tb = 0.0 finally showed the largest radius, the case

with tb = 0.20[sec] showed comparatively the most efficient

increase of the spiral radius in a process.

V. CONCLUSION

In this paper, casting and winding manipulation with

hyper-flexible manipulator(HFM) was considered. A multi-

link model connected by non-elastic passive joints was

adopted as a discrete dynamic model for HFM for analysis

and control design. For sensing of fast and complex motion

of HFM, a parameter identification by iterative revision of

dynamic parameters and estimated state profile from insuf-

ficiently sampled data by visual processing using dynamic

simulation was introduced. An integrated online algorithm

of visual sensing and dynamic simulation was proposed

as a short-time prediction of future position of markers to

be captured using dynamic simulation and its validity was

verified by experiments. Casting motion for winding on a

distant target was also analyzed. A pseudo-energy function

was defined and a control method to determine an appropriate

actuation timing so as to efficently pump up the swinging

motion of HFM was proposed. In the future works, an

integrated method with online parameter identification and

state estimation by reducing computational time and control

methods for casting and winding manipulation including

more efficient casting control and control of contact state

on the target in winding should be considered.
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