
On with the Visuomotor Function: A 6DOF

Adaptive Approach for Modeling Image-Based

Variations and Visual Servoing

Simon Léonard

Department of Computing Science

University of Alberta

Edmonton, Alberta

Email: sleonard@cs.ualberta.ca

Martin Jägersand

Department of Computing Science

University of Alberta

Edmonton, Alberta

Email: jag@cs.ualberta.ca

Abstract— In this paper, we proposes a visual servoing method
that approximates the relation between the variations of image
points and the variations of a stereo rig in Euclidian space. As
with most image-based visual servoing methods, commands are
expressed in the space of image features. However, instead of
relating instantaneous image-based variations to instantaneous
variations in Euclidian space, the visuomotor function relates ar-
bitrary image-based variations to Euclidian transformations. The
visuomotor function is approximated in real-time by using on-
line estimation techniques. The system improves its performance
with experience and is able to adapt to different configurations
of the cameras or environment. Given the disparities between
two sets of corresponding image points, the visuomotor function
provides the Euclidian transformation the robot must execute in
order to align the image coordinates.

I. INTRODUCTION

One of the challenges of autonomous robots is to interact

and control their motion in non-engineered environments. In

particular, the problem of using visual feedback to control

motion, also known as visual servoing [1], [2], has consistently

been at the forefront in recent years. This paper proposes a

visual servoing approach based on approximating the relation

between the variations of image coordinates and the variations

of a stereo rig in Euclidian space. More specifically, we extend

the method presented in [3] for translations to six degrees of

freedom (DOF). As with image-based visual servoing methods

(IBVS), commands are expressed by image coordinates. How-

ever, instead of generating a twist, the visuomotor function

generates an Euclidian transformation that corresponds to

the errors of image coordinates. The approximation of the

visuomotor function is based on on-line techniques from the

field of machine learning.

This paper is presented as follow. First, we derive a linear

expression of the visuomotor function defined for the coordi-

nates of a three dimensional point. Then, we perform rank-1

updates to estimates the parameters of the linear expression

by using a recursive least squares algorithm. Finally, we

exploit the dependence of the parameters on the coordinates

of the three dimensional point to generalize these parameters

over a neighbohood of points with a coarse coding method.

Furthermore, in order to increase the performance we present

a queuing technique that estimates several sets of parameters

simultaneously. Finally, we use the resulting approximation

to predict variations of image coordinates and to estimate the

transformation corresponding to visual alignments.

II. BACKGROUND

Visual servoing methods are classified according to whether

a task is expressed by the parameters of image features or by

an Euclidian transformation. In the latter case, an Euclidian

transformation represents the desired relative pose between

the robot and the scene. Given the error between the desired

and current poses, the controller moves the robot toward the

desired pose. One implication of this strategy is that the

relative pose must be estimated at each control iteration. By

itself, pose estimation is a broad area within computer vision

and several algorithms have been proposed over the years.

However, these methods often make important assumptions

that have consequences on the applications for which this

control architecture can be used. Chief among those is that

knowledge about the environment is often required or must

be acquired. Example of such knowledge are maps of the sur-

rounding environment [4] or a CAD model of the object being

manipulated [5]. Furthermore, the mere fact of estimating a

position from images implies that the cameras are calibrated

and that a world coordinate frame has been defined. Thus,

the dependence on prior knowledge and calibrations often

make such architecture not suitable for visual control with

autonomous robots operating in an unknown environment.

A different strategy consists of using the parameters of

image features as input. These parameters represent the con-

figuration that each feature must reach under the desired view.

The challenge consists of regulating the corresponding features

in the current image toward their desired parametrization.

Most visual servoing methods developed around this image-

based paradigm use differential control laws to guide the

robot. Most notably, the image Jacobian J is defined as the

mapping between instantaneous variations of image feature

parameters p and instantaneous variations of a coordinate

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThD2.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2829

frame in Euclidian space q

δp = Jδq. (1)

This formulation has been the backbone of visual servoing

for several years and the image Jacobians of several features

have been documented [6]. Most of the research in this area

focuses on developing new image features with desirable

properties [7] or on the estimation of the image Jacobian

[8]. One important consequence of using this strategy is

that its global convergence and stability must be taken into

account. Furthermore, the trajectory of the robot is implicitly

dictated by the controller, which can lead to erratic motions

[9]. Several methods have addressed this issue [10] but none

truly replaces the versatility of Euclidian trajectory generators.

Others have addressed these issues by developing different

control strategies such as second order controllers [11] or by

fragmenting the control task into independent sub-tasks [12],

[13].

Our approach is similar to the image-based formulation of

Equation 1. As with IBVS, our commands are defined within

the same space of image coordinates. However, instead of

computing the twist δq corresponding to the instantaneous

variations δp by using δq = J−1δp, we approximate the

visuomotor function

∆p = V (E), (2)

which relates arbitrary variation ∆p of image coordinates

to a corresponding Euclidian transformations E. In the next

sections, we derive a linear formulation of V (E) and propose

a method to estimate its parameters on-line.

III. VISUOMOTOR FUNCTION

We begin by formulating the eye-in-hand configuration

illustrated in Fig. 1. The illustration shows two cameras (left

and right) with their respective coordinates frames L and R.

Both cameras are mounted on a stereo rig S according to the

homogeneous transformations LES and RES . The stereo rig

is attached to the end-effector of the robot and since LES

and RES are arbitrary, we assume that the frame of the

end-effector coincides with the frame of the stereo rig. The

coordinate frame B represents the base coordinate frame of

the robot and all three dimensional points BP are expressed

with respect to that frame. Therefore, the frames B and S
are related by the forward kinematics given by SEB . Since
SEB is known from the forward kinematics we express the

following derivation in the frame S.

For conciseness, we only show the derivation for the left

camera. Results for the right camera are in every way identical.

The first step is to derive a linear equation representing the

image coordinates of a point SP before any displacement

of the frame S. The second step is to repeat the derivation

while considering an arbitrary displacement of the frame S.

Then, the visuomotor function is derived by subtracting the

two equations.

S

L

R

P
B

B

Fig. 1. Geometric model: Camera frames L and R are mounted on a stereo
rig S.

Under a projective camera model, the projective coordi-

nates of a point SP with homogeneous coordinates SP =
[

X Y Z 1
]T

are given by

p = LKL
LES

SP =
[

x y z
]T

(3)

where LKL is the projection matrices of the left camera.

As a first step, we define the following matrix

LKL
LES =





m1

m2

m3



 =





a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4



 . (4)

Using Equations 4 in Equations 3 we express the image

coordinates of SP before a displacement of the stereo rig by

p1

i =

[

x1

i

y1

i

]

=

[

x
z
y
z

]

=

[

m1
S
P

m3
SP

m2
S
P

m3
SP

]

. (5)

By expanding Equation 5 and rearranging the terms we

obtain

x1

i =
a1X

c4

+
a2Y

c4

+
a3Z

c4

+
a4

c4

−
c1X

c4

x1

i −
c2Y

c4

x1

i −
c3Z

c4

x1

i

(6)

y1

i =
b1X

c4

+
b2Y

c4

+
b3Z

c4

+
b4

c4

−
c1X

c4

y1

i −
c2Y

c4

y1

i −
c3Z

c4

y1

i

(7)

Now, we derive similar equations for SP after moving the

coordinate frame S according to the homogeneous transfor-

mation

H =

[

r1 r2 r3 t

0 0 0 1

]

and

p2

i =

[

x2

i

y2

i

]

=

[

m1HS
P

m3HSP

m2HS
P

m3HSP

]

. (8)

ThD2.4

2830

In order to reduce the length of the equations we introduce

the following vectors

a =
[

a1 a2 a3

]

;

b =
[

b1 b2 b3

]

; c =
[

c1 c2 c3

]

.

Using a manipulation similar to the one used for Equations

6 and 7 we find

x2

i =
Xa

c4

r1 +
Y a

c4

r2 +
Za

c4

r3 +
a

c4

t +
a4

c4

−
Xc

c4

x2

i r1 −
Y c

c4

x2

i r2 −
Zc

c4

x2

i r3 −
c

c4

x2

i t

(9)

y2

i =
Xb

c4

r1 +
Y b

c4

r2 +
Zb

c4

r3 +
b

c4

t +
b4

c4

−
Xc

c4

y2

i r1 −
Y c

c4

y2

i r2 −
Zc

c4

y2

i r3 −
c

c4

y2

i t

(10)

Finally, subtracting Equation 6 from 9 and 7 from 10 we

obtain the six degrees of freedom visuomotor function for the

point SP

x2

i − x1

i =
Xa

c4

(r1 − e1) +
Y a

c4

(r2 − e2)

+
Za

c4

(r3 − e3) +
a

c4

t

−
Xc

c4

(x2

i r1 − x1

i e1) −
Y c

c4

(x2

i r2 − x1

i e2)

−
Zc

c4

(x2

i r3 − x1

i e3) −
c

c4

x2

i t

(11)

y2

i − y1

i =
Xb

c4

(r1 − e1) +
Y b

c4

(r2 − e2)

+
Zb

c4

(r3 − e3) +
b

c4

t

−
Xc

c4

(y2

i r1 − y1

i e1) −
Y c

c4

(y2

i r2 − y1

i e2)

−
Zc

c4

(y2

i r3 − y1

i e3) −
c

c4

y2

i t

(12)

where the units vectors ei are defined by

e1 =
[

1 0 0
]T

e2 =
[

0 1 0
]T

e3 =
[

0 0 1
]T

.

In order to use Equations 11 and 12 for any practical

purpose, the following problems must be addressed. First, all

36 parameters Xa/c4, Y a/c4, Za/c4, a/c4, Xb/c4, Y b/c4,

Zb/c4, b/c4, Xc/c4, Y c/c4, Zc/c4 and c/c4 must be

estimated. Also, these parameters will only be valid for a

specific three dimensional point, namely SP. We address the

first problem by using a recursive least squares algorithm with

rank-1 updates and the later by using a function approximation

known a coarse coding. The combination of these two methods

allows the system to estimate the parameters on-line and

to improve its performances in real-time. Also, this on-line

scheme allows the system to adapt to occasional variations of

imaging parameters as well as some actuating parameters. To

show this, we write Equation 3 as

p = LKL
LES(DH)SP,

where D is some distortion matrix acting on the end-effector.

Instead, by postmultiplying LKL
LES with D, the distortion

can be included in the parameters.

IV. RECURSIVE LEAST SQUARES WITH RANK-1 UPDATES

To estimate the 36 parameters of Equations 11 and 12, we

use a recursive least squares algorithm based on rank-1 updates

of the normal equation [14]. This provides the capability to

improve the estimation of the parameters as new data becomes

available. Even though this approach can adapt to changing

camera parameters, it is assumed that they remain constant

for a minimal period of time in order for the estimation to

converge.

Writing the Equations 11 and 12 as Aθ = b, the recursive

least-squares algorithm uses M blocks of equations Amθ =
bm to minimize

argmin
θ

M
∑

m=1

||bm − Amθ||2. (13)

Given the kth block of equations, the algorithm recursively

computes the kth update of the parameters θk with

θk = θk−1 + ΣkAT
k (bk − Akθk−1). (14)

where Σk is the inverse of the kth cross-product matrix

computed from

Σ−1

k = Σ−1

k−1
+ AT

k Ak. (15)

with the initial condition Σ−1

0
= 0.

However, in our problem, this involves the inversion of a

36× 36 matrix at each update. Instead, we use the equivalent

formulation presented in [15] obtained by applying the matrix

inversion lemma [16]

(Σ−1 + AR−1AT)−1 = Σ − ΣA(AT ΣA + R)−1AT Σ.

to Equation 15 and we obtain

Σk = Σk−1 − Σk−1A
T
k (AkΣk−1A

T
k + I)−1AkΣk−1. (16)

This formulation avoids the inversion of Σ−1

k and, when using

rank-1 updates, the matrix inversion of Equation 16 collapses

to a scalar inversion. However, the initial condition Σ−1

0
= 0

does not hold anymore. We solve this problem by performing

a bootstrapping iteration by accumulating a sufficient number

of equations and using Equation 15 with Σ−1

0
= 0. After this

initial step, the matrix Σ1 is computed from Σ−1

1
and Equation

16 is used afterward.

V. FUNCTION APPROXIMATION

Equations 11 and 12 indicate the dependence of the pa-

rameters on the coordinates of SP. It follows that each three

dimensional point must hold a distinct set of parameters. Nev-

ertheless, this dependence is linear. As such, small variations

in X , Y and Z will result in small variations of the param-

eters. We exploit this property to avoid the estimation of the

parameters for each SP by generalizing the parameters over a

ThD2.4

2831

s

x

y

(a) Single tiling of a 2D state space.

s

x

y

(b) Superposition of two tilings.

Fig. 2. Tile Coding.

neighborhood. In particular, we use a function approximation

method known as tile coding [17].

Tile coding rasterize a space S by a set of tiles t laid out

as a tiling as illustrated in the two dimensional example of

Fig 2(a). Each state s ∈ S is encoded by the identification

number of the tile to which it belongs. In Fig. 2(a), the state

s is displayed and its associated tile is highlighted. Though

effectively reducing the cardinality, this encoding also reduces

the resolution. To overcome this side effect, several tilings are

superposed with different offsets as shown in Fig. 2(b). A state

s is then encoded by all the tiles, one per tiling, containing s.

In general, for N tilings, a state is encoded by the union of

all such tiles

s =

N
⋃

n=1

tm,n (17)

where tm,n is the mth tile of the nth tiling. In Fig. 2(b), an

additional tiling is used and the state s is encoded by the

two tiles highlighted. An important observation is that the

volume of a tile represents the space in which its parameters

are generalized, whereas the number of tilings can be adjusted

to achieve a desired resolution.

In our problem, each point SP ∈ R3 is mapped to a state

s ∈ R4 consisting of a stereo point (Lxi,
Lyi,

Rxi,
Ryi), which

is then encoded by a set of tiles tm,n according to Equation 17.

Each tile contains a set of parameters and the parameters θs

for s are computed by taking the average of all the associated

parameters

θs =
1

N

N
∑

n=1

θm,n (18)

where θm,n are the parameters of the mth tiles of the nth tiling.

We conclude this section by connecting the tile coding

approximation with the least squares estimation of section

IV. Let a three dimensional point SP be encoded by a state

s1. After a rigid transformations H of the stereo rig, SP is

encoded by the state s2. Using the image-based variations

∆xi = x2

i − x1

i and ∆yi = y2

i − y1

i and H , the parameters of

all the tiles associated with s1 are updated with rank-1 updates

using the recursive least squares algorithm.

s1 s2 s3 sn

s1

s3

E
sn

s2
E

sn

s1
E

s1

sn
E

sn

s2

Es3

s1

E

s1

s2
E

s1

s2

E s2

s3

E

s3

s2

E sn

s1

E

sn

s3
E

Fig. 3. List of visited states and the possible updates combinations.

VI. PREDICTION AND CONTROL

The visuomotor function can be used to predict image

variations and for motion control. For the prediction aspect,

Equations 11 and 12 can be use directly to predict the

image variations resulting from a transformation H . Using

the visuomotor formulation, a visual servoing task is specified

in the image space by the current coordinates Lp1

i , Rp1

i ,

and the command coordinates Lp2

i and Rp2

i , where the left

superscripts indicate the cameras. Using ∆Lxi
i, ∆Lyi

i , ∆Rxi
i

and ∆Ryi
i , Equations 11 and 12 are formulated as a least

squares problem and solved for r1, r2, r3 and t. Given that

each stereo point provides four equations, two for the left

camera and two for the right camera, three corresponding

stereo points are required.

VII. IMPLEMENTATION

The on-line least squares procedure described in section IV

is computationally efficient when each update consists of a

rank-1 update. Taking advantage of the symmetry of Σk, each

update takes about 10µs on our system. Given that our cameras

are operating at 30 frames per second, this provides a budget

of roughly 3000 updates between frames after deducting time

for image processing and tracking. Since we use 32 tilings to

encode the parameters of each cameras, we are left with the

possibility to update about 45 different states between frames1.

Since tracking that many targets is a practical challenge

and a computational burden, we only track a single target.

However, we update the states visited by the target along the

way by storing them in a list as shown in Fig 3. Given an

initial state s1, this state will be transformed in a state s2 after

moving the end-effector according to S2ES1
. At this point, s2

is used to update s1 and s1 is used to update s2 by computing
S1ES2

. As the end-effector moves further, the new state s3

is used to update s1 and s2 and vice versa. This process is

repeated at each iteration. For a list containing n states, this

effectively allows n2 updates combinations at each iteration.

VIII. EXPERIMENTS AND RESULTS

We implemented our method on our platform consisting of

a seven degrees of freedom Whole Arm Manipulator (WAM).

1In practice, this number is even higher since we only update when the
image coordinates vary by more than two pixels, which, depending on the
velocity, is typically every two or three frames

ThD2.4

2832

0 1000 2000

−40

−20

0
X

a
1

0 1000 2000
−50

0

50

Z
a

1
0 1000 2000

−50

0

50

Y
b

2

0 1000 2000
−10

0

10

b
1

0 1000 2000
−2

−1

0

X
c

1

updates
0 1000 2000

−0.5

0

0.5
c

3

updates

Fig. 4. Convergence of various parameters.

We used the robot hand to hold a stereo rig consisting of

two IEEE1394 webcams operating at 30 frames per second

as shown in Fig 5(a). We emphasize the fact that no a priori

model of the hand, stereo rig or cameras was necessary and

that the coordinates of the end-effector, as provided by the

forward kinematics, was the only coordinate frame used. The

computer used for the experiments was used a 3.2GHz CPU

with 1GB or RAM. We used tiles of 32×32×32×32 in size

and 32 tilings for each cameras.

In the first set of experiments, we observed the convergence

of the parameters after each rank-1 update. Trackers were

initialized on a target, which resulted in an initial state s1.

Then, the arm was moved and the parameters of s1 were

estimated on-line. After each update, all 36 parameters of a tile

corresponding to s1 were recorded. Samples of these values

are plotted in Fig 4. The figure shows that most parameters

converge within 500 updates. In comparison, results for 3DOF

reaching movements (9 parameters) presented in [3] converged

within 60 updates.

In the second experiment, we tested the adaptiveness of our

algorithm. For this, we repeated the previous experiment until

2500 updates were performed. Then, we changed the grasp

of the hand on the stereo rig. This modification, illustrated

in Fig 5(a) and 5(b), resulted in a panning and tilting of

the stereo rig as well as a small translation. Then, the end-

effector was positioned in order to move the target at the

same initial state s1. Finally, the arm was then moved for

another 1000 updates and the parameters of the same tile were

recorded. Accordingly, the result sample illustrated in Fig 6

shows the reaction of a parameter around the 2500th update.

From there, 500 additional updates are required before the

parameters converges to a new value.

In our final experiment, we used the visuomotor function for

a visual servoing task by estimating the Euclidian transforma-

tion relating two different views of the same scene. Four states

(a) Before. (b) After.

Fig. 5. Modification of the hand-eye configuration.

0 500 1000 1500 2000 2500 3000 3500
−1

−0.5

0

0.5

X
c

2

updates

Fig. 6. Convergence of the estimation after modifying camera paramers at
update 2500.

originating from four different targets were initialized and

tracked. At each frame, we used the visuomotor function to

estimate the Euclidian transformation between the initial states

and the current states as provided by the trackers. The result

was then compared with the actual transformation provided by

the forward kinematics. The translational error was obtained

by subtracting the respective components,
[

tx ty tz
]T

=

|t̂ − t| while the error of orientation was obtained according

to [18]





ωx

ωy

ωz



 =
1

2
(r̂1 × r1 + r̂2 × r2 + r̂3 × r3)

where the ˆ denotes vectors obtained from the visuomotor

function.

However, these results do not properly reflect the perfor-

mance of the system due to the conditioning of the imaging

process. That is, since our controller measures errors in the

image space, as opposed to Euclidian, a more meaningful

experiment is to reproject the estimated transformations in

the image space in order to predict image based variations

of the transformations. These predictions were compared to

measured variations and the results for one of the targets are

illustrated in Fig 8. Again, the plots indicate that the error

of image-based predictions drops after 500 frames. The mean

absolute errors of the plots are reported in Table I.

ThD2.4

2833

0 500
0

0.1

0.2

0.3

t x

0 500
0

0.2

0.4

0.6

t y

0 500
0

0.05

0.1

0.15

t z

0 500
−0.5

0

0.5

ω
x

frames
0 500

−0.2

0

0.2

ω
y

frames
0 500

−0.5

0

0.5

ω
z

frames

Fig. 7. Error between the Euclidian transformation obtained from the
visuomotor function and the one measured from the kinematics.

0 500 1000 1500
0

1

2

3

|
∆

 L
x
−

 ∆
 L

x
e
 |

0 500 1000 1500
0

0.5

1

1.5

2

|
∆

 L
y
−

 ∆
 L

y
e
 |

Fig. 8. Error between reprojected transformations and measured variations
of a target.

TABLE I

MEAN ABSOLUTE ERROR BETWEEN VARIATIONS OR REPROJECTED

TRANSFORMATIONS AND MEASURED VARIATIONS

|∆Lx − ∆Lxe| |∆Ly − ∆Lye| |∆Rx − ∆Rxe| |∆Ry − ∆Rye|

0.3579 0.3745 0.7356 0.5094

IX. CONCLUSION

We presented an on-line approach for modeling image-based

variations and visual servoing. The method is based on the

linear relationship between image coordinates and Euclidian

transformations. Recursive least squares is used to estimate

on-line the parameters of the relationship as the robot moves.

Since the parameters are only valid for the coordinates of a

3D point, we use coarse coding to generalize the parameters

over a neighborhood around that point. Also, we presented

an algorithm for increasing the speed of the approximation.

Results showed that our method performs well at minimizing

image-based error despite begin limited to a single control

iteration.

REFERENCES

[1] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo
control,” IEEE Transactions on Robotics and Automation, vol. 12, no. 5,
pp. 651–670, October 1996.

[2] K. Ashimoto, “A review on vision-based control of robot manipulators,”
Advanced Robotics, vol. 17, no. 10, pp. 969–991, 2003.

[3] S. Léonard and M. Jägersand, “Adaptive control for estimating transla-
tions from image-based variations,” in Proceedings of the 2006 IEEE

International Conference on Robotics and Automation, May 2006, pp.
4106–4111.

[4] F. Dellaert, W. Burgard, D. Fox, and S. Thrun, “Using the condensation
algorithm for robust, vision-based mobile robot localization,” in Pro-

ceedings of the 1999 Computer Society Conference on Computer Vision

and Pattern Recognition, vol. 2, June 1999, pp. 588–594.
[5] D. G. Lowe, “Fitting parameterized three-dimensional models to im-

ages,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 13, no. 5, pp. 441–450, May 1991.

[6] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual
servoing in robotics,” IEEE Transactions on Robotics and Automation,
vol. 8, no. 3, pp. 313–326, June 1992.

[7] F. Chaumette, “Image moments: a general and useful set of features
for visual servoing,” IEEE Transactions on Robotics, vol. 20, no. 4, pp.
713–723, August 2004.

[8] M. Jagersand, “Visual servoing using trust region methods and estima-
tion of the full coupled visual-motor jacobian,” in IASTED Applications

of Robotics and Control ’96, 1996.
[9] F. Chaumette, “Potential problems of stability and convergence in image-

based and position-based visual servoing,” in The Confluence of Vision

and Control, ser. Lecture Notes in Control and Information Systems,
D. Kriegman, G. Hager, and A.Morse, Eds. Springer-Verlag, 1998,
vol. 237, pp. 66–78.

[10] Y. Mezouar and F. Chaumette, “Path planning for robust image-based
control,” IEEE Transactions on Robotics and Automation, vol. 18, no. 4,
pp. 534–549, August 2002.

[11] S. Benhimane and E. Malis, “Real-time image-based tracking of planes
using efficient second-order minimization,” in Proceedings of the 2004

IEEE/RSJ International Conference on Intelligent Robots and Systems,
2004.

[12] P. I. Corke and S. A. Hutchinson, “A new partitioned approach to
image-based visual servo control,” IEEE Transactions on Robotics and

Automation, vol. 17, no. 4, pp. 507–515, August 2001.
[13] E. Malis, F. Chaumette, and S. Boudet, “Positioning a coarse-alibrated

camera with respect to an unknown object by 2d 1/2 visual servoing,”
in Proceedings of the 1998 IEEE International Conference on Robotics

and Automation, May 1998, pp. 1352–1359.
[14] D. P. Bertsekas, “Incremental least-squares methods and the extended

kalman filter,” SIAM J. on Optimization, 1995.
[15] J. B. Moore, “On strong consistency of least squares identification

algorithms,” Automatica, 1978.
[16] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Prentice Hall,

1979.
[17] R. Sutton and A. Barto, Reinforcement Learning. The MIT Press, 1999.
[18] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, “Resolved acceleration

control of mechanical manipulators,” IEEE Transactions on Automatic

Control, vol. 25, no. 3, pp. 468–474, 1980.

ThD2.4

2834

