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Abstract—In this paper, we address the issues of compliant
control of a robot under contact constraints with a goal of using
joint space based pattern generators as movement primitives,
as often considered in the studies of legged locomotion and
biological motor control. For this purpose, we explore inverse
dynamics control of constrained dynamical systems. When the
system is overconstrained, it is not straightforward to formulate
an inverse dynamics control law since the problem becomes
an ill-posed one, where infinitely many combinations of joint
torques are possible to achieve the desired joint accelerations.
The goal of this paper is to develop a general and com-

putationally efficient inverse dynamics algorithm for a robot
with a free floating base and constraints. We suggest an
approximate way of computing inverse dynamics algorithm by
treating constraint forces computed with a Lagrange multiplier
method as simply external forces based on Featherstone’s
floating base formulation of inverse dynamics. We present how
all the necessary quantities to compute our controller can be
efficiently extracted from Featherstone’s spatial notation of
robot dynamics. We evaluate the effectiveness of the suggested
approach on a simulated biped robot model.

I. INTRODUCTION

Movement tasks are defined in either task space or con-
figuration space. For instance, in reaching for an object,
task coordinates (e.g., Cartesian coordinates) usually play
the dominant role for successful control, while in legged
locomotion, pattern generation in joint space seems to be
of high importance. For systems with redundant degrees-of-
freedom, even task space control has usually an additional
configuration space component due to some form of null
space control [1]. Thus, besides accurate task space control,
most commonly addressed in the framework of operational
space control [2], [3], there is also the need for accurate
configuration space control.
Accurate control can be accomplished with many different

control schemes. But if we wish to achieve a high level of
compliance, e.g., as needed for the new wave of humanoid,
entertainment, and assistive robots for safe operation in
human environments [4], model-based control seems to be
the only viable approach to keep feedback gains low without
compromising tracking accuracy. Model-based control in
task space and in joint space is well understood as long as the
robot is a fixed base system with no additional constraints.
However, if constraints exist, as in walking robots or robots
interacting with rigid objects in the environment (e.g., when
tracing a rigid surface or writing on a board), model-based
control becomes more complex. The most common approach

for model-based control with constraints is to derive the
constrained dynamics, and subsequently, suitable control
laws. For instance, in [5], [6], some general principles are
given how to approach such constrained dynamics problems.
As long as the number of task dimensions is smaller than
the dimensionality of the constrained dynamical system, the
control system is usually feedback linearizable and thus
suitable for model-based control.
However, as mentioned above, in many robot tasks, con-

figuration space control is an important part of the con-
trol objective. Biped locomotion with joint-space pattern
generators [7] is a typical example. For instance, consider
a biped robot with 7 degrees-of-freedom (DOFs) per leg.
This system has a total of 20 DOFs including the base 6
DOFs. In the double stance phase, each foot creates a six-
dimensional constraint, such that the constrained dynamics
has effectively 8 DOFs. Thus, standard feedback linearization
for model-based control is not possible for this system as it
is overconstraint, such that it is unclear how ideas of joint-
space pattern generators for locomotion can be combined
with compliant model-based control.
In this paper, we will address exactly this problem, i.e.,

how to realize compliant control of a robot under contact
constraints when our goal is to use joint space based pattern
generators, e.g., as in the movement primitive approach used
in [7]. For this purpose, we will explore inverse dynamics
control of constrained dynamical systems. Robot control with
kinematic constraints has been extensively studied in object
manipulation with a robotic hand or multiple robot arms
[8], [9], position and force control of robot manipulators
with constraints [9]–[13], modelling and control of a planar
legged robot under friction constraints [14], and humanoid
robot control [15], [16]. Inverse dynamics control computes
the motor commands (joint torques) for the given desired
joint accelerations. If the control system is overconstraint,
infinitely many combinations of joint torques are possible to
achieve the desired joint accelerations, where each particular
realization creates a different set of constraint/contract forces.
Furthermore, since the constraint forces depend on the cur-
rent joint torques, it is not straightforward to determine the
joint torques which achieve the desired joint accelerations by
simply compensating for the nonlinear robot dynamics and
the necessary constraint forces.
The goal of this paper is to develop a general and computa-

tionally efficient inverse dynamics algorithm for constrained
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dynamics starting from the formulation of the robot as a
free floating base system. First, given the floating base rigid
body dynamics, it is possible to extract the constrained joint
space dynamics for arbitrary constraints from a Lagrange
multiplier approach and Khatib’s framework of operational
space control [10]. In general, the constrained joint space
dynamics cannot be solved easily for the appropriate torques
given a (constraint compatible) desired trajectory. Second,
we consider an approximate way of computing the inverse
dynamics. Using Featherstone’s floating base formulation of
inverse dynamics [17] with external forces, we treat the
Lagrange multipliers simply as such external forces, which
can be justified as an approximation to the true contact
forces at high sampling rates and smooth motor command
generation. Third, we consider how all needed quantities
for our control approach can be computed efficiently from
Featherstone’s spatial notation of robot dynamics [17]. At
last, we evaluate the suggested approach on a simulated biped
robot model with several benchmark movements.

II. PROBLEM SETUP

Consider the floating base rigid body dynamics, i.e., the
combined dynamics of generalized coordinates of the robot
and the six DOFs added by the floating base:

M̃(q̃)¨̃q + C̃(q̃, ˙̃q) + g̃(q) = ST τ (1)

q̃ = [qT ,xT
B ]T denotes the entire robot position vector

composed of the joint angle vector q and the six base DOFs
xB , and, in general, all quantities referring to the full floating
base dynamics are characterized by the “̃ ” above variables.
Thus, in (1), M̃(q̃) is the floating base inertia matrix,
C̃(q̃, ˙̃q) is the floating base Coriolis/centripetal vector, g̃(q̃)
is the floating base gravity vector, and τ is the joint torque
vector. We use the selection matrix S = [In×n,06×6] to
extract joint space variables from the full floating base
variables.
With kinematic constraints of the form h̃c(q̃) = 0, the

constrained dynamics become

M̃¨̃q + C̃ + g̃ = ST τ + J̃T
c λ (2)

where λ is the vector of Lagrange multiplier describing the
constraint forces, and J̃c is the Jacobian of h̃c. Figure 1 de-
picts an example of a robot in contact with the environment.
From a Lagrange multiplier approach, the constraint forces
λ can be computed, e.g., as [8], [18]

λ=
(
J̃cM̃−1J̃T

c

)−1[
J̃cM̃−1

(
C̃ + g̃ − ST τ

)
− ˙̃Jc

˙̃q
]
(3)

Note that the constraint forces depend on the current motor
command τ . By substituting (3) into (2) and projecting the
entire dynamics into the joint space, i.e., by eliminating
the uncontrolled base DOFs, the constrained joint space
dynamics can be extracted as [19](

SM̃−1ST
)−1

q̈ + S̄T

(
I − J̃T

c
¯̃J

T

c

)(
C̃ + g̃

)

= S̄T

(
I− J̃T

c
¯̃J

T

c

)
ST τ (4)
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Fig. 1. Example of a robot in contact with an environment.

where S̄ and ¯̃Jc are the inertia-weighted pseudoinverses of

S and J̃c, defined as S̄ = M̃−1ST
(
SM̃−1ST

)−1

and ¯̃Jc =

M̃−1J̃T
c

(
J̃cM̃−1J̃T

c

)−1

, respectively.
The problem with the inverse dynamics of the constrained

joint space dynamics (4) is that, depending on the form

and number of the constraints, the matrix S̄T (I− J̃T
c

¯̃J
T

c )ST

is not always invertible. Several ideas exist to deal with
this issue. First, additional optimization criteria could be
introduced to obtain a proper solution to the inversion of
(4). This approach, however, creates very task and robot
specific solutions, and does not easily deal with cases where
constraints may dynamically appear as the robot touches the
world with its feet, arms, or other body parts. Second, as
mentioned in [18], if we could project the floating base dy-
namics onto the correct reduced rank space of the constraint
dynamics, the inverse dynamics problem could be solved by
a simple pseudo-inverse method. However, this projection is
generally not known and might only be obtained by means
of numerical methods—from our experience, this approach
was numerically not very robust. Thus, in the next section,
we consider an alternative approach to computing inverse
dynamics of the constrained dynamical system by treating λ
simply as external forces.

III. CONTROLLER FORMULATIONS

The difficulty of computing inverse dynamics with con-
straints is that the constraint forces depend on the current
motor command for which we would like to solve the
equations. Suppose we treat λ as given external forces Fext.
Then the joint space dynamics becomes:(

SM̃−1ST
)−1

q̈ + S̄T
(
C̃ + g̃ − J̃T

c Fext

)
= τ . (5)

In this case, the inverse dynamics problem is now well-
posed such that we can determine the joint torques for the
given joint accelerations. Thus, instead of solving (4) for
τ , we consider an approximate way of computing inverse
dynamics. The basic idea revolves around the assumption
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that the motor commands τ from the previous time step are
very close to the motor commands computed at the current
time step. Under this assumption, we compute the constraint
forces using τ t−1

λ(q̃, ˙̃q, τ t−1)

=
(
J̃cM̃−1J̃T

c

)−1[
J̃cM̃−1

(
C̃ + g̃ − ST τ t−1

)
− ˙̃Jc

˙̃q
]
(6)

The complete control law can be formulated as

τ =
(
SM̃−1ST

)−1

q̈+ S̄T
(
C̃ + g̃−J̃T

c λ(q̃, ˙̃q, τ t−1)
)

. (7)

The same control law can be derived in a different way,
from the idea of hybrid dynamics algorithm in [17], in
which, for the given desired joint accelerations, the base
accelerations and joint torques are computed. First, the robot
dynamics equation[

M̃11 M̃12

M̃21 M̃22

] [
q̈
ẍB

]
+
[

C̃1 + g̃1

C̃2 + g̃2

]
=
[

τ
0

]
+J̃T

c Fext

(8)
is rearranged as[

I −M̃12

0 −M̃22

] [
τ
ẍB

]
=
[

M̃11q̈+C̃1+g̃1−J̃T
c1Fext

M̃21q̈+C̃2+g̃2−J̃T
c2Fext

]
.

(9)
Subsequently, we can solve for the joint torques τ and the
base accelerations ẍB as[

τ
ẍB

]
=
[

I −M̃12

0 −M̃22

]−1[
M̃11q̈+C̃1+g̃1−J̃T

c1Fext

M̃21q̈+C̃2+g̃2−J̃T
c2Fext

]

=
[

I −M̃12M̃−1
22

0 −M̃−1
22

][
M̃11q̈+C̃1+g̃1−J̃T

c1Fext

M̃21q̈+C̃2+g̃2−J̃T
c2Fext

]
(10)

using the inversion formula of a block matrix. By extracting
the joint torque vector, we have the inverse dynamics control
law

τ = (M̃11 − M̃12M̃−1
22 M̃21)q̈

+ (C̃1 + g̃1 − J̃T
c1Fext) − M̃−1

22 M̃21(C̃2 + g̃2 − J̃T
c2Fext)

= (M̃11 − M̃12M̃−1
22 M̃21)q̈

+
[

I −M̃−1
22 M̃21

] (
C̃ + g̃ − J̃T

c Fext

)
(11)

Note that equation (11) can also be considered as the
extracted joint space dynamics with external forces. If we
compare (5) and (11), the following relationships can be
extracted:(

SM̃−1ST
)−1

= M̃11 − M̃12M̃−1
22 M̃21 (12)

S̄T =
[

I −M̃−1
22 M̃21

]
. (13)

These these equations correspond to another representation
of the joint space inertia matrix, Coriolis and gravity vectors
[19]:

M =
(
SM̃−1ST

)−1

= M̃11 − M̃12M̃−1
22 M̃21 (14)

C = S̄T C̃ = C̃1 − M̃−1
22 M̃21C̃2 (15)

g = S̄T g̃ = g̃1 − M̃−1
22 M̃21g̃2. (16)

Thus, we can reformulate the inverse dynamics control law
with computed constraint forces from using τ t−1 in equation
(7) in a computationally more efficient representation:

τ = (M̃11 − M̃12M̃−1
22 M̃21)q̈

+
[

I −M̃−1
22 M̃21

] (
C̃ + g̃ − J̃T

c λ(q̃, ˙̃q, τ t−1)
)

.(17)

For an actual robot implementation, we need to address
how to efficiently extract all necessary quantities for this
control law, as normal recursive Newton-Euler formulations
of rigid body dynamics do not provide direct access to the
inertia, Coriolis/centripetal, and gravity terms. We approach
this issue in the framework of Featherstone’s spatial algebra
approach [17].

A. Efficient Computation of Rigid Body Dynamics Compo-
nents

Featherstone [17] suggested various methods for comput-
ing forward and inverse versions of rigid body dynamics
using spatial algebra. The following paragraphs clarify and
augment some of Featherstone’s original work, such that
it becomes suitable for our control framework—interested
readers may refer to [17] for detailed formulations of the
robot dynamics with spatial algebra.
In [17], Section 7.5, it is stated that in spatial notation, the

floating base rigid body dynamics can be written as:[
M K̂S

B

K̂B ÎC
0,B

][
q̈

â0,B

]
=
[

Q− C
−f̂0,B

]
(18)

Here, variables with ˆ superscripts denote spatial variables
as defined in [17], and we also rearranged the matrix/vector
components in a compatible notation to the previous sections
of this paper. Moreover, we assume that there are no external
forces acting on the base of the robot. In (18), Q is the
joint torque vector, C includes the Coriolis and gravity
components, ÎC

0,B is the composite-rigid-body inertia of the
base link, f̂0,B is the bias force required to give the base
link zero acceleration, and K̂B is the 6 × n matrix whose
ith column is ÎC

i,B ŝi,B where ŝi,B is the joint axis (see [17]
for details).
All quantities in (18) can be computed from efficient

algorithms in [17]. However, we need to extract the floating
base inertia matrix in non-spatial notation from this equation.
First, it should be noted that Equation (18) is derived in
base coordinates, as indicated by the subscripts B on most
variables, and not world coordinates, which we have been
using in all our previous derivations. In spatial algebra, care
needs to be taken in coordinate transformations as some
spatial quantities assume very different values for different
coordinate origins, and even numerical inaccuracies can be
introduced by imprudent choices of coordinate systems [20].
A useful choice of a world coordinate system is at the
center of the base link of the robot, denoted by WB—this
origin is identical with that of the base coordinate system,
but the coordinate system’s orientation is now aligned with
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the world coordinate system. Thus, the spatial coordinate
transformation from base to world coordinates becomes

WB X̂B =
[

W R−1
B 0

0 W R−1
B

]
(19)

where W RB is the rotation matrix from base to world
coordinates. Equation (18) can then be expressed in world
coordinates as:[

M K̂S
WB

K̂WB ÎC
0,WB

][
q̈

â0,WB

]
=
[

Q− C
−f̂0,WB

]
(20)

where

K̂S
WB

= K̂S
B BX̂WB (21)

K̂WB = WBX̂B K̂B (22)

ÎC
0,WB

= WBX̂B ÎC
0,B BX̂WB (23)

â0,WB = WBX̂B â0,B (24)

f̂0,WB = WBX̂B f̂0,B (25)

By inserting the relationship between spatial accelerations
and conventional accelerations

â0,WB =
[

ω̇
r̈WB + ṙWB × ω

]
(26)

into (20) and rearranging it, we obtain[
M K̂S

WB

K̂WB ÎC
0,WB

]⎡⎣ q̈
ω̇

r̈WB

⎤
⎦ (27)

=
[

Q
0

]
−
([

C
f̂0,BW

]
+

[
K̂S

WB

ÎC
0,WB

][
0

ṙBW × ω

])
.(28)

Thus, for conventional notation in world coordinates, we can
extract the inertia matrix M̃ and C̃ + g̃:

M̃ =

[
M K̂S

WB

K̂WB ÎC
0,WB

]
(29)

C̃+g̃ =

([
C

f̂0,BW

]
+

[
K̂S

WB

ÎC
0,WB

] [
0

ṙBW × ω

])
(30)

where it needs to be noted that in [17], the gravity term is
automatically included in the right hand side of (18).
Note that if there is no need to extract M̃ and C̃ + g̃

terms and compute the constraint forces λ using them, there
are computationally more efficient recursive formulations for
floating base inverse dynamics based on the articulated body
hybrid method and the composite rigid body hybrid method
[17]1. However, the control law (17) requires an extraction
of M̃ and C̃ + g̃ to compute the constraint forces λ. Thus,
once these quantities are available, the algebraic form (17)
seems to be simpler than implementing the recursive floating
inverse dynamics formulae with external forces.

1The original formulations in [17] do not include external forces, but it
can be modified to incorporate external forces Fext by inserting them in
the appropriate places.

Fig. 2. Testbed: a 16 DOF simulated biped robot model.

IV. EVALUATIONS

In this section, we evaluate the suggested approach on a
simulated biped robot model as an example of a floating base
system with constraints as shown in Figure 2. This simulated
biped robot has 14 DOFs, where each leg has 7 DOF and
the torso has 2 DOFs. We consider a robot model with the
size and weight similar to a human lower body (the height
is about 1m and the weight is approximately 40kg).
First, we consider joint space tracking control, and then we

use the suggested approach as a part of an acceleration based
task space control which requires a proper inverse dynamics
control law.
1) Joint Space Tracking Control: As a test movement

of joint space tracking control, we consider a squatting
movement generated by simple sinusoidal joint trajectories,
and compare the tracking performance of a low gain PD
controller and a PD controller+inverse dynamics with con-
straint forces. These constraint forces are computed with an
assumption that both feet are fixed to the ground, and used
in the inverse dynamics control law.
To generate squatting movements, we used sinusoid de-

sired joint trajectories for the hip, knee and ankle joints of
both legs (slow 1Hz, fast 2Hz), and the desired position for
the rest of the DOFs were kept constant. Figure 3 shows a
representative comparison of the tracking results using only
a low gain PD controller and the suggested inverse dynamics
control with constraint forces. Plots of the major degrees of
freedom (hip, knee and ankle flexion/extension DOFs) for the
fast squatting movement at 2Hz are shown in Figure 3. The
result indicates that with the low gain PD controller, the robot
could not track the desired trajectory very well. However, in
contrast, the inverse dynamics control law with constraint
forces achieved much improved tracking performance by
compensating the nonlinearity of the robot dynamics and
the contact forces. Tracking errors (measured by the L2

norm defined as L2[e(t)] =
√

(1/T )
∫ tf

t0
||e(t)||2dt where

e(t) = qd − q and T = tf − t0) using the PD controller
were 1.82 × 10−1 (slow movement) and 2.04 × 10−1 (fast
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Fig. 3. Comparison of the tracking results of the three major degrees of
freedom used for the fast squatting movement (2Hz) with the simulated
biped. With a low gain PD controller, the robot could not track the
desired trajectory very well. However, the inverse dynamics control law
with constraint forces achieves much improved tracking.

movement), and using the inverse dynamics control law, the
L2 norm of the tracking errors were 1.40 × 10−2 (slow
movement) and 1.63 × 10−2 (fast movement), respectively.
In particular, a significant improvement can be seen in the
tracking error of the knee joint whose movement is much
influenced by the effect of the gravity as illustrated in the
middle of Figure 3. The results suggest the effectiveness
of the inverse dynamics control law by compensating the
nonlinearities of the robot dynamics and contact forces.
2) Application to Task Space Control: In our previous

work [2], we explored task space control with a fixed base
redundant robot arm. Our empirical evaluations demonstrated
that the simplified acceleration based control was the most
promising approach among several different methods. In
order to apply such a task space control approach to a
biped robot, we need a proper inverse dynamics control law
including contact constraints.
In this section, we consider a task of controlling the base

link position xB (located at the center of the pelvis, see
Figure 1) of the simulated biped robot model with an exten-
sion of the simplified acceleration based task space control
method which we explored in [2]. In this paper, we consider a
slight variant formulation of the simplified acceleration based
task space control. First, for a given task space acceleration
command ẍd, the desired joint accelerations are computed
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Fig. 4. Comparison of the tracking results of the task space control with
inverse dynamics (32) and without inverse dynamics (33) using the same
gain settings. The plot shows the tracking result of the vertical motion of
the base link (pelvis) of the robot for a given sinusoidal desired trajectory to
achieve squatting movement. Without inverse dynamics, the robot could not
achieve good tracking performance largely due to undercompensation of the
gravity terms. In contrast, with the inverse dynamics, tracking performance
was much improved.

using the Jacobian pseudoinverse as

q̈d = J†(ẍd − J̇q̇) (31)

where J denotes the task space Jacobian matrix taking the
contact constraints into account. Then, an inverse dynamics
control law with the addition of task space PD error terms
and Liégeois-like null space projection term with damping
is used to obtain the joint torque command

τ = Invdyn(q̈d, ˙̃q, q̃, λ( ˙̃q, q̃, τ t−1)) + J†(Kdė + Kpe)
+ (I− J†J)(−Kq,dq̇ − αKw(qrest − q)) (32)

where ė and e are the velocity and position errors in the
task space, respectively, Kd and Kp are positive definite
gain matrices, Kq,d is the damping gain matrix, α is a
positive scaling factor, Kw is the weighting matrix, and
qrest is some rest posture. As a benchmark movement, we
consider a task of tracking squatting movement specified by
a sinusoidal desired trajectory at 1Hz in the vertical direction
for the pelvis position. We demonstrate the effectiveness of
the suggested inverse dynamics control by comparing to the
control law without invdyn() component in (32) with the
same task space gain settings as

τ = J†(Kdė + Kpe)
+ (I − J†J)(−Kq,dq̇ − αKw(qrest − q)). (33)

Note that this controller does not compensate the nonlinear-
ities of the robot dynamics. Figure 4 shows the comparison
of the tracking results of the movement of the pelvis as task
space coordinates in the vertical direction. Without inverse
dynamics, the robot could not achieve good tracking to the
desired trajectory largely due to undercompensation of the
gravity terms. However, in contrast, the inverse dynamics
control law with constraint forces achieved improved track-
ing performance by compensating the nonlinearity of the
dynamics. The L2 norm of the tracking error of the task
space coordinates is 3.81× 10−3 with inverse dynamics and
8.60× 10−2 without the inverse dynamics, respectively. The
results demonstrate the effectiveness of the suggested inverse
dynamics approach, however, still further investigation will
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be necessary in order to achieve more complex movements
including balancing, transition of contact constraints and
combination with joint space pattern generator in a hierar-
chical manner.

V. CONCLUSION

In this paper, we presented an approximated way of
computing inverse dynamics of a free floating base system
with contact constraint. We formulated the constrained in-
verse dynamics based on the idea of Featherstone’s hybrid
dynamics algorithm incorporating external forces. We also
presented how the necessary components to implement the
control law can be computed from Featherstone’s efficient
rigid body dynamics formulation based on spatial algebra.
We empirically evaluated our approach on a simulated

biped robot model. We achieved improvement of tracking
performance with our floating inverse dynamics approach
compared to a PD controller suggesting its effectiveness. We
also evaluated the effectiveness of the suggested approach
on the acceleration based task space control framework
which require floating base inverse dynamics with contact
constraints.
Future work will address implementation of the suggested

approach on an actual humanoid robot, comparison with
other constraint control approaches, transition of contact
constraints, learning and prediction of contact forces, and
investigation of the principle of internal model based bio-
logical motor control.
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APPENDIX

A. Spatial Algebra Notation

In this section, we briefly describe spatial algebra notation
used in Featherstone’s rigid body dynamics algorithm [17].
Spatial velocity definition:

v̂ =
[

ω
v + r × ω

]
(34)

where v is the translatory velocity of a point P on the body,
r is the offset vector OP from the origin O of the coordinate
system to P , and ω is the regular angular velocity.
Spatial acceleration (component-wise time derivative of

spatial velocity above):

â =
[

ω̇
r̈ + ṙ × ω + r× ω̇

]
(35)

Spatial coordinate transformation:

P X̂O =
[

R 0
R r×T R

]
(36)

OX̂P =
[

R−1 0
r× R−1 R−1

]
(37)

where R is the regular rotation matrix, and r is the offset
vector between O and P , and

r× =

⎡
⎣ 0 −rz ry

rz 0 −rx

−ry rx 0

⎤
⎦ . (38)

Spatial transpose is denoted by S , and generalized joint
forces are denoted by Q.
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