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Abstract— Motion planning for closed-chain systems is par-
ticularly difficult due to additional closure constraints placed
on the system. In fact, the probability of randomly selecting
a set of joint angles that satisfy the closure constraints is
zero. We propose Planning with Reachable Distance (PRD) to
overcome this challenge by first precomputing the subspace
satisfying the closure constraints, then directly sampling in
it. To do so, we represent the chain as a hierarchy of sub-
chains. Then we calculate the “closure” sub-space as appro-
priate reachable distance ranges of sub-chains satisfying the
closure constraints. This provides two distinct advantages over
traditional approaches: (1) configurations are quickly sampled
and converted to joint angles using basic trigonometry functions
instead of more expensive inverse kinematics solvers, and (2)
configurations are guaranteed to be closed.

In this paper, we describe this hierarchical chain rep-
resentation and give a sampling algorithm with complexity
linear in the number of links. We provide the necessary
motion planning primitives for most sampling-based motion
planners. Our experimental results show our method is fast,
making sampling closed configurations comparable to sampling
open chain configurations that ignore closure constraints. Our
method is general, easy to implement, and also extends to other
distance-related constraints besides the ones demonstrated here.

I. INTRODUCTION

Closed-chain systems, as in Figure 1, are involved in

many applications in robotics and beyond, such as parallel

robots [12], closed molecular chains [16], animation [4],

reconfigurable robots [7], [14], and grasping [6]. However,

motion planning for closed-chain systems is particularly

challenging due to additional constraints, called closure

constraints, placed on the system. Using only the traditional

joint angle representation, the probability that a random set

of joint angles lies on the constraint surface is zero [9].

Instead of randomly sampling in the joint angle space

to find closed configurations, we propose Planning with

Reachable Distance (PRD). PRD overcomes this challenge

by precomputing the subspace where closed constraints are

satisfied and then directly sampling in this subspace. We

represent the chain as a hierarchy of sub-chains by recur-

sively breaking down the problem into smaller subproblems.

Each sub-chain in the hierarchy may be partitioned into other,

smaller sub-chains forming a closed loop. For any sub-chain,

we can compute the attainable distance (reachable distance

or length) between its two endpoints recursively. With this

information, we simply sample distances in these ranges,

and then use basic geometry relationships to calculate the
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Fig. 1. Examples of different closed-chain systems. Each must
satisfy certain closure constraints. (a) Single loop: loop must remain
closed. W is the world coordinate frame. (b) Multiple loops: all
loops must remain closed. (c) Multiple robot grasping: all robot
end-effectors must remain in contact with the grasped object.

joint angles. Thus, we can directly sample in the “reachable”

space, which is expensive to compute explicitly. While a link-

age’s reachable distance has been used in other computations,

to our knowledge it has not been used to guide sampling in

sampling-based planners. PRD has two distinct advantages

over traditional approaches:

• configurations are quickly sampled and converted to

joint angles using basic trigonometry functions instead

of more expensive inverse kinematics solvers.

• configurations are guaranteed to be closed.

In this paper, we formally describe this new chain rep-

resentation and give a recursive sampling algorithm with

complexity linear in the number of links in the chain. This al-

gorithm explores the closure constraint surface by recursively

sampling in the feasible reachable distance range for each

sub-chain. It can quickly determine whether or not it is possi-

ble to satisfy the closure constraints of a sub-chain’s children.

Our method does not guarantee collision-free configurations;

like many methods, they must be checked afterwards.

PRD can significantly improve the performance of

sampling-based planners for closed-chain systems, such as

Probabilistic Roadmap Methods (PRMs) [5] and Rapidly-

exploring Randomized Trees (RRTs) [10], which have been

widely successful in solving other high degree of freedom

(dof) problems. However, the traditional joint angle rep-

resentation makes it difficult for these methods to sample

closed configurations. While several strategies use heuristics

to improve the probability of sampling closed configurations

[9], [19], [2], [18], [1], [17], sampling is still difficult and

expensive for large systems. Here, we provide two necessary

motion planning primitives (sampling and local planning) to

implement most of these sampling-based planners.

Our experimental results show that our method is fast

and efficient in practice making sampling configurations

with closure constraints comparable to sampling open chain
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configurations that ignore closure constraints entirely. Our

method is easy to implement and general — it can be

applied to other articulated systems. It is also extendible to

more distance-related constraints besides the ones here. For

example, it can be used to sample configurations with the

end effector in specific regions.

II. PRELIMINARIES

This paper focuses on closed-chain systems. A closed-

chain system differs from other systems in that it must also

satisfy certain closure constraints. Figure 1 gives examples

of different types of closed-chain systems. Each system has

a different set of closure constraints to satisfy.

Closed-chain systems are traditionally represented by the

position and orientation of the base or a base link and one or

more angles for each joint (corresponding to the joint’s dof).

For example, the single loop in Figure 1(a) is represented by

11 values: 6 for the position and orientation of link l0 and 5
for the angles θ1 . . . θ5. While this representation sufficiently
describes a configuration, it is extremely difficult to sample

these parameters randomly while satisfying the closure con-

straints. This is because this joint angle representation does

not also encode the closure constraints — they are handled

separately. In fact, it has been shown that the probability

of randomly sampling a set of joint angles that satisfy the

closure constraints is zero [9].

III. RELATED WORK

In theory, exact motion planning algorithms [15], [8]

can handle systems with closure constraints. However, since

exact algorithms are exponential in the dimension of C-space

(the set of all possible robot configurations, valid or not), they

are generally impractical for large closed-chain systems.

Randomized algorithms such as Probabilistic Roadmap

Methods (PRMs) [5] and Rapidly-exploring Randomized

Trees (RRTs) [11] are widely used today for many appli-

cations. They first construct a roadmap (graph or tree) that

represents the connectivity of the robot’s free C-space, and

then query the roadmap to find a valid path for a given mo-

tion planning task. Initially, they were mainly limited to rigid

bodies and articulated objects without closure constraints.

Kavraki et al. [9], [19] randomly samples configurations

and then applies an iterative random gradient descent method

to push the configuration to the constraint surface. They

solved planar chains with up to 8 links and 2 loops in

several hours with PRM and several minutes with RRT.

Han et al. [2] uses a kinematics-based PRM approach by

first building a roadmap ignoring all obstacles, and then

populating the environment with copies of this kinematics

roadmap, removing invalid portions. This method can solve

chain problems with 7 – 9 links in under a minute. This

work is extended to increase the number of links the method

can handle in [1], [18]. Trinkle and Milgram proposed a

path planning algorithm [17] based on configuration space

analysis [13]. Their method does not consider self-collision

but still may be applied as a local planner. Recently, Han

et al. [3] proposed a set of geometric parameters for closed-

chain systems such that the problem can be reformulated as a

system of linear inequalities. Then, linear programming and

other algorithms can be used for sampling and local planning.

However, they do not discuss the algorithm’s complexity or

consider collisions in planning.

Our method is very fast and has complexity linear in the

number of links. It guarantees that a closed configuration

will be generated or reports that one cannot be obtained.

Moreover, our method is general and easy to implement for

sampling-based planners. It is extendible to more distance-

related constraints than the ones considered here.

IV. REACHABLE DISTANCE REPRESENTATION

Here we describe our hierarchical representation based on

reachable distances. The main advantage of this representa-

tion over the traditional joint angle representation is that it

also encodes the closure constraints. This new representation

allows us to easily randomly sample closed configurations.

Intuitively, in a closed-chain system, the length of each

link has to be in an appropriate range to satisfy the closure

constraints. For example, Figure 2 shows a simple triangular

closed-chain with 3 links a, b and c of variable length. To

sample a closed configuration, we have to make sure the

length of each link is in an “appropriate” (feasible) range.

In other words, the length of each link needs to satisfy the

triangle inequality: |c| >= |a + b| and |c| <= |a − b|.
To sample a closed configuration, we first can calculate

the link’s remaining available range based on the available

ranges of the other links. In this way, we can eventually

sample a valid length for each link to satisfy the closure

constraints or report that it is impossible to find a closed

configuration. For the triangular case in Figure 2, once we get

a valid length for each link, we get a triangular configuration

that is guaranteed to be closed. Below we show how we

extend this sampling strategy to handle a general closed-

chain system. This scheme only ensures that the closure

constraints are satisfied. Collision checking must still be

performed to determine the configuration’s validity. Note

that this representation can also support joint angle limits

by restricting the feasible range of the links. For simplicity,

we ignore joint angle limits in this paper.
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Fig. 2. Configurations of an articulated system with 3 links. a,
b and c each has variable length. (a) Each link has an appropriate
length to close the configuration. (b) c is too long. (c) c is too short.

A. Closed-Chain as a Hierarchy of Sub-Chains

For simplicity, here we consider a single loop closed-

chain. However, this representation is general and may be

applied to other closed-chain systems. The chain (called the

parent) may be partitioned into several sub-chains (called
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the children) where each sub-chain is a set of consecutive

links and the union of the children represents all the links in

the parent. For example, the virtual link 16, see Figure 3(a),

connects the two actual links 0 and 1. In this way, the parent

is closed if and only if the virtual links and its children form

a closed-chain. We recursively partition sub-chains until all

the children have only 1 link. This defines a hierarchy of

sub-chains and virtual links, as displayed in Figure 3(b).

B. Reachable Range of a Sub-Chain

The reachable distance of a sub-chain is the distance

between the endpoints of its virtual link. The set of all

possible reachable distances for a sub-chain is called its

reachable range. For example, the reachable range of a single

link is its length. A parent link’s reachable range depends on

the reachable ranges of its children. If we build the sub-chain

hierarchy such that each sub-chain has only 0 or 2 children,

then the reachable ranges are computed as follows.

Consider a sub-chain with no children. Let lmin and lmax

be the minimum and maximum link length, respectively. (For

a non-prismatic link, lmin = lmax.) The reachable range is

then [lmin, lmax]. Now consider the sub-chain with 2 children
in Figure 4(a). The sub-chain and its two children form a

triangle. Let [amin, amax] and [bmin, bmax] be the reachable
range of the first child and the second child respectively. The

reachable range of the parent is then [lmin, lmax] where

lmin =







max(0, bmin − amax), amin < bmin

0, amin = bmin

max(0, amin − bmax), amin > bmin

(1)

and lmax = amax + bmax. Note that Equation 1 is general.

Given the reachable ranges of any two links in the same

triangular sub-chain, it calculates the reachable range of the

third one to satisfy the triangle inequality.

a
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Fig. 4. (a) A sub-chain with 2 children a and b and its virtual
link l. (b) A configuration where l is minimum when amin < bmin

and x = min(amax − amin, bmin − amin). (c) A configuration
where l is minimum when amin > bmin and x = min(bmax −

bmin, amin−bmin). (d) A configuration where l is maximum lmax.

A closed configuration is then a set of distances for each

virtual link in the hierarchy such that each distance is within

the virtual link’s reachable range. We can then compute

its joint angles using only basic trigonometry relationships

instead of more expensive inverse kinematics solvers. We

discuss sampling in more detail in Section V-A.

C. Available Range of a Sub-Chain

The available reachable range (available range) of a

virtual link is set of distances/lengths which allow it to close

with the other links in the same sub-chain (i.e., satisfy the

triangle inequality). The available range is a subset of the

reachable range that is a function of the available ranges

(or lengths) of other links in the same sub-chain loop.

For example, in the beginning, for each sub-chain with 2

children, the reachable ranges of all 3 links can satisfy the

triangle inequality and thus the available range is the same

as the reachable range. However, once we fix the length of

a link, portions of the reachable ranges of other links in the

same sub-chain may no longer be valid. When this happens,

we need to recalculate their available ranges using Equation

1. Note that Equation 1 is used in a more general way here.

a, b and l can be any link in the same triangular sub-chain.

V. APPLICATION TO SAMPLING-BASED PLANNING

Here we describe two primitive operations for most ran-

domized sampling-based motion planners such as PRMs and

RRTs: sampling and local planning (i.e., finding a valid path

between two samples). We show that these operations are fast

and efficient, thereby allowing sample-based motion planners

to be directly applied to large closed-chain problems.

A. Sampling

To sample a closed configuration and determine its joint

angles, we first recursively sample the lengths of each virtual

link. We then sample the orientation of each sub-chain (e.g.,

concave or convex for chains in the plane, dihedral angles for

non-planar chains). Finally, we use the virtual link lengths

and orientations to compute the appropriate joint angles.

Note that this sampling only ensures that the configuration

is closed — it will still need to be checked for collision. We

describe each step in more detail below.

1) Recursively sample link lengths: Because we know

the reachable range for each sub-chain in the hierarchy,

sampling a closed configuration simply becomes sampling

distances in the available reachable ranges of each sub-chain.

Once we fix the length or reachable distance of a parent

sub-chain, portions of its children’s reachable ranges may

become invalid. We define the remaining valid portions of

their reachable range as their available reachable range. Note

that an available reachable range may never become empty, at

the very least its minimum and maximum may become equal.

Thus, we sample reachable distances and update available

reachable ranges starting at the the root of the hierarchy until

all sub-chain reachable distances are sampled. Algorithm V.1

describes this recursive sampling strategy.

Recall that the sub-chain hierarchy is a binary tree and that

there is one internal node for each virtual link. The sampling

algorithm is called once on each virtual link. Because there

are O(n) internal nodes in the binary tree (n is the number
of actual links), the sampling algorithm runs in O(n) time.
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Fig. 3. (a) A chain (indicated by solid links in the first image) may be partitioned into a set of sub-chains represented by virtual links
(indicated by dashed links). This partitioning repeats to form a hierarchy where the virtual links in one level become the actual links of
the next level. (b) The tree represents the entire sub-chain hierarchy where nodes correspond to virtual links.

Algorithm V.1 Sample

Input. A sub-chain c. Let c.arr be c’s available reachable

range, c.left and c.right be c’s children, and c.len be

the length of c’s virtual link. Let p be c’s parent and s

be c’s sibling.

1: Update c.arr from p.arr and s.arr.

2: Randomly sample c.len from c.arr.

3: Set c.arr to [c.len, c.len].
4: if c has children then

5: Sample(c.left).

6: Sample(c.right).

7: end if

2) Sample dihedral or concave/convex orientation: Each

sub-chain and virtual link forms a triangle. In 2D, two

different configurations have the same virtual link length:

a concave orientation and a convex orientation (see Fig-

ure 5(a)). In 3D, a virtual link length can represent many

configurations depending on the dihedral angle between its

triangle and its parent’s triangle (see Figure 5(b)). Thus, we

also sample the orientation of the virtual link.

(a)

ρ

(b)

Fig. 5. (a) In 2D, the same virtual link represents two configura-
tions: a concave triangle and a convex triangle. (b) In 3D, the same
virtual link represents many configurations with different dihedral
angles ρ between the sub-chain’s plane and its parent’s plane.

3) Calculate joint angles: Consider the joint angle θ

between links a and b. Links a and b are connected to a

virtual link c to form a triangle. Let la, lb, and lc be the

lengths of links a, b, and c, respectively. The joint angle can

be computed using the law of cosines:

θ = acos(
l2a + l2b − l2c)

2lalb
). (2)

B. Local Planning

Given two configurations, qs and qg , a local planner

attempts to find a sequence {qs, q1, q2, . . . , qg} of valid

configurations to transform qs into qg at some user-defined

resolution. Here we describe a simple local planner that

uses a straight-line interpolation in the reachable space to

determine the sequence of configurations. While this is

certainly not the only local planning scheme possible, we

find it performs well in practice.

For each virtual link, this local planner interpolates be-

tween its length in qs and its length in qg to get a sequence of

lengths. We then must determine the virtual link’s orientation

sequence (i.e., concave/convex in 2D and the dihedral angle

in 3D) to fully describe the sequence of configurations. In

2D, if the orientation is the same in qs and qg , we keep it

constant in the sequence. If it is not the same, we must “flip”

the links as described below. In 3D, we simply interpolate

between the dihedral angle in qs and the dihedral angle in qg .

We determine the validity of the sequence by checking that

each configuration is closed (i.e., each virtual link’s length

is in its available reachable range) and collision-free.

1) Concave/convex flipping for 2D chains: Consider the

first and last configurations of sub-chains in Figure 6. When

the orientation is different, as in this example, we need to

find a transformation from one to the other.

Fig. 6. Flip the links to change its orientation.

To flip the virtual link, we need to open the parent’s

virtual link enough so its children can change orientation

while remaining in their available reachable range. In other

words, at some point the parent’s reachable range must be

large enough to accommodate the summation of its children’s

reachable distance (i.e., allow the children to be “flat”). Such

a constraint on reachable-distance can be easily handled

by our method. There are other more powerful options. In

our current implementation, we first calculate the available

range for this minimum “flat” constraint. Then we sample an

intermediate configuration where the virtual links are “flat”

and try connecting it to both the start and goal configurations.

VI. RESULTS AND DISCUSSION

In this section we show how our PRD method performs in

practice. We give a performance study in Section VI-A and
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present the method in a complete motion planning frame-

work in Section VI-B. All experiments are performed on a

3GHz desktop computer and implementations are compiled

using gcc4 under linux. Our current implementation supports

planar joints and spherical joints.

A. Performance Study

Here we study and compare the performance of our sam-

pling algorithm both with and without collision detection.

In the first experimental set, we ignore collision detection.

We measure the running time to generate 1000 configurations

in 10 different environments for chains of size 10, 20, 50,

100, 200, 500, 1000, 5000, 10000, and 100000 links. In each

environment, the articulated system is composed of different

sized links ranging from 0.1 to 1.0. We compare the per-

formance of generating both open and closed configurations

using reachable-distance. As shown in Table I and in Figure

7, the running time has two parts: the time to sample and

the time to convert the representation into traditional joint

angles. Note that it takes much more time for conversion than

for actual sampling. However, the performance of both scales

well even for large numbers of links. These results show that

sampling closed configurations is comparable to sampling

open chain configurations that ignore closure constraints

entirely. This demonstrates the advantage of using reachable

distances to represent configurations over the traditional joint

angle representation.
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Fig. 7. Running time to generate 1000 open (a) or closed (b)
configurations in the reachable-distance space without considering
collision. Each plot shows the total running time, the pure sampling
time in reachable distance space, and the time to convert configu-
rations into joint-angle space. Note that the running time for closed
and open configurations are similar.

In the second set of experiments, we measure the perfor-

mance when self-collision is considered. Again we measure

the time to sample and convert 1000 self-collision-free con-

figurations. We studied 6 different environments with chains

of size 10, 20, 50, 100, 200 and 500. In each environment,

we measured the running time to generate open-chain and

closed-chain configurations in reachable-distance space. We

also measure the performance using another closed-chain

planner, KBPRM [2]. We stop an experiment after 10 hours.

Table II and Figure 8 show the performance results.

Note that when considering collision detection, the perfor-

mance of using PRD to sample an open-chain is comparable

to the performance to sample a closed-chain, even though

closed configurations involve more self-collision. This again

Method CD 10 20 50 100 200 500

PRD N 0.02 0.04 0.11 0.25 0.53 1.50
Open Y 0.17 0.56 2.96 14.30 80.54 877.34

PRD N 0.02 0.04 0.11 0.25 0.52 1.43
Closed Y 0.18 0.69 4.58 19.25 116.53 1626.17

KBPRM N 0.30 4.36 N/A N/A N/A N/A
Closed Y 2.92 902.53 N/A N/A N/A N/A

TABLE II

RUNNING TIMES OF DIFFERENT SAMPLING METHODS BOTH

WITH AND WITHOUT COLLISION DETECTION.
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Fig. 8. Running time of open configuration sampling using reach-
able distances and closed configuration sampling using reachable
distances all with collision detection as a function of the number of
links. The performance for both methods is comparable since they
are each dominated by collision detection.

shows that by directly sampling in the reachable space, PRD

can sample closed configurations efficiently. This means that

our method makes it practical to solve motion planning

problems for large articulated systems with distance-related

constraints. Also note that the PRD method out-performs the

KBPRM method as expected.

B. Application in Motion Planning Frameworks

In this section, we show how we apply the sampling and

local planning primitives to solve closed-chain problems.

1) Multiple robot grasping: Here, two articulated robotic

arms with mobile bases grasp an object and work together

to move it from one end of the environment to the other (see

Figure 9(a)). Each arm is composed of 3 links. Considering

the grasping object and the robot’s base, there are 8 dof in

total. The robot must maneuver the object underneath the

obstacle in the ceiling to solve the query.

We use an incremental PRM method to construct the

roadmap and solve the query. It begins with a small roadmap

and incrementally generates more nodes until the query is

solved. Our method required 40 nodes to solve the query. It

took 58.4 seconds to build the map and found a valid path

with 3100 intermediate configurations (see Figure 9(b)).

2) Single-loop closed-chain: A single-loop chain with 10

links of variable length must pass through a series of narrow

passages to traverse the entire environment (see Figure 10).

Again, we used incremental PRM map generation to build a

roadmap until it solves the query. Our method successfully
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Number of Links 10 20 50 100 200 500 1,000 5,000 10,000 100,000

Sample Open Chain (sec) 0.006 0.012 0.031 0.061 0.123 0.309 0.595 3.230 7.000 73.202

Sample Open Chain and Convert (sec) 0.017 0.039 0.123 0.268 0.560 1.863 3.219 18.254 39.449 429.958

Sample Closed Chain (sec) 0.006 0.012 0.032 0.061 0.124 0.304 0.599 3.170 7.296 73.008

Sample Closed Chain and Convert (sec) 0.018 0.042 0.130 0.267 0.554 1.512 3.267 18.504 39.823 441.217

TABLE I

TIME TO GENERATE 1000 OPEN/CLOSED CONFIGURATIONS IN THE REACHABLE-DISTANCE SPACE WITHOUT COLLISION DETECTION.

(a)

(b)

Fig. 9. (a) Grasping experiment where 2 arms collaborate to
transport an object across the environment. (b) Path’s swept volume.

found a valid path with only 20 nodes in 96.2 seconds of

computation time. Figure 10(b) shows the swept volume of

the path with 1680 intermediate configurations.

Fig. 10. Single-loop chain that must pass through a series of narrow
passages to traverse the entire environment.

VII. CONCLUSION

We proposed a new method to plan the motion of closed-

chain problems based on a hierarchical representation of the

chain. It can be used to quickly generate closed configura-

tions or determine that it is impossible to satisfy the closure

constraints. We described this new representation and gave

a sampling algorithm to generate closed configurations with

complexity linear in the number of links. It can be used

to significantly improve sampling-based planners for closed-

chain systems by overcoming the difficulty of sampling

closed configurations. We provide the necessary motion

planning primitives (namely sampling and local planning)

to implement sampling-based motion planners. Our exper-

imental results show that our method is fast and efficient

in practice, making the cost of generating closed and open

configurations comparable.
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