
 
 

    Abstract—The goal of this work is to determine the 
object correspondence between a sketched map and the 
scene depicted by the sketch, e.g., as represented by an 
occupancy grid map (OGM) built by a robot. We 
describe a novel method based on spatial relations for 
accomplishing this task. Our method is based on using 
the histogram of forces as scene descriptors. We generate 
a correspondence map between two scene descriptors 
and evaluate its confidence. From this map, we generate 
a one-to-one object correspondence map for the two 
scenes such that the object correspondence confidence 
value is maximized. Challenges include the fact that the 
two scenes may differ in terms of the shape and size of 
the objects, their orientation, and the objects might be 
shifted due to translation. The approach is evaluated 
using several hand drawn sketches that were collected as 
a part of a user study. We believe that the ability to 
perform scene matching will make our sketch interface 
more robust and easier to use, thereby providing us with 
a more intuitive way of communicating with the robots. 
 

Keywords- scene matching, sketch-based navigation, spatial 
relations, histogram of forces 

I. INTRODUCTION 
    Human robot interaction has been an area of great interest 
for many AI and robotics researchers. Several strategies 
have been proposed over the years that would enable us to 
interact and communicate with robots in the same way we 
interact and communicate with people. One such strategy 
has been the use of hand drawn sketch maps that can be used 
to direct mobile robots along a designated path or to a target 
location, using an interface which is intuitive to humans. 

In our previous work [1][2], we have shown how a sketch 
can be used as an effective means of communicating with 
one or more robots. One of the main constraints in [2] has 
been that it required the user to identify the different objects 
in the scene and label them correctly on the sketch. If, due to 
human error, the user did not label the objects correctly then  
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the robots would not be able plan their paths effectively and 

as a result would be unable to navigate through the scene. 
Also, it is possible that in the real world the user may not 
know the correct labels associated with each object. The 
work proposed in this paper relaxes this constraint and, as a 
result, makes the sketch interface more robust. 

The goal of this work is to determine the object 
correspondence between a sketched map and the scene 
depicted by the sketch, e.g., as represented by an occupancy 
grid map (OGM) built by a robot. We propose a method 
based on spatial relations for accomplishing this task. 
    Various methods exist in the literature for matching two 
images that are seen from different viewing perspectives. In 
[3], Boland et al. used the gradient quantization approach to 
produce an edge map for scene matching. The matching 
performance was improved by finding an optimal threshold 
for gradient quantization. Wong [4] proposed a polynomial 
estimation approach that estimated the geometric 
transformation using pairs of corresponding points from both 
the images as matching elements. Wong also used edge 
information as matching elements in [5]. Shi et al. [6] 
proposed an algorithm based on Fourier phase correlation 
and edge enhancement. The algorithm assumed that the 
considered images had similar edge orientations. 
    In this paper we present a scene matching strategy that 
uses spatial relations, i.e., the relative position between 
objects in a scene. Several methods have been proposed to 
capture the spatial relations between objects. Gader [7] used 
mathematical morphology to define spatial relationships, 
fuzzifying the standard method for computing binary 
morphology using the extension principle. Krishnapuram et 
al. [8] proposed the use of angles to define the relative 
directional position of on object. This concept was used in 
the angle histogram method introduced by Miyajima and 
Ralescu [9]. In this paper, we use a generalization of the 
angle histogram method known as the force histogram 
method to capture the spatial relations between objects, as 
proposed by Matsakis and Wendling [10].  
    Some previous work has been done in the area of using 
spatial relations for scene matching. Linguistic descriptions 
of spatial relations were used by Keller et al. in [11] as 
matching elements in scene matching problems. Sjahputera 
et al. [12] used the force histograms to match two object 
pairs based on the similarity of their spatial relations and 
extended this to scene matching in [13]. A better matching 
algorithm was introduced in [14] that used force histogram 
transformations to optimize the histogram similarity. 
    In [15][16][17] and [18], a set of force histograms was 
used as image descriptors and two methods were introduced 
for generating a correspondence map between two image 
descriptors. From this map, an object correspondence 
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confidence matrix was generated, which contained the 
degree of confidence for relating an object in one image with 
the corresponding object in the other image. From this 
matrix, a one-to-one object correspondence map known as 
the OMAP was generated. 
    In this paper, we describe an application of this approach 
by performing scene matching between a map that has been 
drawn to scale and a hand drawn sketch. For our application 
we have the top down views of the map and the sketch 
available to us. Hence, we modify the approach presented in 
[15][16][17] and [18] to exclude information from sensor 
pose parameters such as cameras’ tilt and swing. Challenges 
include the fact that the two scenes may differ in terms of 
the shape and size of the objects, their orientation, and the 
objects might be shifted due to translation. We present an 
approach that is robust enough to take these challenges into 
consideration.  

In Sec. II we explain our approach and the algorithms 
associated with it. Sec. III presents experimental results for 
matching a real map with various sketches (the sketches 
were collected as a part of a user study). Finally, in Sec. IV, 
we summarize and discuss future plans for this approach, 
including making it faster and more robust.  

II. METHODOLOGY 
    We assume that the two scenes have been segmented. 
Segmentation on the sketchpad is handled by considering 
each object as a closed polygon [19] [20]. Segmentation of 
the OGM is accomplished through a series of filtering 
operations as described in [21]. Labels are applied for 
convenience but are not used in the scene matching. 

The goal is to match each object in the template scene 
with its corresponding object in the argument scene. In our 
case, the template scene (S) is the sketch drawn by a user on 
the sketchpad and the argument scene (S’) is the Ovidence 
Grid Map (OGM). Since the sketch is drawn by a human and 
the OGM is generated using sensors on the robot; it is very 
likely that the template and argument scenes differ in 
scaling, orientation, object size, object shape, and even 
objects shifted due to translation. To compare the scenes it is 
important to neutralize these differences.  
    We can neutralize these differences by generating F-
histograms between different pairs of objects and then 
performing some geometric transformations on the F-
histograms of the template scene (sketch) so that it aligns up 
correctly with the argument scene (OGM). The 
transformations that neutralize the scaling, orientation, and 
translational differences can be given as follows [14]: 
 
Scaling: We compute the histograms between different pairs 
of objects in each scene and then compute their means. We 
then calculate a scaling factor (ℓ) and apply the 
transformation: 

Fr
a1b1 = ℓ3-r * Fr

ab  
where,  
Fr

ab is a histogram relation between objects a and b in S. 
Fr

a1b1 is the transformed histogram relation. 
r = 0 for histogram of constant forces. 

This takes care of scaling differences between the scenes. 
 
Orientation: We compute the centroids (i.e. main directions) 
for all the histograms in the template as well as the argument 
scenes and then apply the transformation: 

Fr
a2b2 = Fr

a1b1 (θ – ρ). 
where,  
Fr

a1b1 is the transformed histogram relation from above. 
Fr

a2b2 is the same histogram relation after orientation 
transformation. 
ρ gives the direction in which the histogram must be shifted 
to account for orientation differences.  
θ represents a direction and θ ∈(0˚, 180˚) 
 
Translation: The F-histograms are unaffected by translation 
of object positions; hence no transformation is required. 
 

Once the effects of scaling, orientation and translation 
have been neutralized we compute the similarity between 
different pairs of histograms. There are various similarity 
measures in the literature [22][23]. We use the Normalized 
cross-correlation index that is given by: 
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where, h1 is Fr
a’b’ and h2 is Fr

a2b2; hi(θ) represents the 
histogram value for direction θ. 

Finally, we save the 3-tuple output after matching each 
pair of histograms: 

σ ← µ(Fr
a’b’,Fr

a2b2) ;  R ← ρ ;  L ← ℓ. 
 
    We use the F-histogram method to capture the spatial 
relations information between a pair of objects in a scene. 
Hence by using a set of F-histograms we can define the 
spatial relations between all the objects in a scene. Such a set 
of F-histograms is known as a scene descriptor [18]. It can 
be given by: 

FrD = { Fr
ab | OaOb ∈S where a,b = 1,…,N and a<b} 

FrD’ = { Fr
a’b’ | Oa’Ob’ ∈  S’ where a’,b’ = 1,…,N’ and       

a’ ≠ b’} 
where N = Number of objects in S and 

     N’ = Number of objects in S’ 
    For ease of notation we index the elements of FrD and 
FrD’ based on the labels of the objects:   

FrD = { Fr
(c) | c = 0,….,Q-1} 

where Q = N*(N-1) / 2 and 

c = (b – 1) + ((a – 1)*N) – ∑
−

=

+
1

0
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a

j
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FrD’ = { Fr
(c’) | c’ = 0,….,Q’-1} 

where Q’ = N’*(N’-1) and 

c’ = (b’ – 1) + ((a’ – 1)*N’) – ∑
−

=

+
1'

0

)1(
a

j

j  

FrD’ contains Fr
a’b’ and its dual Fr

b’a’. Its dual is indexed at: 
c’’ = c’ + (Q’/2) 

Also, if Fr
(c) = Fr

ab then a = arg(Fr
 (c)) and b = ref(Fr

 (c)). 
    Scenes S and S’ are represented by their F-histogram 
descriptors FrD and FrD’ respectively. We consider all 
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possible histogram relations Fr
(i) → Fr

(j’) defined by 
FrD×FrD’. Each histogram relation Fr

(i) → Fr
(j’) is evaluated 

using the histogram matching algorithm µ(Fr
(i),Fr

(j’)) which 
returns a 3-tuple output (σ, R, L). The normalized 3-tuple 
output is denoted as ( LR ˆ,ˆ,σ̂ ). The featuresσ̂ and R̂ are 
normalized to [0, 1]. The common values for L̂ are 
normalized to [0, 1], even though L̂ as a whole, is not 
bounded to a specific range of values. The features can be 
normalized using the method below [22][24]: 
 

1. The value of σ is already in [0, 1], therefore σ̂ = σ. 
2. Since R is periodic we use the following normalization: 

R̂ =      (360˚ – R)/180˚    for R > 180˚ 
                             R/180˚                 otherwise. 

3. The scaling factor is generally in the range of [1/2, 2] 
and it can be normalized using the following equation: 

L̂ = C * ln(L). 
where C is found to be 2.164. 

 
    We can regard the normalized 3-tuple output as a vector 

'ijx ' = [ σ̂ R̂ L̂ ]. The set of all 'ijx  generated from FrD×FrD’ 
is denoted by X where |X| = Q*Q’. 
    Let d( 'ijx , 'pqx ) be the Euclidean distance between two 
vectors where 'ijx , 'pqx ∈X, then this distance can be 
computed as follows: 

d( 'ijx , 'pqx ) = [(σ̂ ij’ –σ̂ pq’)2 + ( R̂ ij’ – R̂ pq’)2 +  

                                 ( L̂ ij’ – L̂ pq’)2]1/2                                            (3.1) 
 

A.   FMAP Generator Algorithm (FMG):  
 
    The concept of the FMAP is to build the evidence for 
object correspondence between images S and S’. It was 
proposed in [17] and reported further in [15], [16], and [18].  
If S ⊆ S’, S→S’ is defined by a one-to-one FMAP from FrD 
to FrD’, Fr

(i)→Fr
(j’) ∈ FMAP, and FMAP ⊆ FrD×FrD’.  

FMAP is bijective if S and S’ contain the same number of 
objects.  Even though histogram duals are included in FrD’, 
we do not use both the histogram and its dual in the FMAP 
[17].  This rule and the one-to-one property make up the 
FMAP integrity properties.  If the properties are satisfied, a 
completed FMAP is called a legal FMAP.  The FMAP 
confidence (ζ) is calculated based on the similarity of each 
recovered parameter [σ̂ R̂ L̂ ] across all histogram 
correspondences in the FMAP [15][16][17][18].  If S and S’ 
capture the same objects, then the correct FMAP should 
contain all the correct histogram correspondences 
Fr

(i)→Fr
(j’).  According to Matsakis et al. [14] under ideal 

scene conditions (2D, vector data, orthographic projection), 
these histogram correspondences are expected to produce 
identical [ σ̂ R̂ L̂ ], thus ζ = 1.  However, if the image is 
less than ideal then a correct FMAP is likely to have ζ < 1, 
but ζ should be close to 1.   
    Several FMAP generator (FMG) algorithms were 
proposed to build a legal FMAP [17].  These algorithms 
perform a sequential search in X from a seed point y  where 

y  is a vector whose elements are within the value ranges of 
the elements in X.  The simplest FMG algorithm is the 
Nearest Neighbor (NN) method that builds the FMAP by 
finding Q vectors in X closest to y  that satisfy the FMAP 
integrity properties.  FMG-NN method has been used in 
scene matching with some success in [15] and [16].  In the 
NN method, the candidate vectors for the FMAP are ranked 
solely based on their distances from the seed point y  (a 
closer vector is a more suitable candidate).  Using Euclidean 
distance, this method works well if the correct Fr

(i)→Fr
(j’) are 

clustered in a tight hypersphere with y  as the cluster center. 
With less than ideal scenes and a high variation of object 
shapes and/or relative position (as is expected in hand-drawn 
sketches) this condition may not prevail.  This was 
confirmed by our initial results where FMG-NN did not do 
well in this application.   
    Recognizing the limitation of FMG-NN while dealing 
with our application, we used an improved FMG method 
where the fitness values of candidate vectors are calculated 
based on their “closeness” to vectors already in the FMAP at 
that point [16][17].  This method is called the Fuzzy 
Sequential Nearest Neighbor (FSNN) method.  The degree 
of “closeness” is assessed using the fuzzy membership 
function given below: 

                  
vkvmdclose e

d /)(*1
1)( +−+

= αµ                      (3.2) 

where, 
α controls the steepness of the membership function;  
m and v are the average and variance of distances between 
any pair of vectors (

'ijx , 'vzx ) where 
'ijx and 'vzx  represent two 

histogram relations that do not conflict with each other. Thus 
both can exist in the same FMAP. They can be computed 
using following equations:  
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    The candidate vector that has the best fitness and is in 
compliance with the FMAP integrity properties is added to 
FMAP.  We found that the FSNN performed better than the 
NN method at matching the sketches with the scene maps.  
Based on this result, we use the FMG-FSNN to generate our 
FMAP. The results based on this algorithm are discussed in 
the section III. The algorithm can be written as follows: 
 
 
1. Let A be the assignment order of vectors in FMAP, i.e. 

zA  is the A-th vector assigned to FMAP.  Initialize A = 
1.  Let AFIT be the fitness value of zA . 

2. Find the closest vector to y : )(min
),( jixydJI xx

ji
′′

′

= , jix ′ ∈ X. 
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3. Initialize FMAP: select )( IF → )( JF ′ , FMAP[I] = J’, zA  

= JIx ′ , 
AFIT = µclose(d( zA , y )), where 

( ) 1/)(1)( −−+= smd
close ed αµ , α is the steepness constant, m 

and s are the mean and standard deviation of 
d(

jix ′
,

qpx ′ ), jix ′
 and 

qpx ′  ∈ X such that i ≠ p and j' ≠ q' 
(FMAP is one-to-one), and j' is not the dual of q', i.e. 

jix ′
 and 

qpx ′  obey  the FMAP integrity properties. 
4. Do Until FMAP is full (A = Q) 
 4.1 For each 

jix ′
∈ X satisfying FMAP integrity 

properties and 
jix ′
 ∉ FMAP, calculate candidate 

fitness [ ]∑ = ′′ ⋅= A

a
a

jiclose
a

Aji zxdFITCFIT
1

2
1

1 )),(()( µ  

 4.2 Find the best fitting vector (highest CFIT): 
)(max jiCFITJI xx

ji
′′

′

= . 

 4.3 Assign the best fitting vector to FMAP: FMAP[I] 
= J’, zA 1+  = JIx ′ , 

A+1FIT = CFITIJ'. 
 4.4 Increment A. 
 End Until 
 
B.   Particle Swarm Optimization (PSO). 
 
    FMG is a method for finding the optimal FMAP given a 
seed point y . In order to find a FMAP with the highest 
possible confidence (ζ) we need to use a search algorithm. 
We use the particle swarm optimization technique for this 
purpose [18][25]. The parameters we used for the PSO are 
given below: 
 
  (1) Neighborhood: We used a star neighborhood. In a star 
neighborhood, each particle can communicate with every 
other particle, forming a fully connected social network. 
  (2) Search space: 3- dimensional ( LR ˆ,ˆ,σ̂ ). 
  (3) Initialization: In [15][16][17] and [18] particles are  
initialized using a selective initialization scheme. This was 
done to provide the PSO with the likely starting points from 
where it could ‘grow’ the FMAP. Such a scheme has not 
been used in this work. In this paper, σ̂ , R̂ and L̂ are all 
initialized randomly; σ̂  and R̂ are initialized between [0, 1] 
and L̂  between [-0.5, 0.5]. To ensure that all the particles are 
initialized independent of one another, system time was 
passed as the seed to the random number generation 
algorithm. 
  (4) Fitness function: The FMAP confidence value (ζ) is 
used as the fitness function.  
  (5) Velocity Restriction: We have constrained the 
maximum velocity with which a particle can move in any 
direction. This is done to ensure that the particles don’t ‘fly’ 
over good regions in the search space. The velocity is 
restricted to [-0.2, 0.2]. 
  (6) Convergence: We conclude that the algorithm has 
converged when any of the following conditions are met:  

• The maximum number of iterations is reached. 
• gbest is relatively constant for several iterations. 

  (7) Velocity Update: The equation for updating the velocity 
of each particle can be given by: 
v k(t) = v k(t-1) + ρ1( x pbest – x k(t)) + ρ2( x gbest – x k(t)) (3.5) 

where, ρ1 = r1c1; ρ2 = r2c2; 
r1, r2 ~ U(0,1); c1 + c2 ≤ 4 
t is the iteration number. 
k is the particle index. 

  (8) Position Update: The position of a particle can be 
updated using the following equation: 
                         x k(t) = x k(t-1) + v k(t)                      (3.6) 

 
The algorithm is given below: 

1   Set t = 0. 
2  Initialize K particles position kx (t) randomly. 
3  Initialize gbest = 0. 
4  Do Until one of the convergence criteria is met 
  4.1 For each particle Do 
    4.1.1 Get FMAP = FMG ( kx (t)).  
    4.1.2 Calculate ζ from FMAP. 
    4.1.3  If ζ  > pbest Then  
     4.1.3.1  pbest = ζ , 

pbestkx ,
 = kx (t). 

       End For (4.1.3) 
   4.1.4  If ζ  > gbest Then 

     4.1.3.1  gbest = ζ , gbestx  = kx (t). 
       End If (4.1.4) 

 4.2 For each particle Do 
   4.2.1  Update kv  using (3.5). 
   4.2.2  Update kx  using (3.6). 
   End For (4.3) 

 4.3 t ← t + 1 
  End Until (4) 
 
    The search algorithm helps us find the best possible 
FMAP with the maximum possible confidence (ζ). We now 
wish to translate this FMAP into a set of object 
correspondences that allow a human observer to easily 
identify the mapping / registration of objects across the two 
scenes. For this purpose, an Object Correspondence 
Confidence Matrix (OCCM) is developed from which we 
construct a one-to-one object correspondence map known as 
the OMAP. 
 
C.    Object Correspondence Confidence Matrix (OCCM). 
 
   In the FMAP, each histogram correspondence Fr

(i) → Fr
(j’) 

implies an object correspondence (Oa, Ob) → (Oc’,Od’) 
where, (Oa, Ob) represents an object pair in S such that a<b; 
and (Oc’,Od’) represents an object pair in S’ such that c’ ≠ d’. 
To determine the one-to-one object correspondence, an 
N×N’ matrix is constructed, where N and N’ are the number 
of objects in S and S’ respectively. This matrix is known as 
the Object Correspondence Confidence Matrix (OCCM) 
[17][18]. Each element of this matrix represents the 
confidence for a certain object correspondence. For example, 
an element OCgh’ represents the confidence with which 
object Og in S corresponds to object Oh’ in S’ (Og → Oh’). 
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Now, the correspondence (Oa, Ob) → (Oc’,Od’), gives rise to 
two sets of object correspondences: {Oa → Oc’, Ob → Od’} 
and {Oa → Od’, Ob → Oc’}. Both sets must be taken into 
account to arrive at the correct object correspondence. The 
histogram correspondence, Fr

(i) → Fr
(j’) provides some 

evidence to support the four different object 
correspondences: Oa → Oc’, Ob → Od’, Oa → Od’, and Ob → 
Oc’. The measure of confidence for Fr

(i) → Fr
(j’) is given by 

σij’. Therefore, σij’ can be distributed as ‘partial’ confidence 
to the four object correspondence confidence values: 

OCac = OCac + σij’       OCbc = OCbc + σij’ 
OCad = OCad + σij’       OCbd = OCbd + σij’ 

    The same process is repeated for each histogram 
correspondence in FMAP. The OCCM accumulates the 
partial confidence supplied by each histogram 
correspondence.  
 
D.   One-to-one Object Map (OMAP). 
 
   Upon obtaining the completed OCCM matrix, we need to 
determine the one-to-one object correspondence map 
(OMAP) such that the object correspondence confidence 
value is maximized [17][18]. To do this, the OMAP is 
initialized as an empty 1-D array with N elements. The array 
is then filled with object relations that had the highest 
confidence in the OCCM. The most confident object relation 
is added to the OMAP. For each subsequent object relation 
(i.e., Og → Oh’) two conditions are checked: 

(1) OMAP[g] is empty. 
(2) OMAP[m] ≠ h', where m = 1,…, N   

    These conditions ensure that the one-to-one property of 
the OMAP is preserved. If the conditions are met then the 
object relation Og → Oh’ can be added to the OMAP and 
OMAP confidence (Ω) is incremented by OCgh’. The OMAP 
thus obtained allows us to easily identify the correspondence 
of objects between the template (sketch) and the argument 
(OGM) scenes. 

III. EXPERIMENTS AND RESULTS  
To test the effectiveness and robustness of our approach 

we have tried to match several hand drawn sketches with a 
map of the environment that has been drawn to scale. The 
sketches were drawn as a part of a user study in which 
volunteers were presented with a physical scene and then 
asked to sketch the scene on a PDA sketchpad [19][20]. We 
expect to get similar results if the map of the environment is 
replaced by a segmented OGM built using the method 
described in [21].  

Figure 1(a) shows the map of the environment, Figures 
1(b)–(i) show the sketches that are used to test the approach. 
Note that the sketched paths shown in the figures were not 
used in the scene matching. The results from the 
experiments are summarized in Table 1. 
    

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 
(f) 

 

 
(g) 

 
(h) 

 
(i) 

Figure 1. (a) Physical map, (b) – (i) are sketches used for testing. 
 

TABLE I. SUMMARY OF RESULTS 
Sketch FMAP 

Confidence 
(ζ) 

OMAP 
Confidence 

(Ω) 

Correct 
matches 

Case (a) 1.00 1.00 8 
Case (b) 0.91 0.72 8 
Case (c) 0.88 0.53 8 
Case (d) 0.91 0.75 8 
Case (e) 0.87 0.57 8 
Case (f) 0.92 0.69 8 
Case (g) 0.92 0.74 8 
Case (h) 0.86 0.52 6 
Case (i) 0.88   0.66 8 

 
    From the table we can conclude that our approach has 
given good results on all but one of the sketches. Case (a) is 
an experiment in which scene matching was carried out 
using the map of the environment as the template scene as 
well as the argument scene. It represents an ideal scenario 
and hence it is not a surprise that we get an ideal result. 
Cases (b) – (i) are experiments when scene matching was 
carried out between the map and sketches (b) – (i) 
respectively. The approach found an FMAP with a high 
confidence value in all cases. This FMAP turned out to be 
the correct FMAP in all but one of the cases and as a result 
we got an object mapping that had a high confidence. Case 
(h) represents an experiment in which we could not get a 
perfect object mapping. To investigate this case we arranged 
the objects such that the correct FMAP would be known to 
us and then we evaluated the fitness of this FMAP. We 
found its fitness (ζ) to be 0.882 which is clearly higher than 
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the best fitness that the swarm could find. Thus we 
concluded that, if instead of the PSO, we had used an 
exhaustive search then we would have found the correct 
FMAP. Of course, the trade-off here is between the speed 
and cost of computation versus the accuracy.  
    We are currently investigating different approaches for 
initializing the swarm in PSO so that the search converges 
faster and we avoid the problem of getting stuck in a local 
maxima.  

IV. CONCLUDING REMARKS 
We have presented a technique to perform scene matching 

between a map of the environment and a sketch using spatial 
relations. This work was done with the motivation of making 
the robot sketch interface more robust and easier to use. 
Considering the application, certain modifications were 
made to the algorithm described in [18]. Features such as tilt 
and swing angle of the camera were excluded. Also, the 
selective initialization scheme used in the previous work 
yielded good results only when the number of objects was 
restricted to 5 or below. With 8 objects the search space was 
much more complex. Hence, while searching for the best 
histogram map (FMAP), the particles in the PSO algorithm 
were initialized randomly thus enabling a wider and more 
effective coverage of search space. 

In the future, we intend to improve on the FMAP 
generator algorithm and the method of computing its fitness. 
We would also like to make this approach more robust by 
considering the cases where the two scenes have different 
numbers of objects. In addition, the current algorithm is 
computationally intensive and as a result has a drawback of 
being quite slow. To run this algorithm on a robot we need 
to speed up the search without affecting its accuracy. Our 
future efforts will be directed towards this goal.  
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