
Integration of Coordination Mechanisms in the BITE Multi-Robot
Architecture

Gal A. Kaminka and Inna Frenkel∗
The MAVERICK Group

Computer Science Department
Bar Ilan University, Israel

galk@cs.biu.ac.il

Abstract— Recent years are seeing a renewed interest in
general multi-robot architectures, capable of automating co-
ordination. However, few architectures explore integration of
multiple coordination mechanisms. Thus the question of how
to best integrate coordination mechanisms is left open. This
paper focuses on the micro-kernel integration approach used in
BITE (Bar Ilan Teamwork Engine), a multi-robot behavior-
based architecture. This approach allows the developer to
plug in coordination mechanisms (teamwork behaviors) to be
used depending on the context of execution. BITE imposes
constraints on the specification of taskwork behaviors, which
allow BITE’s control algorithm to automatically determine
sequencing and task-allocation points during task execution. At
such points, teamwork behaviors (known as interaction behav-
iors) are triggered to automate the coordination processes. We
argue that BITE’s approach is preferable to the methodology
of existing architectures, and provide analysis of experiments in
using BITE with Sony AIBO robots, to support our argument.

I. INTRODUCTION

Recent years are seeing a renewed interest in general (task-
independent) architectures, capable of automating the coordi-
nation of multiple robots. Architectures such as ALLIANCE
[12], TraderBot [2], Distributed 3T [7], [8], MURDOCH [5],
BITE [10], and ASyMTRe-D [13], all provide the robots with
automated coordination (teamwork), such that the developer
can focus on designing the task-specific mechanisms, i.e.,
taskwork.

Existing architectures explore many facets of coordination
and collaboration. Some focus on task allocation mechanisms
(e.g., [2], [5], [8], [12]); others on distributed resource
sharing and management (e.g., [7], [13]). However, with few
exceptions (e.g., [7]), relatively few architectures explore
integration of multiple coordination mechanisms. Thus the
question of how to best integrate coordination mechanisms
is left open.

This paper focuses on the micro-kernel integration ap-
proach in BITE (Bar Ilan Teamwork Engine), a multi-robot
behavior-based architecture (see [10] for an early descrip-
tion). This approach allows the developer to plug in coordina-
tion mechanisms (teamwork behaviors) to be used depending
on the context of execution. BITE imposes constraints on
the specification of taskwork behaviors, which allow BITE’s
control algorithm to automatically determine sequencing and
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task-allocation points during task execution. At such points,
teamwork behaviors (known as interaction behaviors) are
triggered to automate the coordination processes.

BITE’s micro-kernel approach differs from existing archi-
tectures, that are monolithic, in the sense that their coor-
dination mechanisms are essentially hard-wired into them,
and form part of the architectures. Earlier work has pro-
vided initial evidence that flexibility in selecting coordination
mechanisms (depending on the context) can lead to improved
performance, even when the task-related skills themselves do
not change [3], [10]. Thus we argue that BITE’s approach
(which allows such flexibility) is preferable. This paper
explores this argument in depth.

BITE has been implemented for use with the Sony AIBO
robots, and for robots supporting the player-stage API [6].
We provide an in-depth discussion of BITE’s structure and
control mechanism, and detailed results from a number of
experiments using BITE with Sony AIBO robots. These
experiments demonstrate key capabilities in BITE. We addi-
tionally explicitly note BITE’s weaknesses, in the hope that
these clarify important open issues.

This paper is organized as follows. Section II discusses
related work. Section III discusses the structure of BITE,
and how it facilitates integration coordination mechanisms.
Section IV presents qualitative and quantitative evaluation of
BITE’s approach. Section V concludes.

II. BACKGROUND AND MOTIVATION

Interest in architectures for coordinating multiple cooper-
ating robots has generated vast amounts of relevant literature.
We therefore focus on the most related efforts in this area,
specifically restricting ourselves to task-general architectures.

Our primary motivation is to explore architectural mech-
anisms for flexible teamwork. Teamwork literature reveals
common teamwork primitives: Sequential task synchroniza-
tion (getting agents to temporally coordinate task execution),
and task allocation (getting agents to divide up subtasks
between them). Our initial motivation in BITE was to marry
both of these aspects in a single architecture.

One general difference between BITE and all of the
following architectures is that they rely on fixed interaction
protocols, and in that they are monolithic: They do not
allow flexibility in choosing the interaction protocols to
suit task context, but rather utilize fixed built-in protocols.
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Moreover, most architectures focus only on specific aspects
of teamwork (e.g., task allocation), and do not include other
mechanisms (e.g., synchronized task sequencing). More spe-
cific differences are discussed below.

One area of related work comes from multi-agent systems
literature. BITE follows the footsteps of STEAM [16] and
TEAMCORE [17] in that it is behavior-based, and in that it
shares with them the use of a team-hierarchy to keep track of
team-members task assignments. However, in addition to the
differences noted above, these earlier works have not been
applied to controlling multiple robots, and do not include
the world-modeling components which BITE includes for
this purpose.

The ALLIANCE behavior-based architecture [12] focuses
on robustness, by allowing robots to dynamically re-allocate
themselves to tasks, based on failures in themselves in their
teammates. ALLIANCE offers dynamic task allocation, but
does not explicitly synchronize robots as they jointly take on
tasks. However, it offers robustness “out-of-the-box”, while
robustness in BITE depends on the choice of interaction
behavior.

There has been considerable interest recently in using
auction and market-based task-allocation methods in multi-
robot systems. TraderBot [2] explored the use of markets
to allow robots to bid for tasks in spatial sensing domains.
Goldberg et al. [8] explore a distributed three-tier architec-
ture, in which multiple robots interact with each other at all
three layers using a market-based resource allocation scheme.
Gerkey and Matarić [5] discuss the use of such methods
in contrast to others. BITE complements such work by
integrating task allocation with synchronized sequencing of
tasks. It also offers the potential for using multiple (different)
allocation methods within the same application, depending
on the execution context.

Farinelli et al. [4] explore alternative novel methods for
task allocation in robot teams. Their token-passing method
are suitable for teams of larger scale than BITE is typically
deployed with. However, it should be possible in principle
to build a token-passing allocation mechanism for BITE as
well.

Jung and Zelinsky [9] have explored the use of a dis-
tributed architecture, which—like BITE—is behavior-based.
However, the focus of this work is on cooperative spatial
planning, rather than integrating coordination mechanisms.
Similarly, Alur et al. [1] offer a comprehensive framework
for spatial coordination of multiple robots. In contrast, BITE
has no planning capabilities, and is not specific to spatial
coordination. Rather, spatial coordination mechanisms can
be (and have been) integrated using BITE’s integration
approach.

Goldberg et al. [7], [8] have explored a different basis
for multi-robot architectures. While BITE takes a behavior-
based approach to control, Goldberg et al. focus on extending
a 3-tier architecture with an impressive set of capabilities, in-
cluding task-sequencing and task-allocation, and distributed
resource management. BITE offers the potential to utilize a
wider spectrum of protocols (since none are built in), but

currently lacks some of these capabilities.
ASyMTRe-D [13] has been recently developed to explore

sophisticated mechanisms for distributed resource manage-
ment and resource sharing. In contrast, BITE does not (yet)
allow for resource sharing. However, it integrates coordina-
tion mechanisms that are lacking in ASyMTRE-D.

BITE’s integration approach separates the coordination
mechanisms (known also as interaction protocols) from the
architecture. It runs a behavior management kernel which
manages resources, selects behaviors for execution, and
terminates their execution when needed. All coordination
mechanisms lie outside of this manager, in a separate library
of interaction behaviors, which can be used in a mixed
fashion, from different points during task execution.

The ability to call on interaction behavior in a execution
context is motivated by our own early work on SCORE [3],
which demonstrated the usefulness of using multiple proto-
cols depending on execution context. However, SCORE only
allows flexible allocation; its synchronization mechanism is
communication-intensive and prone to failures.

An earlier version of BITE has been previously described
[10]. However, compared to the earlier work, this paper
reports on important revisions to the architecture, and new
results that have not been previously published.

III. THE STRUCTURE OF BITE
BITE is divided into two computational components.

The first component is a world-modeling process, which
is responsible for processing sensor and communication
data, and for sharing this information (when needed) with
other team-members. The second component is the control
process, which runs the main behavior-manager algorithm
(selecting and deselecting behaviors). These two components
are described below. For the purpose of clarity, however, we
begin by describing the control process (Section III-A) and
only then describe the world-modeling process (Section III-
B).

A. Control Process
BITE uses hierarchical behaviors as the basis for its

control. To these, it adds two additional structures: A set
of social interaction behaviors, and an associated team-
hierarchy. A single control algorithm uses these structures to
automate control and communications of a team of robots.

1) Control Structures: The first of the three structures
specifies the sequential and hierarchical relationships be-
tween task-oriented behaviors. The task behavior graph is
an augmented connected graph tuple 〈B, S, V, b0〉, where B

is a set of task-achieving behaviors (as vertices), S and V

are sets of directed edges between behaviors (S ∩ V = ∅),
and b0 ∈ B is a behavior in which execution begins. Each
behavior in B may have preconditions which enable its
selection (the robot can select between enabled behaviors),
and termination conditions that determine when its execution
must be stopped. S is a set of sequential edges, which specify
temporal order of execution of behaviors. A sequential edge
from b1 to b2 specifies that b1 must be executed before
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executing b2. A path along sequential edges, i.e., a valid
sequence of behaviors, is called an execution chain. V is a
set of vertical task-decomposition edges, which allow a single
higher-level behavior to be broken down into execution
chains containing multiple lower-level behaviors. At any
given moment, the robot executes a complete path—root-
to-leaf—through the behavior graph. Sequential edges may
form circles, but vertical edges cannot. Thus behaviors can
be repeated by choice, but cannot be their own ancestors.

As with existing architectures (e.g., [12], [14]), each robot
executes a local copy of the behavior graph. Behaviors whose
execution is to be coordinated in some fashion (henceforth,
team behaviors) are tagged in advance by the designer.
The teamwork architecture in question automatically takes
actions to select and de-select these in different robots, when
appropriate.

Figure 1-b shows an example of a simple behavior graph,
constructed for multi-robot formation maintenance tasks.
Here, there are two formation behaviors—triangle formation
and line formation. Execution begins with triangle formation,
and can (under specific conditions) switch to the line for-
mation. Both formations use one behavior–search–in which
robots visually search for their peers and their own relative
locations. Then, the robots choose between the walk behavior
(which implements walking in triangle) or the linewalk
behavior in which robots follow each other in a line. The
above behaviors are tagged as team behaviors, and require
two important teamwork capabilities: Synchronization (to
make sure all robots select the same behavior, and start/end
walk or linewalk together), and allocation (to make sure only
a single leader for the formation is chosen, the followers are
assigned different relative positions, etc.).

To allow BITE to automate synchronization, we impose
a constraint on the semantics of multiple outgoing edges.
Two outgoing sequential edges 〈a, b〉, 〈a, c〉 signify a choice
point between alternative execution chains: Either b or c

must be selected by the robot once its execution of a is
finished. When these execution chains are composed of
team behaviors, the selection between alternatives must be
coordinated—all (relevant) robots must select the same exe-
cution chain (we discuss below complex cases in which only
certain subteam members must coordinate). Thus BITE’s
synchronization (see below) is triggered when multiple ex-
ecution chains are enabled, and the robots must coordinate
their joint selection.

To automate allocation, we impose a related semantic
constraint on decomposition edges. Two outgoing decom-
position edges 〈a, b〉, 〈a, c〉 signify complementary execution
chains: Both the execution chain beginning with b and the
execution chain beginning with c must terminate for a to
be considered complete (by convention, vertical edges point
only to the first behaviors of execution chains). Thus such
multiple outgoing edges indicate that the children (subtasks)
can be allocated to different subteams. Therefore, similarly
to the synchronization points, BITE’s allocation services are
triggered when multiple decomposition edges are enabled.

There is one final point in which synchronization is

needed. Teamwork theory states that when an agent privately
believes that a joint goal has been achieved, or should be
abandoned, the agent must make this belief mutual with its
teammates. The communication of beliefs is handled by the
collaborative world modeling process (next section). Here,
the implication is that robots must terminate their execution
of team behaviors in a coordinated fashion. Thus when a
team behavior’s termination conditions are satisfied for a
robot, BITE is triggered to coordinate the termination of this
behavior with the other robots.

To summarize, BITE can easily determine synchronization
and allocation points given the constraints above. A split
in sequence edges leading to team behaviors signifies a
synchronization point. A split in decomposition edges leads
to allocation, and synchronized termination is triggered when
a team behavior is de-selected. In all of these, BITE must
coordinate with the other robots (through their own BITE
processes).

To carry out such coordination, BITE first needs to main-
tain knowledge about the robots that are responsible for
coordinated execution of team behaviors. To do this, BITE
maintains a second structure, the organization hierarchy
(called the team hierarchy in [3], [14]). This is a DAG
(Directed Acyclic Graph) whose vertices are associated with
sub-teams of agents, and whose edges signify sub-team-
membership relationships. Several vertices appear in any
organization hierarchy: Given the complete set of robot team-
members R, a vertex corresponding to R (and representing
the entire organization) is a part of the hierarchy, as are all the
singleton sets {ri}, where ri ∈ R. Other vertices correspond
to multi-robot sub-teams of robots in R and are connected
such that if there exists an edge 〈R1, R2〉, then R2 ⊂ R1.
The team hierarchy thus forms a partial lattice, from the
root team R which includes all team-members, to sub-teams
corresponding to each of the members by itself (i.e., to the
individuals in the organization).

To allow behaviors to reason about the organizational unit
responsible for their execution (and vice-versa), we create
bi-directional links between the behavior graph and the team
hierarchy. A link from a behavior Bj points to a sub-team
Ri (and back) if Bj is to be jointly executed by Ri.

To allow reasoning about allocated tasks, we maintain the
inverse links as well, from sub-teams to the behaviors they
are responsible for. For instance, in Figure 1-a, one can see
a team hierarchy composed of three robots, simply identified
as a, b, c. Each team is linked with the behaviors associated
with it, and the behaviors are linked with their associated
teams when these are known (shown in the figure as bi-
directional links). Using these links between the behavior
graph and the team hierarchy, a robot executing a behavior
may easily find out whom it should contact in order to
coordinate execution of this behavior. However, its actions
to achieve this coordination remain unspecified.

For instance, suppose three robots, executing the formation
task (Figure 1-b) have together finished execution of the
behavior search, and have started on walk. We remind
the reader that we impose a semantic constraint whereby

ThD3.4

2861



{a,b,c}

Follow Right Follow Left Lead Follow

S2

S3
S1 Announce Voting Vote Tally Voting

Call Bidders Bidding Announce

Wait

S1

S2

S3
{b}{a}{c}

{a,c}

Triangle
Formation Formation

Line

LineWalkSearch Walk

S2

S1

S2

S1S1

S2 S2

S1
S3S1

S3

S2

S3

S1

(a) (b) (c)

Fig. 1. BITE structures and links in a small example formation-following task.
multiple decomposition edges signify an allocation choice.
The robots must jointly decide how to allocate the different
roles of the formation. One must lead the triangle (the lead
behavior), while the others follow—from the left (follow
left) and right (follow right). To negotiate this allocation,
the robots may communicate, for instance by executing a
bidding protocol where different robots bid on the behaviors
they wish to execute. Once this decision is made, links are
created from each behavior to the appropriate vertices in the
team-hierarchy, to denote who is executing what.

A key novelty in BITE is that it allows the use of different
interaction protocols at different times, depending on the
team behaviors in question (and other context information).
To achieve this, BITE maintains a third structure, holding
a set of social interaction behaviors which control inter-
agent interactions. Interaction behaviors typically control
communications and execute protocols (e.g., voting) that
govern coordinated activity. Each interaction behavior is
encoded in a separate behavior graph. For instance, a simple
synchronization behavior (by voting) may be decomposed
into three atomic interaction behaviors, executed in sequence:
Announce vote, tally votes, and announce winning selection.

In order to facilitate the execution of interaction behaviors,
we link the task behaviors to interaction behaviors in three
separate ways: (a) synchronized selection of behaviors prior
to their execution; (b) team-wide allocation of robots and
sub-teams to behaviors; and (c) synchronized termination of
behavior execution.

Synchronized selection is triggered when new team be-
haviors are selected for execution, in particular when a
decision is to be made between several sequential transitions.
For instance, in Figure 1-b, two sequential transitions leave
the behavior Search—one going into the behavior Walk,
and one going into the behavior LineWalk. A synchronized
decision is to be made between these (such that all robots
select the same behavior), and execution must begin si-
multaneously. An appropriate social behavior is used to
coordinate this synchronized selection. For instance, Figure
1-c shows a simple voting behavior (marked S1). Here,
one pre-determined robot announces the call for votes and
the candidate behaviors, then collects the votes by all team
members and announces the winning behavior. This behavior
is then selected for execution by each robot.

Allocation of sub-teams to behaviors is triggered when
a behavior is to be decomposed into children behaviors.

If only one decomposition transition exists, then the team
selects it. Otherwise, if multiple decomposition transitions
exist, then the team is split into sub-teams. The appropriate
social behavior is called to carry out this allocation, for
instance by using a market-based approach [2], [8]. In Figure
1-c, behavior S2 marks the sequential phases of a market-
based protocol for use in allocating the children behaviors
to different sub-teams.

Finally, synchronized termination of behavior execution
determines the social behavior of robots as they reach the
end of an execution chain. Normally, upon such termination,
control is passed back to the parent behavior, which is then
also terminated. However, if a parent behavior is associated
with a sub-team composed of several members, then termi-
nation of the execution chain must be coordinated, so that
teammates know that it is done with its allocated execution
chain. For instance, if the parent behavior has several robots
doing a distributed search for a target, then the first robot to
find the target will necessarily want to terminate the search
and inform its teammates. To control this social behavior, a
synchronized termination behavior is called. In Figure 1-c,
behavior S3 marks a very simple synchronized termination
behavior which is appropriate for the formation task. In the
behavior Wait, a robot that has terminated execution of a
joint behavior waits for all other robots to reach the end of
their execution chains as well, before they all begin their
joint execution of a new behavior.

Recursive social interactions. Social interaction behav-
iors may themselves require synchronization and allocation.
As interaction behaviors are represented using behavior
graphs (as the task-oriented behaviors), they can themselves
link synchronization, allocation, and termination points in
their behavior graphs to other interaction behaviors, thus cre-
ating hierarchical social interactions. For instance, we have
described a simple voting interaction behavior. To execute it,
BITE may need to allocate the task of announcing the vote to
one robot, have all robots synchronize the beginning and end
of sending their votes, allocate someone to tally the votes,
etc. Thus robots may end up using another synchronization
behavior (e.g., one where the choices are pre-set by the
designer), in order to execute another. However, as behavior
graphs do not allow cyclic decomposition (and interaction
behaviors use behavior graphs), an infinite cycle where
robots vote as to how to vote, etc. is not possible in principle.
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Algorithm 1 CONTROL

Input: behavior graph 〈B, S, V, b0〉, team hierarchy T , interaction
behaviors set O

1) s0 ← b0 // initial behavior for execution
2) push s0 onto a new behavior stack G.
3) while s0 is non-atomic // has children

a) A← {bi}, s.t., 〈s0, bi〉 is a decomposition edge
b) if A has only one behavior b, push(G, b).
c) else b←Allocate(G, s0, A, T, O), push(G, b).
d) s0 ← b.

4) execute in parallel for all behaviors bi on G: // Execution
a) execute bi until it terminates
b) while bi 6= top(G), pop(G)
c) break parallel execution, goto 5.

5) b← pop(G) // Terminate joint execution
6) c←Terminate(G, b, T, O)
7) if c 6= NIL, push(G, c)
8) else: // Select next behavior in execution chain

a) Let Q← {si}, s.t. 〈b0, si〉 is a sequential edge
b) if Q is empty, goto 5 // terminate parent
c) if Q has one element s, push(G, s)
d) else s←Decide(G, b0, Q, T, O)
e) s0 ← s

9) If G not empty, goto 3.

2) Principal Control Algorithm: Each of the robots exe-
cutes Algorithm 1, using its own copy of the three structures.
The control loop executes a behavior stack—root behavior
to leaf—where top behaviors on the stack are executed
simultaneously with their currently selected children.

Execution begins by pushing the initial behavior of the
graph on the execution stack (lines 1–2). Then the algorithm
loops over four phases in order. (i) It recursively expands
the children of the behavior, allocating them to sub-teams
if necessary (lines 3a–3c). (ii) It then executes the behavior
stack in parallel, waiting for the first behavior to announce
termination (lines 4a–4c). All descendants of a terminating
behavior are popped off the stack (i.e., their execution is also
terminated—line 4b), and then (iii) a synchronized termina-
tion takes place (line 6). This can result in a newly-allocated
behavior within the current parent context, in which case, it
will be put on the stack for expansion (line 7). Otherwise,
(iv) this indicates that the robot should select between any
enabled sequential transitions from the terminated behavior
(lines 8a–8e). This process normally results in new behaviors
put on the stack, and then a final goto (line 9) back to line
3 begins again.

The recursive allocation of children behaviors to sub-teams
in lines 3a–3c relies on the call to the Allocate() procedure.
It takes the current execution context (i.e., current stack,
available children), and then calls the appropriate social
interaction behavior in O (linked from the current parent) to
make the allocation decision. The current execution stack is
used to help guide allocations, e.g., by conveying information
about where in the behavior graph the allocation is taking
place. In addition, the interaction behavior is given access
to any links from the parent behavior to the team hierarchy,
e.g., to determine whether any children task-behaviors are

already pre-allocated. Once a final allocation is determined,
Allocate() is responsible for updating the links from the
behavior graph to the team hierarchy (and vice versa) to
reflect the allocation. It then returns, for each robot, the child
behavior for which it is responsible as part of the split sub-
team (or individually, if the sub-team is composed only of
the individual robot).

Synchronized termination (line 5–7) and selection (lines
8a–8e) similarly rely on calls to the procedures Terminate()
and Decide(), respectively. Terminate() is responsible
for evoking the execution termination interaction behavior,
which can return a new child behavior for execution under
the current parent. If it doesn’t, then the next behavior in the
execution chain must be selected by Decide(), which calls
a synchronization interaction behavior. Since synchronized
selection involves all members of the current sub-teams se-
lecting together, this behavior would normally communicate
with the members of the sub-team assigned to the terminated
behavior. Note that in step 8b we also handle the case where
no more behaviors are available in the execution chain. This
case signals a termination of an execution chain, which in
turn signals termination of the parent, thus the branching
back to line 5.

Additional algorithms can be derived based on analysis of
the three structures and their interacting links. For instance,
straightforward analysis of the behavior graph can yield
anticipatory information about which behaviors are expected
to be selected, thus allowing robots to anticipate the needs
of their teammates. We leave such analysis for future work.

B. Collaborative World Modeling
Recent versions of BITE introduced the world-model as a

separate computational process. This process carries out both
traditional sensor-filtering and processing, it also executes
collaborative algorithms, which share information with other
robots. We focus on this aspect here.

While social interaction behaviors may exchange informa-
tion as needed for the protocols they implement (e.g., votes),
there are more basic communication needs that underlie
behavior execution. To illustrate, consider the following
example: Suppose a robot has determined that a running
behavior is to be terminated (because its termination condi-
tion matches). A call is made to a synchronized-termination
social behavior. But as it contacts the other robots, it refers
to information that is known only to the robot initiating the
dialog. Obviously, the termination protocol can be fixed such
that it first transmits the missing information, and then argues
for termination. But rather than duplicate this functionality
in all termination protocols, it makes sense to allow this
to happen—in a flexible manner—in the world-modeling
process.

Indeed, the world-modeling process can execute dis-
tributed information-sharing algorithms. The algorithms can
be as simple as an algorithm that updates all team-members
with any change in perception; or it could be complex
and sophisticated, able to consider uncertainties in fusing
information about the world [15].
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Algorithm 2 FUSEINFORMATIONWITHTEAMMATES

Input: behavior graph 〈B, S, V, b0〉, team hierarchy T , inter-
action behaviors set O

1) for all behaviors b on behavior stack G:
a) t← subteam(b) // sub-team responsible for b
b) if a termination condition of b is satisfied,

Inform(b, t, O)
c) if a precondition of a behavior f (〈b, f〉 a sequence

edge) is satisfied, Inform(b, t,O)

Algorithm 3 PROVIDEHELPFULINFORMATION

Input: behavior graph 〈B, S, V, b0〉, team hierarchy T , inter-
action behaviors set O

1) for all teams t in the team hierarchy:
a) C ← {b|b ∈ B, t currently linking to b}
b) for all b ∈ C and not on the behavior stack:

i) if a termination condition of b is satisfied, In-
form(b, t,O)

ii) if a precondition of a behavior f (〈b, f〉 a sequence
edge) is satisfied, Inform(b, t,O)

Through BITE’s lifetime, we have experimented with
different approaches here. The simplest one broadcasts all
changed information. For obvious reasons of bandwidth
usage, it was quickly ruled out in favor of a more focused
algorithm, which broadcasts information about changes in
the preconditions and termination conditions of currently-
executing behaviors of team-members. This agrees with
theoretical notions of teamwork, which specify that team-
members that privately come to belief a proposition relevant
to the team, must establish mutual belief in this proposition
[11]. Thus such information is only broadcasted to relevant
team-members (i.e., to team-members currently executing a
behavior affected by the new information). The algorithm
appears below (Algorithm 2).

In Algorithm 2, each robot determines whether new in-
formation affects its behavior stack (e.g., newly-satisfied
conditions). These potentially affect the robot’s teammates,
and must therefore be communicated to them by finding out
which sub-team is responsible for each behavior on the stack
(done through the Inform() procedure, which refers to an
appropriate social interaction behavior).

A second algorithm which we find useful addresses helpful
communications, in which a robot communicates relevant
information even when it is not strictly its responsibility, i.e.,
in the case where the information is relevant to a subteam
other than its own. This algorithm (Algorithm 3) uses the
team-hierarchy to discover which subteam is responsible
for a specific behavior, so that relevant information can be
communicated to it.

Algorithm 3 allows the robot to determine whether newly
sensed information may be relevant to sub-teams that it is not
a member of, proactively providing them with information
even though it is not strictly its own responsibility to do
so. The two algorithms may be run with different priorities
within the collaborative world-model. This will allow oblig-

atory messages for teammates to receive higher priority than
messages that are not required.

For instance, suppose a team of robots is executing the
formation task described above, including the sub-team al-
locations (Figure 1). Suppose that the robots are executing
the Triangle Formation behavior, and below it, the Walk
behavior. One robot is executing the Follow Left behavior.
Algorithm 2 guarantees that if this robot discovers that any of
the termination conditions of Follow Left, Walk, or Triangle
Formation, then it will inform the appropriate members of
its team. Algorithm 3 guarantees that if the robot discovers
a termination condition for Lead, then it will inform the
members of the sub-team associated with Lead, even though
they are not members of the same sub-team.

IV. EVALUATING BITE
Evaluating an architecture such as BITE is notoriously

difficult, since there are multiple aspects to such evaluation.
We consider key aspects one by one below.

A. What BITE Can Do
BITE is fully implemented and is used on both Sony

AIBO robots, as well as robots working with the player-
stage API [6]. It is used by students in our research group to
facilitate coordination in multi-robot tasks such as coverage
and formation maintenance.

One aspect of evaluating BITE is in establishing whether
the ability to use multiple coordination mechanisms matters.
For instance, can robot teams really benefit from using
different task-allocation mechanisms at different times?

Preliminary results [10] have provided initial evidence
that (1) BITE is flexible (in the sense of being able to use
multiple coordination mechanisms in the same task); (2) such
flexibility matters (in that selection of different coordination
mechanisms affects performance in non-trivial ways). Here,
we analyze this flexibility in more depth.

We created a behavior-graph composed of hierarchical
task-behaviors for moving Sony AIBO robots in triangle
and column formations. The behavior graph is shown in
Figure 2-a. The numbers on each node indicate the node
identification (used in the discussion below). The points a–c

mark synchronization points; d, e mark allocation points.
We then defined several different social interaction be-

haviors, described in Table I. The table shows the name
of each behavior (typically, beginning with SF), its type
(synchronization or allocation), and whether the behavior
uses communications. The final column provides a short
description of the protocol implemented by the interaction
behavior. For instance, whether the decision is based on the
robot’s ID (known to all), or by a voting mechanism (which
we will not describe here for lack of space).

Using these behaviors, we created several different config-
urations for execution by the AIBO robots. These configura-
tions are shown in Table II. All of these configurations went
through the behavior graph in order (behaviors 0-1-5-9-13-
17-21). Each of these configuration were run multiple times
(the number of runs appears in the last column). In all runs,
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Fig. 2. A fixed behavior graph used in experiments with BITE.

SB Name Transition Type Comm.? Description
SF1 Synchronization No Select based on ID
SF2 Allocate No Assign based on ID
SF3 Allocate Yes Select based on

head angle
SF4 Synchronization Yes Formation leader

decides on the
next behavior
and informs all
its members (the
decision is made
based on number of
times this behavior
is executed)

SF5 Synchronization Yes Team members de-
cide on a leader.
After execution of
the behavior, the
chosen leader (ran-
domly) decides on
the next task to be
executed.

SF6 Allocate Yes Assign based on the
robot’s color

SF7 Synchronization No Robots decide on
the next behavior
based on the num-
ber of times this be-
havior is executed

SF8 Synchronization Yes Voting
SF9 Synchronization Yes Complex voting.

TABLE I
SOCIAL INTERACTION BEHAVIORS DEFINED IN THE EXPERIMENTS.

the robots used the behavior graph to move in formation, in
a straight line, for a fixed distance of 6 meters. The team-
members were responsible for maintaining the formation,
making coordinated decision about switching from triangle
to column formations.

The results of the different runs appear in Figure 3. The
right Y axis measures total task execution time (for move-
ment of a fixed distance). The left Y axis measures the time
spent in interaction, i.e., in social interaction behaviors. The
line marked task time shows the average time to complete
the 6 meter course in each configuration (averaged across
all trials). The other lines measure the total interaction time,
and its constituent factors: Time spent in synchronization and
time spent in allocation.

Figure 3 shows that there are significant differences (al-

Configuration Executed social behavior
point A-B-C-D-E

# Runs

1 SF1-SF1-SF2-SF1-SF2 6
2 SF1-SF9-SF2-SF1-SF2 5
3 SF1-SF9-SF2-SF1-SF2 7
4 SF5-SF1-SF2-SF1-SF2 5
5 SF8-SF9-SF3-SF1-SF2 7
6 SF1-SF7-SF3-SF4-SF6 5
7 SF5-SF1-SF2-SF5-SF2 5

TABLE II
BEHAVIOR-GRAPH AND SOCIAL BEHAVIOR CONFIGURATIONS.
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Fig. 3. Results for 7 different configurations of the behavior graph in 2,
with different social behaviors.

most 20 seconds) between the total task execution time
of the best and worst configurations. Remember here the
behavior graph is fixed. Thus the only cause for change
is the selection of different configurations of coordination
mechanisms (interaction behaviors). Moreover, one can see
that in fact it is difficult to find correlation between the total
interaction time and task performance. Thus we can rule out
simple explanations that attempt to draw simple conclusions
that more communications improve performance.

The implication is clear: The best-performing configura-
tion is very specific, in the sense that it uses a very specific
combination of synchronization and allocation behaviors. In
this case, for instance, the choice of SF9 for a synchroniza-
tion behavior in point b appears to make one key difference.
But it does not account for the result by itself.

A second important evaluation criteria is demonstrated
by these experiments. In running these experiments (and
others), BITE did not require any programming effort for
coordination or communications. Indeed, all configurations
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were easily executed by BITE. This may seem like a trivial
result, in the sense that this is what we designed BITE to do.
But this should be taken in contrast to the state of the art in
multi-robot systems, where we often tweak coordination and
communication rules in very specific places, to account for
unforeseen circumstances. BITE’s principled design allows
such interventions when needed (in the form of new social
interaction behaviors), but is focused on removing the need
for them. Since all information sharing is done automatically,
and all decision making is automatic, there is very little (if
any) need for ad-hoc coordination.

B. What BITE Cannot Do
We believe BITE’s micro-kernel approach to integration

is superior to the monolithic architectures currently in use.
Quite simply, there is no way to plug-n-play different coor-
dination methods into an architecture, without introducing a
kernel-like mechanism responsible for executing them.

Nevertheless, BITE is not perfect. BITE’s design required
making some choices that necessitate compromises on sev-
eral issues. This subsection explicitly points them out, and
we trust the reader to put them in the context: These are not
negative results with BITE, simply a part of the evaluation
examining the scope of BITE’s capabilities.

BITE’s commitment is to carry out task allocation only
in the context of an agreed-upon top-level task (whose
execution and termination is synchronized). This is fine
for strongly-coordinated teams, but may be problematic
for loosely-coupled coordinated groups, where we do not
necessarily want robots to have to get all robots’ agreement
on the assigned task. Indeed, it has been shown repeatedly
that a dose of aggression and competition is healthy even
in cooperative settings (e.g., [18]). It is possible to model
adversarial or competitive allocation protocols in BITE, but
only once agents have agreed to the competition.

BITE’s strong commitment to agreement can also hinder
reactive responses. Say a robot is busy executing a task
assigned to it in agreement with the team. If an emergency
occurs that preempts this task, BITE will cause it to execute
a synchronized-termination interaction behavior, which may
or may not be sufficiently quick to execute (varying from
doing nothing, to elaborate repeated acknowledgments and
augmentations). This means that the robot’s ability to re-
spond to the emergency depends on the protocol chosen by
the designer, rather than on the robot’s knowledge (which in
this case is correct, and causes it to want to switch).

V. CONCLUSIONS AND FUTURE WORK

We have presented BITE, a behavior-based multi-robot
architecture, which takes a unique approach to integrating
together coordination and teamwork mechanisms. BITE sep-
arates these mechanisms from the architecture, and allows the
developer to use (and build) a library of interaction behaviors
which implement coordination protocols. To do this, BITE’s
task description structures impose structural and semantic
constraints, which allow BITE to automatically determine
when and how to execute coordination behaviors. We have

shown that BITE, fully implemented for real robots, leads to
being able to easily try different configurations of task behav-
iors and coordination mechanisms. We have also discussed
BITE’s limitations. Future work includes expanding BITE’s
capabilities to address distributed resource management and
improved collaborative world-modeling.
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