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Abstract— We explore an on-line problem where a group of
robots has to reach a target whose position is known in an
unknown planar environment whose geometry is acquired by
the robots during task execution. The critical parameter in
such a problem is the physical motion time, which, under the
assumption of uniform velocity of all the robots, corresponds
to length or cost of the path traveled by the robot which
reached the target. The Competitiveness of an on-line algorithm
measures its performance relative to the optimal off-line so-
lution to the problem. While competitiveness usually means
constant relative performance, this paper uses generalized
competitiveness, i.e. any functional relationship between on-
line performance and optimal off-line solution. Given an on-
line task, its Competitive Complexity Class is a pair of lower
and upper bounds on the competitive performance of all on-
line algorithms for the task, such that the two bounds satisfy
the same functional relationship. We prove that in general any
on-line navigation algorithm must have at least a quadratic
competitive performance. This paper describes a new on-line
navigation algorithm, called MRBUG (short for Multi-Robot
BUG), which requires constant memory and has a quadratic
competitive performance. Thus, the above mentioned problem
is classified into a quadratic competitive class. Moreover, since
MRBUG achieves the quadratic lower bound, it has optimal
competitiveness. The algorithm performance is illustrated in
office-like environments.

I. INTRODUCTION

The Problem of reaching a target whose position is known
in an unknown planar environment is very important in many
practical and academic research fields, the most significant
are search and rescue, industry and military robotics. Area
coverage is in the worst case a corresponding task, since
the searching unit will cover a certain area before finding
the path to the target. Examples for the problems above
are demining, cleaning supermarkets and train stations, de-
tecting contaminated or radioactive substances in factories,
nuclear reactors or in the open field, planetary exploration
and sample acquisition. This paper is concerned with the
aforementioned problem solved by multiple mobile robots.

Using a group of robots can have many advantages, the
most important are shortening of the total path or mission
time and increased robustness, since the multitude of robots
can easily overcome a malfunction in one or more of the
units, an issue associated with redundancy. The decrease of
the individual mechanical wear and power consumption per
mission maximizes the life span of each robot and prolongs
the whole mission duration and range. Other advantages
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concerns maintaining radio connectivity between the robots
and the base station and a decreased sensor uncertainty due
to merging of overlapping information, it has been shown
that multiple robots localize themselves more efficiently [1],
especially when they have different sensor capabilities.

The most critical parameter in mobile robot motion tasks
is the physical travel time. Under a uniform velocity as-
sumption, travel time corresponds to path length. We denote
the distance traveled by each robot, l, and the optimal
off-line solution, lopt. Hence, the algorithm discussed in
this paper is classified in terms of length or cost of the
path traveled by one robot during algorithm execution. The
notion of competitiveness compares the performance of an
on-line algorithm to the optimal off-line solution for the
same problem. In particular, an algorithm for a task P
is said to be competitive if its solution to every instance
of P is bounded by a constant time lopt [2]. Generalized
Competitive Complexity and Competitive Complexity Classes
are introduced and discussed in [3], however, most of the
papers dealing with competitiveness strive to identify specific
classes of environments in which constant competitiveness
can be achieved. In contrast, our objective is to identify the
competitive relationship governing the fully general on-line
navigation problem for multiple robots.

Recent works related to the subject of mobile multi-robot
motion planning deals with various aspects of the problem. A
major issue is whether the group architecture is centralized,
i.e., there is only one control agent or decentralized, where
each robot is autonomous and no global coordination needed.
Communication is a very close subject, since, the system
cannot be centralized when it lack thereof. Intermediate
systems represent real-world setups better, for example, the
semi-decentralized approach in [4], where robot teams cover
the space independent of each other, but robots within a
team communicate state and share information. Limited
communication plays an important role when dealing with
ant-like robots, where messages between the robots are
passed mainly or only through markings they leave on the
terrain [5]. A solution to a problem can change according to
the availability of information on the environment prior to
algorithm execution. On-line solutions assume no knowledge
of the environment when the algorithm starts, while off-line
solutions rely on a priori knowledge. An off-line algorithm
is presented in the notable early paper [6]. A new on-
line algorithm [7] focuses on robustness, and completeness.
Robustness measures the performance in case of failures
and an algorithm is considered complete if for any input
it correctly reports whether or not there is a solution in a
finite amount of time. Our solution is complete and robust
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and can be either decentralized or centralized.
The structure and contributions of the paper are as follows.

In the next section we state a key assumption that the robot
has a physical size D such that D > 0. While this assumption
may seem obvious, only few papers make use of this assump-
tion (e.g. [8], [3]). We also present some definitions regarding
competitiveness. In Section III we show that for every on-
line algorithm, there is a worst case path that yields a cost
which is constant times l2opt. Two new algorithms, MRBUG
and PBUG1, which are based on the area bounding and
doubling strategy of CBUG [3] are introduced in Section IV.
The competitiveness of MRBUG is analyzed in Section V.
It is shown that the length of the path traveled by each
robot during execution of MRBUG is at most quadratic in
lopt, implying that up to the constant coefficients MRBUG
has optimal competitiveness. In the same Section MRBUG
is proved to be complete. MRBUG simulation is presented
in Section VI. Finally, we conclude and discuss additional
research directions and future work.

II. BASIC SETUP AND DEFINITION OF COMPETITIVENESS

Our basic assumptions are as follows. Each mobile robot
is a freely moving planar body of size D, e.g. a disc, where
D > 0 is a given constant. Each robot is equipped with two
sensors which are assumed ideal. The first sensor measures
the robot position with respect to a fixed reference frame.
The second sensor is an obstacle detection tactile or short
range sensor which allows tracing of an obstacle boundary.
The robots use onboard or central calculation unit which
have enough memory for the needed calculations. The robots
should communicate with each other or with a central base
station, at least upon initialization and at termination. All the
robots move in the same uniform velocity.

The three most significant parameters governing the per-
formance of mobile robot are physical travel time, on-
board computation time, and on-board memory. We associate
physical travel time with l. The time required for a physical
motion step is typically several orders of magnitudes longer
than the execution time of an on-board computation step.
Since we limit our discussion to algorithms that take poly-
nomial time to compute each physical motion step of the
robot, we focus on l as the main performance parameter.
Last, we limit the discussion to algorithms which require
constant storage. The following definition generalizes the
traditional notion of linear competitiveness to any functional
relationship between l and lopt.

Definition 1 (Generalized Competitiveness [3]): An on-
line algorithm solving a task P is f(lopt)-competitive when
l is bounded from above by a scalable function f(lopt) over
all instances of P . In particular, l ≤ c1lopt + c0 is the
traditional linear competitiveness, while l ≤ c2l

2
opt +c1lopt +

c0 is quadratic competitiveness, where the ci’s are positive
constant coefficients that depend on the robot size D.

Note that the definition of f(lopt)-competitiveness focuses
on a particular algorithm solving the task P . However, our
objective is to characterize the lowest upper bound that can
be achieved over all on-line algorithms for P . This objective
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Fig. 1. (a) The radial corridors environment. (b) A close up view .
requires a universal lower bound on the performance of all
on-line algorithms for P . If the lower and the upper bounds
satisfy the same functional relationship, we associate that
functional relationship with P itself. This notion is made
formal in the following definition.

Definition 2 (Competitive Complexity Class [3]): A uni-
versal lower bound on the competitiveness of a task P is
a lower bound l≥g(lopt) over all on-line algorithms for P .
If a competitive upper bound f(lopt) and a universal lower
bound g(lopt) for P are the same function up to constant,
this function is the competitive complexity class of P .

The competitive complexity class of a task P is thus a pair
of lower and upper bounds on the competitive performance
of all on-line algorithms for P , such that the two bounds are
identical up to constant coefficients. Note that competitive
complexity characterizes the task P itself, not any specific
algorithm for P . The remainder of the paper characterizes
the competitive complexity class of the multi-robot on-line
navigation problem.

III. UNIVERSAL LOWER BOUND

In this section we establish a universal lower bound on the
competitive complexity of a navigating group of robots. We
show that in the worst case scenario the robots will cover a
certain area prior to finding the path to the target. Hence, we
use the environment depicted in Fig. 1 which is built from
radial corridors having the width of the robots, D, and one
circular corridor containing the target with only one entrance.

Theorem 1 (Quadratic Lower Bound): Let A be any nav-
igation algorithm for n robot pairs of size D in an unknown
planar environment to a target whose position is known. Let
l be the length of the path generated by A for one of the
robots, and let lopt be the length of the optimal off-line path.
Then l satisfies the quadratic lower bound,

l ≥ 4π

3nD(1 + π)2
(1− ε)l2opt

where ε is an arbitrary small positive parameter.
Proof: Consider the corridor environment with the

target T placed at the end of a distal corridor, at a distance
r from S . Since the robots have no knowledge of the
environment and has no information where the entrance to
the outer corridor might be, they must in worst case inspect
all the corridors. The total area of the obstacles in the corridor
environment is almost one third of the disc area, with the
approximation becoming arbitrary close to one third as the
disc’s radius increases [3]. The total area inspected by the
robots is therefore 2πr2/3. The robots must move twice
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Fig. 2. A pair of two robots, RL and RR executing PBUG1. The dense
dashed lines mark a mutual path of the two robots

through every corridor of the environment, once in order
to inspect it once in order to exit, and since all corridors
have a width D which is identical to the robot’s size,
the total length of the path traveled by the robots satisfies
ltot ≥ 4πr2/3D − r, where the substraction of r is due
to the last corridor which need not be traced backward. A
good algorithm will not generate overlapping paths for its
robots, thus, the total length of the path traveled by one
robot satisfies l ≥ 4πr2/3nD − r/n. Since T is placed
in the circular outer corridor, we have in worst case that
lopt ≤ (1+ε′)(1+π)r, where ε′ is an arbitrary small positive
parameter. It follows that r ≥ lopt/(1 + ε′)(1 + π). On the
other hand, r ≤ lopt in the above mentioned environment.
Substituting the last two inequalities into the lower bound
on l gives l ≥ 4π

3nD(1+ε′)2(1+π)2 l2opt − 1
n lopt. We can write

the last inequality as l ≥ cl2opt(1/(1 + ε′)2) − 1/cnlopt) =
cl2opt(1 − ε′′ − 1/cnlopt), where c = 4π/3nD(1 + π)2 and
1/(1 + ε′)2 = 1− ε′′. Since the quantity ε = ε′′ + 1/cnlopt

contains the quotient D/lopt which can be made arbitrarily
small for sufficiently large environments, we obtain the lower
bound l ≥ c(1− ε)l2opt.

IV. MRBUG MOTION ALGORITHM TO A KNOWN TARGET

We now introduce MRBUG, a multi-robot algorithm which
uses as a sub procedure PBUG1 algorithm, a new version of
BUG1 algorithm [9] for a pair of robots.

A. PBUG1 Motion Algorithm for a Pair of Robots
PBUG1 deploys a pair of robots that start from a common

start point S and needs to reach a target T whose position
is known in an unknown planar environment. The pair of
robots will move together toward the target in a straight line
until they hit an ith obstacle at a point marked as Hit point
Hi, i = 1, 2, ... (Fig. 2). At that point they split, robot RL

turns left and robot RR turns right, and they circumnavigate
the obstacle from different directions. On that account, each
robot encircle half of the obstacle perimeter. While moving,
each robot calculates and remembers the closest point on
the obstacle’s boundary to the target. Upon meeting, the
robots compare the recorded information, decide which

point is the closest to the target, join and move together
to that closest point which they mark as Leave point Li,
i = 1, 2, ..., from which they continue toward the target.

PBUG1 Algorithm
Sensors: A position and orientation sensors.

An obstacle detection sensor.
Input: Position of a start S and a target T .

A pair of robots: RL, RR.
Initialization: For each of the robots in the pair RL, RR:

Define local direction: Left for RL, Right for RR.
Set i=1.
Set initial leave point L0 = S.

For each of the two robots RL, RR, Repeat:
From the point Li−1, move toward the target along a
straight line until one of the following occurs:
(1) The target is reached: STOP.
(2) An obstacle is encountered: Define a hit point Hi.

Turn in the direction of the predefined local direc-
tion and follow the obstacle boundary according to
that direction. While circumnavigating the obstacle,
calculate and record the coordinates of the closest
point to the target, QmL and QmR for RL and RR

respectively, until one of the following occurs:
(a) The target is reached: STOP.
(b) Upon meeting each other, exchange

information and calculate the closest point to T :
Qm = min(QmL , QmR).
Define a new leave point Li = Qm.
Apply the test for target reachability:
(i) If the target is not reachable: STOP.
(ii) Else, move to Li: If Qm = QmL , trace back

RL path. Otherwise, trace back RR path.
Set i = i + 1.

End of Repeat loop

The basic setup and definitions of BUG1 in [9] for one
robot are applicable in PBUG1 for two robots along with a
few modifications as follows. First, PBUG1 needs only one
register for each robot, to store the coordinates of the current
point, Qm, of the minimum distance between the obstacle
boundary and the target. Second, PBUG1 determines that the
target is unreachable and trapped inside an obstacle using
BUG1 method [9]: If after circumnavigating an obstacle,
the leaving direction toward the target points into the last
obstacle, the target is surrounded by that obstacle.

B. MRBUG Algorithm for a Group of Robots
MRBUG algorithm launches n pairs of robots from a

common starting point S and assigns each pair j′ to a
different ellipse to search for a path to the target T in it,
each ellipse’s focal points are S and T .

The first pair of robots (j′=1) is designated to the initial
ellipse of area A0, and each of the following robots starts
its search executing PBUG1 in an ellipse of area larger than
the previous ellipse’s area by a factor of α > 1, namely,
the areas of the ellipses will be A0, αA0, α

2A0 . . .. The
execution of PBUG1 regards the ellipse as a virtual obstacle
boundary. The pair of robots repeats the process on the next
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unassigned ellipse in the series until the target is detected.
MRBUG Algorithm:
Sensors: A position and orientation sensors.

An obstacle detection sensor.
Input: Position of a start S and a target T points.

An initial ellipse with focal points S and T and area A0.
n pairs of robots {1L, 1R, 2L, 2R, . . . , nL, nR}.

Initialization: For each robot pair j′, j′ = 1, . . . , n:
Set current search ellipse ej′ = j′,
Set initial leave point L0

ej′
= S ,

Set multiplication factor α = (n + 1)1/n,
Set initial search area Aj′(ej′) = αej′−1A0.

For each robot pair j′, Repeat:
Initialize PBUG1 with the following parameters:

Create an outer virtual obstacle boundary with an
ellipse of area Aj′(ej′) having focal points S and T .
Start point is S , target is T .
Set i = 1.
Leave point is L0

ej′
.

Execute PBUG1 until one of the following occurs:
(1) PBUG1 terminates at T : STOP, target is found.
(2) T is trapped inside an obstacle:

(a) If the obstacle does not intersect the ej′

ellipse: STOP, the target is unreachable.
(b) Else, move to the next unoccupied ellipse:

Set ej′ = ej′ + n.
Set L0

ej′
at PBUG1 termination point.

Set Aj′(ej′) = αej′−1A0.
End of Repeat loop

Rather than give a formal proof of correctness, we make
some informal remarks on the algorithm. First, during ini-
tialization, after getting the values of n and A0, each robot
is assigned to a number j′ and to a local direction, Left
or Right and thus can calculate its future search ellipses
and corresponding areas, which means that after a pair of
robots has finished searching for a path in an ellipse, it
can immediately continue to search in the next unassigned
ellipse regardless of the state of the other robots. Second, in
step (2), PBUG1 determines that the target is unreachable
and trapped inside an obstacle (Subsect. IV-A). MRBUG
assures in step (2.a) that the robots were not bounded by

S T
Robots
3L,3R

Robot
1R

Robots
2L,2R

Robot
1L

e1

e2

e3

Fig. 3. Last step of execution example of MRBUG with 3 pairs of robots.
The dense dashed lines indicates a mutual path of a pair. The path traversed
in the previous step is colored in grey.

an ellipse and thus guarantee that the target is unreachable.
Third, PBUG1 uses constant memory, and MRBUG needs
additional constant memory to remember the start position
and the current ellipse area, hence, MRBUG require constant
memory, too.

In the following example depicted in Fig. 3, MRBUG
launches three pairs of robots to search for the target in
a simple environment. Each robot pair is initially assigned
to a bounding ellipse, e1, e2, e3 to execute PBUG1 in it,
and each robot in a pair is assigned to a different local
direction, Left, Right: 1L, 1R, 2L, 2R, 3L, 3R. At first, the
robots move directly toward the target, and as they encounter
the obstacle they split, and each robot moves in its local
direction. Note that pair no. 3 does not have to traverse ellipse
no. 3 in this example, since it does not intersects the obstacle.
The robots positions in the last step the moment pair no. 3
reached the target are depicted in Fig. 3.

V. COMPETITIVE COMPLEXITY ANALYSIS OF MRBUG
We now establish an upper bound on the path length of

the robot that reached the target while executing MRBUG
in terms of the optimal off-line solution, lopt. Since the
robot tracing an obstacle boundary is of size D, we first
substitute the obstacle into a special object in a way that
changes its area and perimeter, but preserves the path length
property. Thus, in the following lemmas we use terms related
to Configuration Space (or C-space). The C-space of a disc
shaped robot is IR2, and the C-space obstacle CBi consist of
all robot configurations where it intersects Bi.

Definition 3 ([3]): Let CBi be the C-space obstacle
induced by an obstacle Bi for a disc robot of size D. The
traceable obstacle induced by Bi, denoted Bi, is obtained
by filling any internal holes in CBi and then shrinking CBi

inward by a distance of D/2.
Lemma 5.1 ([3]): Let a planar environment contain z dis-

joint traceable obstacles Bi, i = 1, . . . , z. Let a disc robot of
size D trace the ith obstacle boundary, and let qi be the total
area swept by the robot during tracing of the ith boundary. let
C be any simple closed curve which surrounds the z regions
swept by the robot. Then

∑z
i=1 qi ≤ 4A(C), where A(C) is

the area of the traceable obstacle-free points enclosed by C.
Note that the regions swept during tracing of the individual

boundaries may overlap, so that in general the sum
∑z

i=1 qi

may be larger than A(C). In the following two lemmas, the
complete proofs had to be relegated to [10] due to lack of
space. Thus, only the last results are presented.

Lemma 5.2: The length li of the path traveled by each
robot of the pair traversing the ith ellipse is bounded by
li ≤ 4A(i)

D + (||L0
i −T || − ||L0

i+n −T ||), where A(i) is the
area of the ith ellipse, D is the size of each robot, n is the
number of robots, L0

i and L0
i+n are the start points at the

ith and at the next ellipse respectively, and ||β−γ|| denotes
the Euclidean distance between β and γ .

Proof: From [10], [3], the total length of the robot’s
path during circumnavigation of obstacles in the ith ellipse
is at most 4A(i)/D. Since in MRBUG each robot in a pair
travels exactly half of the way, the path length of one robot is

WeC5.4

880



not more than 2A(i)/D. Adding the path to the leave point
which does not exceed half of the obstacle’s perimeter, leads
to the total path length bound of 4A(i)/D for each robot.
The total length of the motion between obstacles equals to
the net decrease of the distance of the robot from T , which
is ||L0

i − T || − ||L0
i+n − T ||.

Lemma 5.3: Let T be reachable from S . If the initial
ellipse contains no path from S to T , MRBUG reaches
the target in an ellipse whose area A(i) is bounded by

A(i)< πα
4 lopt

√
l2opt−||S−T ||2, where lopt is the length of

the optimal off-line path, and α is the multiplication factor.
Proof: Let Amin denote the area of the smallest ellipse

with focal points S and T which contains the optimal off-
line path. From [10], [3], Amin ≤ π

4 lopt

√
l2opt − ||S − T ||2.

By assumption the initial ellipse contain no path from S to
T . Hence, MRBUG multiplies the area of the search ellipse
by a factor of α at least once. The area A(i) of the last
ellipse searched by MRBUG satisfies the inequality A(i) <
αAmin. Otherwise the previous ellipse has an area A(i −
1) ≥ Amin, which implies that MRBUG terminated while
inspecting the previous ellipse. Substituting for Amin in the
inequality A(i)<αAmin gives the result.

The following proposition establishes a quadratic compet-
itive upper bound on MRBUG.

Proposition 5.4: If the target T is reachable from S ,
MRBUG finds the target using n robots of size D and the
path length l traveled by the robot which reached the target
satisfies the quadratic inequality,

l ≤ π

D

αn+1

αn − 1
l2opt + ||S − T ||+ 4

A0

D

where lopt is the length of the optimal off-line path from S
to T . Note that the upper bound is scalable.

Proof: First consider the case where the initial search
ellipse area is expanded at least once before the target is
found. Suppose the search ellipse is expanded i−1 times until
the target is reached (in ellipse i). The ellipses areas increase
in each step by a factor of α. Let Aj′ denote the total area of
the regions inspected by a robot from pair j′ which reached
the target after searching in k ellipses1, then Aj′ is bounded
by: Aj′ ≤ A(j′) + A(j′ + n) + A(j′ + 2n) + ... + A(i)
Aj′ ≤ αj′−1A0+αj′−1+nA0+αj′−1+2nA0+...+α(i−1)A0.
Substituting i=j′+n(k−1) yields

Aj′≤A0
αj′−1

(αn
)k

αn−1
. According to Lemma 5.3,

α(i−1)A0 < πα
4 lopt

√
l2opt − ||S − T ||2≤ πα

4 l2opt.
Substituting this into the bound on Aj′ gives
Aj′ < π

4
αn+1

αn−1
l2opt. Hence, the total length of the path

traveled by the robot that reached the target is bounded by
l = lj′+lj′+n+lj′+2n+. . .+lj′+(k−1)n =

∑k
i=1 lj′+(i−1)n

≤ 4
DAj′ +

∑k
i=1

(∣∣∣
∣∣∣L0

ej′+(i−1)n
− T

∣∣∣
∣∣∣−

∣∣∣
∣∣∣L0

ej′+in
− T

∣∣∣
∣∣∣
)

.

Substituting L0
ej′

= S and L0
ej′+kn

= T in the last results

we get: l < π
D

αn+1

αn−1
l2opt + ||S − T ||. Finally, the constant

1k can be considered a global step. In the initial global step the n robots
search in the first n consequent ellipses, in the next global step the robots
search in the next n consequent ellipses and so on.

No. of robots Multiplication factor Relative performance
2n α Bn

2 2 4
4 1.732 2.598
8 1.495 1.869

26 1.225 1.319
200 1.04 1.058

TABLE I
SOME α AND Bn VALUES CORRESPONDING TO n ENTRIES

additive term 4A0/D bounds the path length in case the
target is reached from within the first search ellipse.

The following lemma, inspired by [11], asserts that search
area multiplying is indeed an optimal strategy.

Lemma 5.5: The competitive complexity of MRBUG is
minimal when the multiplication factor is α=(n+1)1/n.

Proof: Let n be the number of robot pairs and α be the
area multiplying factor in MRBUG execution. Suppose the
path to the target was found by robot pair number j′. The
total area Aj′ covered by each robot as obtained in Prop. 5.4
is Aj′ < π

4 Bnl2opt, where Bn = αn+1

αn−1
. Minimizing Aj′ for α

and equating with zero while taking into account α > 1 and
n ≥ 1, yields α = (n + 1)1/n. A second derivative verifies
the minimality of α, and thus of l′j .

Corollary 5.6: MRBUG is complete.
Proof: The first important property established in

Prop. 5.4, is that if the target T is reachable, MRBUG will
find a path to it. The second property is that MRBUG will
find that path in a finite and limited time and is deduced
from the bound on the path length proved in Prop. 5.4.

We compared the performance of MRBUG with the per-
formance of CBUG, an optimal algorithm using one robot.
We calculated the upper bound on the path length l′j of the
robot that found the target in MRBUG for executions with
various number of robots. First, when n →∞, α goes to 1.
Thus, l ≤ π

D l2opt + ||S − T ||+ 4A0
D . On the other hand, for

CBUG, lCBUG ≤ 6π
D l2opt + ||S − T ||+ 6A0

D , which is 6 times
longer.

Some more values of α and Bn for several cases of n
are shown in Table I. When using one hundred robot pairs,
Bn approaches one, and MRBUG multiplies the performance
compared to execution with one robot by a factor of 5.67.
Executing 4 robot pairs, MRBUG triples the performance.

Using the definitions of competitive complexity and the
two bounds found previously, we can now establish a com-
petitive complexity class for the problem solved by MRBUG.

Theorem 2: Quadratic competitive complexity class
The on-line multi-robot navigation problem belongs to the
quadratic competitive complexity class.

Proof: A competitive complexity class, as defined in
Def. 2, is formed from a lower and an upper bounds on the
competitiveness of a task. According to Lemma 1, the lower
bound of the problem discussed above is quadratic in lopt.
Since the upper bound of MRBUG, as found in Prop. 5.4, is
quadratic in lopt, too, this navigation problem belongs to the
quadratic competitive complexity class.

The last theorem exhibits the quadratic competitiveness
class of the problem solved by MRBUG. Since MRBUG has
a quadratic competitiveness, MRBUG is optimal.
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VI. MRBUG SIMULATION

MRBUG simulation was executed in an office like envi-
ronment consisting of three rooms and a desk. Three pairs of
robots were launched from the same point in the left room
with a mission to reach the target which lies behind a desk in
the rightmost room. The start and the target points form the
focal points of all the ellipses, and the distance between them
equals 2c which defines the ellipse parameter c = 1753mm.
The semiminor axis is defined to be b0 = 615mm and
thus the ellipse is completely defined, a0 = 1858mm and
A(0) = 3560mm2 which are calculated from c and bi. The
multiplication factor for n = 3 equals α = 1.587.

The first step for each pair is depicted in Fig. 4(a). It can
be observed that none of the robot pairs can reach the target
in its initial step. The first pair to continue searching in the
next ellipse is evidently robot pair No. 1., which moves to the
fourth ellipse (Fig. 4(b)). In this step robot pair No. 1 reach
the target, and the path length of each of the robots equals
l = 16168mm. The optimal off-line solution is depicted in
Fig. 4(b) and lopt = 5459mm. Thus, l = 5.4 · 10−4l2opt.

A CBUG simulation in the same environment with one
robot and α = 2 took two ellipses multiplication prior to
reaching the target and produced a path length of 33108mm,
which is about 2 times longer than the path length produced
by MRBUG. However, it should be noted that the number of
robots in MRBUG was six times greater.

VII. CONCLUSION

The problem of multi-robot navigation to a known target
belongs to the quadratic competitive complexity class, i.e.
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Fig. 4. The first step of the three robot pairs in MRBUG simulation (a). Last
step of MRBUG simulation for pair no. 1. lopt is denoted with a dash-dot
line (b).The dense dashed lines denote a mutual path of a robot pair.

its two classifying bounds, the universal lower bound of the
problem and the upper bound of MRBUG are both quadratic
in the optimal off line solution, lopt. Hence, MRBUG al-
gorithm is optimal, meaning that the path length to the
target it produces might be improved only by the constant
coefficients of its upper bound, since linear competitiveness
is not achievable for such a problem. That optimality is
obtained requiring only a constant amount of memory.

The following are some related open problems for further
research. First, MRBUG uses limited vision or tactile senors.
More advanced sensors such as vision and laser sensors
do not have a significant advantage in highly congested
environments. However, practical environments tend to be
reasonably sparse, and an adaptation of MRBUG to such
sensors is an important open problem. Second, the constant
coefficients in the quadratic upper bound on MRBUG and
in the quadratic universal lower bound differ by values
of 3(1+π)2

4 αn+1. Closing this gap is a major challenge
that can yield new algorithms that possess the quadratic
competitiveness of MRBUG but perform much better on
average. Third, on-line disconnection [12], a criterion which
judges an on-line algorithm according to the efficiency by
which it determines that a solution does not exist, should be
investigated for a group of robots.
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