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Abstract— In this paper we present an appearance-based
method for augmenting maps of outdoor urban environments
with higher-order, semantic labels. Our motivation is to increase
the value and utility of the typically low-level representations
built by contemporary SLAM algorithms. A supervised learning
scheme is employed to train a set of classifiers to respond to
common scene attributes given a mixture of geometric and
visual scene information. The union of classifier responses yields
a composite description of the local workspace. We apply our
method to three large data sets.

I. INTRODUCTION

Localisation and Mapping frameworks have reached a

level of maturity such that a vehicle can traverse and map

substantial workspaces. The run-time complexity of state

estimation algorithms is no longer the primary bottleneck.

However, the maps produced are typically agglomerations of

laser points or an arrangement of geometric primitives (often

simply points, lines and planes). Such representations only

have a limited discriminative capacity and fail to adequately

represent the subtleties of complex environments. As a

consequence, data association, pivotal to the construction of

consistent maps, remains an open problem — perhaps the

Achilles’ heel of the research domain.

Appearance-based techniques developed in the computer

vision domain have emerged as a valuable complement

to standard SLAM solutions [1], [2]. An example is the

robust closing of large loops in a vehicle’s trajectory using

an appearance-based visual loop-closing engine [3]. The

salient point here is that the data-association problem can

be addressed without metric reasoning — considering what

things look like as opposed to where they appear to be. The

annotation of common SLAM maps by semantic information

seems a natural extension of this notion.

Our goal, therefore, is to add value to maps built by

SLAM algorithms by augmenting them with higher-order,

semantic labels. Such labels are vastly more descriptive than

the geometric primitives used previously and thus contribute

considerably to a correct data association. In this paper we

achieve this by using both scene appearance and geometry

to produce a composite description of the local area in urban

settings. Outdoors, we use a 3D laser scanner to sense the

local workspace geometry and a camera to capture its visual

appearance. In combination these two sensors provide a rich

source of information with which to characterise different
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aspects of the local area. In particular, we will focus on

describing regions of the ground plane, the surface type of

any walls in view and the presence or otherwise of cars and

foliage. The geometric and visual properties of a particular

scene are passed through a bank of classifiers each trained to

respond to a given scene attribute — like pavement, tarmac or

bush. The combination of all positive classifications yields a

composite description of the scene in question, for example,

“Path and Grass and Foliage” or “Road and Brick-Wall

and Car” (Fig. 1). The classifiers process a mixture of

geometric and appearance information which is extracted in

the following way. Firstly, using the 3D laser data, planar

patches are extracted and the normals recorded. Then, each

constituent laser point in a patch is back projected into the

camera image and neighbourhood parametrised (via a colour

histogram) and recorded along with its image coordinates.

Training is done using hand-labelled data.

Fig. 1. Labels for a typical urban scene

The next section gives a brief overview of related works.

Section III describes the data used. A motivation of our

choice of workspace labels is given in Section IV. This

is followed by a detailed description of the features used

and the data processing applied in Section V. The learning

of appropriate classifiers is outlined in Section VI. The

applicability of the presented approach to urban settings

is demonstrated in Section VII. We conclude with a brief

summary and discussion of future work in Section VIII.

II. RELATED WORK

The extraction of semantic information from sensor data

has received much attention in recent years and the amount

of relevant literature is substantial. In the computer vision

domain, approaches to appearance-based scene and object
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Fig. 2. An aerial map of the Jericho data set (13.2 km, 16000 images).
The vehicle’s trajectory is marked in white.

classification include unsupervised statistical methods ap-

plied to bags of features, both including [4] and exclud-

ing [5] position within an image. In the robotics domain,

recent developments include the classification of traversable

regions from both laser and image data [6], the unsupervised

partitioning of outdoor workspaces using image similarity [7]

and the classification of 2D laser data into types of indoor

scenes using boosting [8]. Contextual information was used

explicitly in [9] by way of a model based on relational

Markov networks to learn classifiers from segment-based

representations of indoor workspaces. In [10] 3D laser data

is segmented to detect cars and classify terrain using Graph

Cut applied to a Markov Random Field (MRF) formulation

of the problem. The performance of the MRF framework

is compared to that obtained using (voted) support vector

machine classification. In a sense this work is most closely

related to our approach in that we also employ support vector

machines to classify laser data. However, in combining

information from two complimentary sensors – geometry and

appearance – our approach gains the capacity of providing

more detailed workspace descriptions such as the surface-

type of building(s) encountered or the nature of ground

traversed.

III. URBAN DATA

The work presented in this paper makes use of three

extensive data sets spanning nearly 18 km of track gathered

with an ATRV mobile platform. The robot is equipped with

a colour camera mounted on a pan-tilt unit, an inertial

sensor (XSens) as well as a GPS sensor and odometry from

wheel encoders. The camera records images to the left, the

right and the front of the robot in a pre-defined pan-cycle

triggered by vehicle odometry at 1.5 m intervals. 3D laser

data are acquired using a standard 2D SICK laser range

finder (75 Hz, 180 range measurements per scan) mounted

in a reciprocating cradle driven by a constant velocity motor.

Data recorded from all sensors are time-stamped on arrival.

Data were gathered in three different locations: Jeri-

cho/Oxford (13.2 km, 16,000 images, Fig. 2), Edinburgh

(1.3 km, 3561 images) and the Oxford Science Park (3.3 km,

8536 images, Fig. 3).

Fig. 3. An aerial map of the Oxford Science Park data set (3.3 km,
8536 images). The vehicle’s trajectory is marked in white.

IV. WORKSPACE CLASSES IN URBAN

ENVIRONMENTS

When navigating in an urban context a higher-order

knowledge of the environment is indispensable: self-

preservation dictates avoidance of highly dynamic regions

such as roads; robust localisation depends on distinguishing

features beyond the recognition of ubiquitous general objects

such as ‘ground’, ‘wall’ or ‘house’. This necessity motivates

the definition of classes and the closely linked selection of

features in this work. Intuitively, in an urban environment

places can be distinguished by the type of ground that is

present, the colour and texture of surrounding houses (or,

more appropriately, of surrounding walls) and the presence

or absence of other features such as bushes or trees. The

detection of cars (moving or stationary) is also beneficial.

These considerations give rise to the classes defined in

Table I.
TABLE I

WORKSPACE CLASSES.

Class Name Description

Wall Structure

Brick red or yellow brick
Nat. Stone natural stone, sandstone
Concrete modern (e.g. concrete, glass )
Plastered plastered, painted

Ground

Pavement tiled, patched
Path sand / dirt / gravel
Grass grass
Tarmac common road, pavement

Nature

Bush or Foliage bushes and parts of trees

Miscellaneous

Vehicle cars or vans
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Fig. 4. The left image shows an original 3D laser scan, the right depicts its approxmation by planar patches as generated by the segmentation algorithm.

V. FEATURE EXTRACTION

The classes defined in Table I suggest both visual (colour

and texture) and 3D geometrical features. Our vehicle is

equipped with a 3D laser scanner, which supplies direct mea-

surements of geometry. Knowledge of the intrinsic as well as

the extrinsic (wrt the laser range finder) camera parameters

allows a meaningful combination of laser measurements and

image data: each laser measurement can be augmented with

local colour and texture information. Starting with a colour

image and a ‘cloud’ of laser measurements, an appropriate

feature vector can be compiled incorporating both 3D geo-

metrical (laser) and appearance (camera) features. The choice

of features from the two modalities and their extraction is

described in the following.

Laser Features. Using the time at which the colour image

was taken as reference, 3D laser points are accumulated

over a time window of length ∆t into the past. Thus, a

3D point cloud is assembled which represents the original

scene subject to the colour image. The structural and ground

classes in Table I can be approximated geometrically with a

planar model. Therefore, the 3D laser data associated with an

image were segmented into planes following a divide-and-

conquer approach outlined in [11]: a given point cloud is

discretised into cubic cells and planes are fitted locally using

RANSAC [12]. Plane segments for which the support (i.e.

the number of inliers) is less than a threshold, are discarded.

Amongst the survivors, planes obtained in neighbouring cells

are merged according to two constraints relating to relative

surface orientation and translation. The merging criteria for

orientation and translation are specified as:

| ni · nj |> arccos(αmax) and
1

2
(dij + dji) < dmax

ni and nj denote the plane normals in cells i and j

and ‘·’ denotes the scalar product. dij and dji denote the

distances from the centre of gravity of one plane to its

orthogonal projection onto the other plane (Fig. 5). αmax

and dmax denote an angle threshold and a distance threshold,

respectively. Finally, merged plane patches are kept if they

comprise more than Nmin laser points. A typical result of

this segmentation process is shown in Fig. 4.

Currently only the absolute cosine distance between a

plane normal and the normal of the ground plane is used

as a 3D geometric feature.

ni

nj

cogi

cogj

ni nj

cogi

cogj

Orientation Translation

dij dji

Fig. 5. The plane-merging constraints for orientation and translation for
two adjacent cells i and j. n and cog denote the plane normals and the
centres of gravity, respectively.

Appearance Features. The processing pipeline as described

above provides 3D laser points which lie on planes fitted to

the original laser data, covering the scene depicted in the

image and beyond. Visual features can only be extracted for

laser points which fall within the field of view of the camera.

Thus, irrelevant laser data are filtered out using a standard

frustum culling technique. The remaining laser points are

projected into the image (Fig. 6). Using these projections

as ‘points of interest’, appearance features are calculated

over a fixed-size (15×15 pixels) local neighbourhood in the

image. Colour and texture were deemed the most important

visual features as they provide information about the material

a surface is made of. Colour is represented by local hue

and saturation histograms (15 bins). A very basic additional

texture feature was computed for each colour channel simply

by taking its variance. The use of more advanced texture

descriptors derived from Gabor filters, for example, was

considered but decided against at this stage in favour of

simplicity.

In addition to these visual features the normalised 2D

position of the projections, as proposed by Hoiem et al

FrE12.1

4964



Fig. 6. Camera-laser cross-calibration: a typical 3D laser point-cloud (left). Laser points within the camera frustum are highlighted (white) and projected
into the corresponding camera image (right).

[13], was also added to the feature vector. The motivation is

that, since the camera only rotates around the vertical axis,

observations of the ground plane are more likely to appear in

the lower part of an image whereas walls of buildings extend

into the upper part.

A flowchart of this processing pipeline for feature ex-

traction is given in Fig. 7. It currently runs offline as a

Matlab implementation at about four seconds per image. The

features extracted are summarised in Table II. It remains the

task of assigning a certain semantic label to each of the laser

points based on this information. This is a classical machine

learning problem and will be addressed in Section VI.

1) For image I taken at pose xI and time tI :

(a) Obtain 3D laser data (L, tL) temporally close
to tI , i.e. tI − ∆t < tL < tI

2) Segment planar patches from 3D point cloud, keep
patches that comprise more than Nmin points.

Note: Nmin is different from the inlier threshold
used for RANSAC.

3) Filter out 3D points that do not lie within the viewing
frustum of the camera (frustum culling).

4) For each of the remaining 3D points:

(a) Assign the 3D geometric features from the
respective plane patch (Table II).

(b) Project the 3D point into the image.
(c) Compute 2D geometric, colour and texture

features (Table II) from a local neighbourhood.

Fig. 7. The processing pipeline employed for feature extraction.

TABLE II

GEOMETRIC AND APPEARANCE-BASED FEATURES USED FOR

CLASSIFICATION

Feature Descriptions Dimensions

3D Geometry

Orientation of surface normal of local plane 1

2D Geometry

Location in image: mean of normalised x and y 2

Colour

HSV: hue & sat. histograms (15 bins) 30

Texture

HSV: hue & sat. variance in local neighbourhood 2

VI. CLASSIFICATION

For classification we chose a chain of support-vector

machines (SVMs) with a Gaussian kernel1. SVMs are based

on a linear discriminant framework which aims to maximise

the margin between two classes. They are a popular choice

since the model parameters are found by solving a convex

optimisation problem. This is a desirable property since

it implies that the final classifier is guaranteed to be the

best feasible discriminant given the training data. SVMs

are inherently binary classifiers. In this work, multi-class

classification is performed by training a chain of binary

classifiers – one for each class – as one-versus-all [15].

TABLE III

CLASSIFIER PERFORMANCE STATISTICS ON A TEST SET [%] .

Classifier Accuracy Precision Recall

Grass 98.5 99.4 97.5
Paved 86.7 89.0 83.7
Dirt 86.6 93.7 78.5
Tarmac 93.8 94.8 92.5
Brick Wall 89.9 94.7 84.5
Nat. Stone Wall 90.6 94.0 86.9
Concrete Wall 83.7 90.0 75.8
Plastered Wall 85.1 80.5 92.8
Bushes/Foliage 95.2 97.8 92.5
Vehicles 91.3 96.2 85.9

Training. SVM training was conducted using the Jericho

data set. The appropriate kernel width and the regularisation

parameter (i.e. the tolerance for misclassifications) were de-

termined using a grid-search over a section of the parameter

space. The grid-search was conducted with 6,000 training

points and 4,000 test points per class. The data were balanced

so that training was conducted at an equal ratio of positive

to negative examples. The parameter-set resulting in the

highest overall classification accuracy was chosen for each

class (see Table III) and the corresponding classifier was re-

trained using the entire training set of 10,000 data points. A

good indication of the generalisation performance of these

classifiers across data gathered in independent locations and

1SVM training and classification were performed using SVMLight [14].
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Fig. 8. A graphical representation of the normalised confusion matrices for the Oxford Science Park data set (left) and the Edinburgh data set (right).

under vastly different conditions can be gained by inspection

of the confusion matrices in Section VII.

Classification. The predicted class of a datum is that for

which it is classified with the greatest margin [15]. If none

of the classifiers in the chain associate the datum with their

respective class, the data point remains unclassified.

VII. RESULTS

The previous section outlined the training of a chain of

binary classifiers using the Jericho data set. The generalisa-

tion performance of these classifiers was tested using labelled

data from both the Oxford Science Park and the Edinburgh

data sets (ca. 52,300 and 38,700 data, respectively). A

graphical representation of the confusion matrices for both

data sets is given in Fig. 8. Full details are given in Tables IV

and V.

The matrix originating from the Oxford Science Park

data is dominated by high values on the diagonal. Grass,

bushes/foliage and vehicles are classified with consistently

high precision. Striking is the consistent block-separation

between ground and non-ground (walls, bushes/foliage and

vehicles). This is attributed to the features describing the

orientation of plane patches and the location of laser points

within an image. Types of terrain other than grass are

harder to distinguish between. Paved or patched walkways,

dirt paths and roads/pavements with a tarmac surface can

be similar in colour and texture, giving rise to confusion.

Nevertheless, the majority of classifications are consistently

correct. Greater confusion can be observed amongst the

different types of walls, where a similar argument applies

with regards to colour. Block-cohesion can be observed

amongst brick and natural-stone walls as well as concrete

and plastered walls. This may be attributed to a difference

in texture.

The matrix originating from the Edinburgh data exhibits a

broadly similar structure but is considerably more noisy. This

is attributed to the sub-optimal lighting conditions prevailing

while the data was gathered, since it may have given rise

to higher variability in feature values describing colour and

texture.

The consistency of the classification results can be further

emphasised by combining conceptually related classes for

which the current combination of descriptive features does

not allow for robust classification. For example, the Oxford

Science Park data (Fig. 8) suggest a block-cohesion between

the ‘Concrete’ and the ‘Plastered Wall’ classes as well as

the ‘Brick Wall ’ and the ‘Nat. Stone Wall’ classes. This is

most likely due to texture (and possibly colour) similarities

within those groups, yet not across. Fig. 10 depicts the

confusion matrices for the respective data sets with two meta

classes ‘Textured Wall’ and ‘Plain Wall’. These represent

the combined class pairs ‘Brick Wall ’ and ‘Nat. Stone

Wall’, and ‘Textured Wall’ and ‘Plain Wall’, respectively.

The dominance in the diagonal has increased.

So far, discrete laser points sampled from a continuous

world have been classified independently, thus discarding

all information about the spatial cohesion of structures and

objects. Taking this information into account leads to an

intuitive extension: the smoothing of individual classifica-

tion results by majority vote of laser points constituent to

the same plane patch. As a preliminary investigation, this

technique was applied to the data obtained from the Oxford

Science Park. The resulting confusion matrix (Fig. 9) exhibits

a more pronounced diagonal and less noise. This suggests

that such ‘spatial’ smoothing may indeed improve overall

classification performance. A typical example of an actual

classified scene where a majority vote scheme is applied is

given in Fig. 1.

VIII. CONCLUSIONS AND FUTURE WORKS

In this paper we present an appearance-based method of

augmenting maps of outdoor urban environments with local

scene labels. The approach is based on a chain of binary

classifiers labelling individual laser data according to their

origin. Laser points are characterised by both 3D geometric
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Fig. 9. The normalised confusion matrix for the ‘spatially smoothed’ data
of the Oxford Science Park data set.

data and visual cues obtained from monocular vision. The

generalisation performance of the classification scheme is

sufficient to consistently separate different types of terrain

and walls, including bushes and foliage. The system also

has a capacity to recognise common objects such as cars and

vans. The results suggest that this approach can be extended

towards the smoothing of individual classification results

by taking into account the spatial cohesion underlying the

point cloud. However, such a scheme relies on an automatic

separation of plane patches into surfaces of different types.

Currently, this is beyond the segmentation-scheme applied

here and is subject to further work.

In the future, attention will also focus on an evaluation

of the feature set used. At this point, no comment can be

made on the relative importance of individual features to the

classification process. Though the classification performance

is satisfactory, it may well transpire that our system would

benefit from, for example, more advanced texture features or

more elaborate geometric features.

Furthermore, the use of an inherently binary classification

framework in a one-verses-all configuration comes with

a caveat: the possibility of individual classifiers assigning

an input to multiple classes simultaneously is addressed

using a ‘winner-takes-all’ heuristic where the ‘winner’ is

the classification resulting in the greatest margin. Even

though satisfactory results are obtained in practise, there

is no guarantee that the real valued quantities representing

the margins for different classifiers will have appropriate

scales [16]. In future, this will be addressed by investigating

alternative classification frameworks such as relevance vector

machines which do not suffer this limitation.
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TABLE IV

CONFUSION MATRIX FOR THE OXFORD SCIENCE PARK DATA SET.

Ground truth class labels

Grass Paved Dirt Tarmac Brick Natural Stone Concrete Plastered Bushes Cars

Grass 4320 31 38 21 0 0 0 0 13 10
Paved 59 3178 239 1808 2 37 3 33 5 108
Dirt 398 917 4078 1771 18 68 88 27 17 89
Tarmac 19 733 33 1175 2 23 12 4 2 128
Brick 60 80 458 99 3072 2526 2215 2362 2601 1660
Natural Stone 9 20 0 12 921 1682 301 414 611 22
Concrete 9 15 2 14 341 231 1121 1221 106 300

C
la

ss
ifi

ca
ti

o
n

Plastered 0 1 0 6 340 342 854 792 110 357
Bushes 111 8 8 7 76 7 60 3 1310 17
Cars 2 15 12 69 158 58 321 120 181 2224

Unclassified 2 2 131 6 65 21 4 6 22 72
Ground Truth 4999 5000 4999 4999 5002 4997 4997 4998 4999 5000

TABLE V

CONFUSION MATRIX FOR THE EDINBURGH DATA SET.

Ground truth class labels

Grass Paved Dirt Tarmac Brick Natural Stone Concrete Plastered Bushes Cars

Grass 19 80 0 33 0 14 1 0 88 7
Paved 0 660 0 831 4 13 9 0 40 202
Dirt 6 3088 0 2584 3 133 28 0 33 208
Tarmac 0 721 0 1004 0 0 0 0 19 7
Brick 0 154 0 192 1723 3100 2504 166 698 1402
Natural Stone 0 0 0 17 49 656 404 15 62 353
Concrete 0 29 0 15 191 386 568 43 522 748

C
la

ss
ifi

ca
ti

o
n

Plastered 0 2 0 0 388 392 833 3414 89 402
Bushes 0 19 0 41 11 38 380 30 1415 110
Cars 0 97 0 108 20 120 133 3 217 663

Unclassified 0 146 0 169 34 80 99 5 10 223
Ground Truth 25 4998 0 4995 2427 5000 4999 3679 3235 4347
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Fig. 10. A graphical representation of the normalised confusion matrices for the meta classes of the Oxford Science Park data set (left) and the Edinburgh
data set (right).
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