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Abstract— Ubiquitous robots need the ability to adapt their
behaviour to the changing situations and demands they will
encounter during their lifetimes. In particular, non-technical
users must be able to modify a robot’s behaviour to enable
it to perform new, previously unknown tasks. Learning from
Demonstration is a viable means to transfer a desired control
policy onto a robot and Mixed-Initiative Control provides a
method for smooth transitioning between learning and acting.
We present a learning system (Dogged Learning) that combines
Learning from Demonstration and Mixed Initiative Control
to enable lifelong learning for unknown tasks. We have im-
plemented Dogged Learning on a Sony Aibo and successfully
taught it behaviours such as mimicry and ball seeking.

I. MOTIVATION

If robots are ubiquitous then the average user will likely
be non-technical, but will have the desire to alter robot
behaviour. That is, he or she will be unwilling or unable
to sit down and program a robot in a traditional manner,
either due to lack of time or relevant training, but would
still like to modify the robot’s actions. To perform this
customization, users will rely upon whatever flexibility has
been programed into the robot. Unfortunately, determining
in advance what tasks users will want a robot to perform is
difficult due to many social and economic factors. There are
some fixed, limited autonomy tasks such as floor cleaning
that can be universally assumed and robots can be and have
been designed to perform these tasks well. However, we
would like robots to move beyond the realm of single tasks
toward more general functionality. Ideally we would like a
robot to be able to perform any task asked of it that is
physically possible given its embodiment. For robots that
measure their lifetimes in years instead of minutes it is
likely that many different tasks will be asked of it during
operation, including tasks not thought of during the original
designing and programming phases. We assume that it is
impractical to program a robot in advance to execute any
possible task in any situation that it might face. Therefore, we
must utilize learning to enable a robot to change its behaviour
after leaving the factory. Of particular interest is how a robot
can learn to perform “The Unknown Task”, a task that it
has previously never seen.

Learning from Demonstration (LfD) is an approach
especially suited for robotic interaction with non-technical
users. In this paradigm the robot is shown examples of the
desired behavior and infers the demonstrator’s latent control
policy. The demonstration itself can take many forms, from
watching a demonstrator to being physically guided through

the task. Likewise, the demonstrator can be realized in
multiple fashions. Possibilities include humans, other robots,
or custom-designed algorithms such as planners. Once a
control policy is learned, the robot then applies it to new
situations, generalizing from the demonstration.

In a real world lifelong learning scenario the distinction
between learning sessions and acting sessions (so necessary
to laboratory research) becomes blurred. Not only does a
robot need to learn new tasks during “learning time”, but it
should be able to modify those tasks on the fly while acting.
This adjustment ability is particularly important when a robot
has learned a task incorrectly and needs to be corrected, or
when new situations are encountered that the robot was not
adequately trained for. Mixed Initiative Control (MIC) is
one method for enabling this constantly tunable learning. In
a MIC setup, the robot’s autonomous behaviours (learned
or preprogrammed) share control of the robot with another
agent. This agent can be a human, or for the purposes of
our discussion, any demonstrator. By smoothly transitioning
control between the robot and the demonstrator, MIC allows
for quick and easy transitions in and out of training sessions.

Dogged Learning (DL) embraces all of these approaches
by providing the ability to reprogram a robot for a previously
unknown task using learning from demonstration in a mixed
initiative manner. The ultimate desire is to have a robot that
can be shown a new task by a human demonstrator, learn
the task, acknowledge gaps in its abilities, and be amenable
to future tuning as the human’s needs and wants change.

II. BACKGROUND

Robotic Learning from Demonstration is an approach
to robot programming where a control policy is estimated
from demonstrated examples of a task. The robot assumes
the demonstration is consistent with “correct” behavior for
the task and attempts to learn to recreate it. The robot’s
observations are the perceptual inputs and action outputs
representative of the demonstrator’s control policy. The pri-
mary challenge is to estimate this latent policy such that it
can be used to drive the robot autonomously. This learning
problem can be considered as related to supervised learning
(i.e., regression) and reinforcement learning [1], [2], [3].

Robotic Lifelong Learning [4], deals with learning mul-
tiple tasks over time. In our approach, we focus on using
a general regression mechanism with human intervention to
learn and adapt the robot’s control policy over its lifetime.
Our aims are similar to those of reinforcement learning,
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Fig. 1. The Dogged Learning system; dotted lines indicate optional portions. The platform (robot) provides inputs in the form of sensor data that has
perhaps been put through some perception process. These inputs are passed to both the demonstrator and the cognition system (a learner and an optional
default controller). Each box generates an output and a confidence value. The arbitrator receives these outputs and confidences and generates (chooses) an
output to pass back to the platform and the learner. The learner then updates its I-O mapping and the platform interprets and acts upon the output.

except that we use human-robot interaction rather than
autonomous exploration to drive the learning process. Our
use of regression emphasizes generic input-output pairs and
therefore we do not want to use an algorithm that is tied
to particular data types. In addition, we would like to learn
the mapping in an incremental, online way. We expect data
to arrive one at a time and would like new data to cause
an update in our learned method as it arrives. This is in
contrast to a batch process, where large amounts of data
are processed simultaneously. Locally Weighted Projection
Regression (LWPR) [5] is a widely used regression technique
that is well suited to our approach. It instantiates the concept
of receptive fields to form a piecewise approximation of the
input-output mapping and update it incrementally. Note that
the system we propose is not tied to this specific regressor.
In fact, other learning algorithms can be utilized in its
place (such as Support Vector Regression [6] or Gaussian
Processes [7]), and DL can be used as a means of comparing
the abilities of these different learning algorithms.

Mixed Initiative Control is a rapidly growing area of
research, studying the sharing of robot control between a
human operator and an autonomous controller. Similar to
Actor-Critic learning [8], MIC allows a human to guide a
robot’s learning process. Most work, however, deals with
static autonomy - autonomous behaviors that are either
preprogrammed, or learned once, and do not change over
the course of operation [9]. Recently [10] showed a system
that used sliding autonomy to enable one user to control
three robots. In contrast, the autonomous behavior in robots
utilizing DL can change over time to react to and incorporate
what the human user does.

We also use MIC as a means to prompt the demonstrator
for additional examples of the correct control policy in
action. In contrast to traditional reinforcement learning, we
consider demonstrator feedback a crucial aspect of a tractable
and practical learning process. Our approach is to endow the
robot with a sense of “confidence”, essentially whether its
previous experiences are applicable to its current situation,
that allows it to ask for instructive interactions which may or
may not occur. This confidence-based arbitration is similar

to the use of social cues in the examples of [11] and the
“responsibility estimator” of [12]. Note the robot’s internal
notion of confidence is a compliment to externally generated
learning interventions (which also occur in our system), such
as in the approach to feedback used by [13].

III. DOGGED LEARNING

Dogged Learning is the cognitive learning setup shown
in Figure 1. It deals with abstract perceived inputs and
action outputs, so that very few constraints can be made
upon the implementation. In particular, DL does not depend
on what the platform is, nor what occupies the learning,
demonstrating, arbitration and default boxes. We wish for
DL to be a general cognitive engine that can be used for
multiple purposes, having drawn inspiration from Monte-
Carlo Localization, which often serves as a “black box” for
higher level planning.

All DL requires from the various boxes is that:
• The platform generates inputs.
• The demonstrating, learning (and default) boxes gener-

ate an output and confidence given an input.1

• The arbitrator accepts outputs and confidences and
generates an output.

• The learning box accepts an output and learns to asso-
ciate it with the corresponding input.

• The platform accepts outputs.
It is important to note that DL is doubly agnostic as to the

nature of its inputs and outputs. Not only does it not care
what hardware it is running on, but it also does not care
what pre- or post- processing is performed on the inputs
and outputs that it receives and sends. It is only necessary
that the information provided be sufficient for the desired
task to be learned. This is easily tested for by seeing if the
demonstrator is able to demonstrate the desired task based on
the inputs and outputs. This agnosticism allows the same DL
system to be applied at multiple levels of sensory input from
raw sensor readings to heavily processed and manipulated

1We refer to the items in the demonstrating box as the “demonstrator”
or “teacher” and items in the learning box as the “learner” or “student”.
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Algorithm 1 Predictive Learning
Input:
threshold, the error threshold,
P , a machine that generates inputs,
D, a machine that generates the correct outputs
L, the learning predictor.
Output:
L, performing well.

1: error ←∞
2: while error > threshold do
3: Get an input from P

4: Query D with input to get the correct output
5: Query L on input to get ˆout
6: Train L on the pair input,output
7: error ← ( ˆout− output)2

8: end while

data. Likewise, outputs can range from direct control of the
actuators of the hardware to higher-level control signals. The
complexity of the inputs and outputs are not limited by DL,
but rather by the algorithms resident in the learning (and
demonstrating and default) boxes as they are the ones which
must process the inputs to produce outputs.

Our discussion of DL starts with a basic predictive learn-
ing loop, shown in Algorithm 1. This loop is used to train a
learner to predict what the demonstrator will do, previous to
using the learner to control some system. When prediction
error falls below a pre-set threshold, the loop terminates and
returns the trained learner. Then the system transitions into an
acting state and behaves autonomously. Note that this system
is a form of batch learning, once the system stops learning,
it never returns to the learning state. Our first modification
of this system is to add the lifelong component, so that the
learner never stops learning. This is easily done by turning
the loop into an infinite loop, thereby eliminating the need
for a pre-determined termination condition. Now, as we no
longer wish to train and use the predictor separately, we must
connect the loop with the platform. Thus, after receiving
an input from the platform, and both the learner and the
demonstrator have been queried for an appropriate output,
we must generate an output to send back to the platform
(or machine). A first pass attempt would simply say that the
teacher is always right - if the teacher returns an output, that
response is sent to the platform and the input-output pair is
given to the learner to learn. If the teacher does not generate
an output, or generates a null output, then the student’s output
is instead passed to the hardware. Given a patient teacher and
a good learning algorithm, this scenario will teach the system
to mimic the instructor.

If the instructors are infinitely patient, then this scenario
is all we need. We would like, however, for the instructors to
be humans and the whole process human-usable. Therefore,
we cannot expect a response to every input, as very often the
inputs arrive at framerates faster than a human can process.
We also expect the human to be lazy and only wish to

Algorithm 2 Dogged Learning
Input:
P , a machine that generates inputs and accepts outputs,
D, a demonstrator that generates the correct outputs
L, the learning predictor.
Output:
None, infinite loop

1: while ∞ do
2: Get an input from P

3: Query D on input to get out, con
4: Query L on input to get ˆout, ˆcon
5: Arbitrate between out and ˆout using con and ˆcon

to determine output
6: Train L on the pair input,output
7: Send output to P

8: end while

respond if necessary to improve the system’s behaviour or
teach a new task. For this reason we have the requirement
that along with an output, the learning and demonstrating
boxs must generate a confidence value for each input query.
Many learning algorithms, including LWPR, already have
this capability, where confidence is a measure of how well
the query input is supported by previous experience.

This confidence value can be used in many ways. Firstly,
it can be used to recognize when the system has adequately
learned a task by operating as the inverse of the error value in
the simple algorithm. When the confidence value associated
with queries is high, it means that the system has enough
information to make a good prediction of the appropriate
output. Demonstration may then cease and the platform can
proceed to act autonomously.

Conversely, when the confidence value falls, it means
that the learning algorithm is operating in space that it is
unfamiliar with and perhaps its predicted outputs should
not be trusted. In this case, signals can be sent to the
demonstrator requesting more education (giving initiative to
the teacher), or a default controller can be activated to prevent
damage to the system.

Furthermore, as we ask the demonstrator to return a
confidence value as well, both of these values can be used
to arbitrate control of the system. It is possible that the
demonstrator returns an output but is, for some reason,
unsure as to how correct it is while the learner has greater
confidence. Such a scenario might arise if a new teacher has
arrived and the student can leverage its previous education.
In such a case we would like the learner to control the system
until the demonstrator gains confidence.

The full DL algorithm with these modifications is shown
in Algorithm 2.

IV. IMPLEMENTATION

We have implemented DL for a Sony Aibo, pictured
in Figure 2. Computational processing (aside from sensor
and motor IO) is performed off-board and information is
exchanged with the robot via wireless UDP communication.
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(a) JPEG (b) Segmented

(c) Dog and Ball

Fig. 2. Our robot, a Sony Aibo, and its ball. 2(a) shows the image obtained
from the nose camera and 2(b) shows what our perceptual system perceives.

The robot generates the positions of its 18 motors as well as
a JPEG image from a nose-mounted camera as sensor inputs
and accepts settings for all 18 motors as actuator outputs.

Our DL implementation is built around LWPR in the
learning box. In order to control for demonstrator error we
have replaced the human demonstrator with hand coded
controllers (described in experiments). However, we still
have a human user in the loop who chooses when to activate
the demonstrator and can do so for arbitrarily short or
long periods of time. For arbitration we have adopted the
simple strategy of always assuming that the demonstrator
is correct (demonstrator confidence is always 100%). If the
demonstrator returns a non-null output it is sent to the
platform. Otherwise, the student-generated output is sent.

Feedback to the user was given via LEDs on the robot
itself. The robot had 3 modes; ‘teacher’, ‘student’ and
‘unsure’ signalled by red, blue and green colors on the ears.
These modes correspond to: 1) The teacher being in control
of the robot, 2) The student being in control and fairly sure
of what it was doing and 3) The student being in control, but
unsure of its abilities and requesting more education. This
correspondes to low confidence (< 25%). Whether or not the
education is provided depends on the human user.

While our implementation uses fixed-dimensionality in-
puts and outputs, this is not a requirement of the DL system,
but instead is a limitation of our current implementation.
We have nevertheless been able to use our setup in various
configurations and do not see this limitation as impeding.

(a) Pan Left (b) Pan Right

(c) Tilt Forward (d) Tilt Back

Fig. 3. The first task we set our system was to learn to match the robot’s
head to its tail (mirroring). When we used one instructor to teach the pan
portion (top row), and another to teach the tilt (bottom row), DL enabled
the system to learn and merge both into full mirroring.

V. EXPERIMENTS

Each of our experiments involved connecting the DL
system to different platforms and demonstrators. This meant
that the inputs and outputs of the system changed, but the
DL system itself did not need to be modified. We held our
learning box constant over the experiments presented here
but, as previously mentioned, that is not required.

A. Mirroring

We first used DL to learn the simple cognitive task shown
in Figure 3. The desired behavior is for the dog’s head to
‘mirror’ its tail - as the tail was panned and tilted, the head
should do the same. The setup follows:

• Inputs to the system were the 18 raw readings from the
robot’s motors.

• Outputs from the system were the 18 desired settings
of the robot’s motors.

• The demonstrator was a hand-coded controller that
mapped tail readings to head settings.

This task was successfully learned after very little training.
At startup, the student knows nothing and does not respond
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to changing inputs. However, after less than 10 seconds of
demonstrator activation, the student can perform the task on
its own. Note that this task is not just to learn the tail-head
mapping, but to also learn to ignore extraneous inputs. The
readings corresponding to the other 16 motors are ignored
and can be changed at will with no effect of the behaviour
of the system.

We modified the above task slightly by replacing the one
demonstrator with two teachers, each of which taught a
different aspect of the desired task. One taught the panning
portion of the mirror task and the other the tilting portion.
Trained with either teacher alone the system is able to
recreate that teacher’s portion of the task. However, when
trained with the two teachers successively, the student learns
to merge their behaviours into the desired task. This demon-
strates the ability of DL to learn from multiple instructors
in an extended time scenario and combine the taught actions
into novel behaviours.

B. Ball Seeking

We then applied DL to a very different task; that of ball
seeking. This new behaviour, pictured in Figure 4 and shown
in the accompanying video, is precursor to many desired
skills such as foraging and goal scoring. We do not expect the
system to be able to learn this task from raw sensor inputs,
and so we have enabled some pre- and post- processing.

• The inputs to the system are locations of color blobs
extracted from images from the robot’s camera.

• The outputs of the system are movement vectors, which
are transformed into robot walking behaviours.

• The demonstrator is a hand-coded algorithm that directs
the robot to seek out and approach pink balls.

Our DL system was put unmodified into this setup. Again,
as the system is agnostic as to the nature of the inputs
and outputs, it does not matter what the platform provides.
Therefore, no modification of DL was needed to apply it to
this new task. The only changes required were to insert the
pre- and post- processing algorithms between DL and the
robot and to replace the demonstrator.

Like the basic task before it, this task was successfully
learned by our system. After a short primary training session
(< 1 minute), the student began to exhibit ball-seeking
behavior. Further short (< 10 second) activations of the
demonstrator serve to correct any deviations from this task.
These shorter activations can be applied at will by the user,
but are most helpful to the student when its confidence is
low (the robot is in ‘unsure’ mode).

An interesting emergent property of the system appeared
during this experiment - the system generalizes as much as
possible from the inputs. What occurred is that there were 2
balls (in addition to much clutter) in the robot’s environment,
one pink and one orange. If the teacher has never been active
when the orange ball is present, the student lacks information
as to what to do when viewing it. In this case, the student
approaches the orange ball in the same manner as it would
the pink one. If, however, the teacher is activated, the student

Fig. 5. Error versus time for a run of the system performing the ball-seeking
task. Also plotted is an indicator variable showing when the teacher is active.
When the teacher is first activated, error goes high and then quickly falls as
the student learns the task. In the absence of instruction, error rises again but
further education reigns it in. The system then stabilizes into a characteristic
error profile over the various portions of the task. Time shown: 2 minutes.

quickly learns to ignore the orange ball and respond only to
the pink one.

The learning abilities of the system were evaluated qual-
itatively to ensure that the desired behaviour was actually
learned. Visual inspection of the student controlling the robot
shows the robot performing the task that it was taught. We
have also carried out a quantitative evaluation using our
hand-coded controllers. To pin a number on how well our
system learns, we ran the demonstrator program on all of
the data seen by the student (both data that the student
received instruction for and data that the student acted on
by itself). With the outputs from the teacher (out) and
from the student ( ˆout) we can generate an error score,
error =

√

(out− ˆout)2. This error score is plotted over
time in Figure 5, along with an indicator variable showing
when the teacher was active.

VI. DISCUSSION

DL has been designed to be agnostic to platforms, demon-
strators, and learners, and thus applicable in many situations
and to many different tasks. All three of these boxes warrant
further discussion and deserve further research.

A. The Learning Box

DL is not tied to any particular learning algorithm. The
current system is attached to a particular learning scenario
(incremental real-time online learning), but the exact details
of how that learning takes place is unspecified. For this
reason we see DL as a means to directly compare different
approaches to this learning problem. By training a system
using one learning box and then retraining it using a different
one and comparing the resulting behaviours, different learn-
ing algorithms can be pitted against each other. By operating
on log files we can relax the need for real-time computation
and try out more computationally intensive algorithms. We
also believe that it is possible to relax the incremental
requirement and run the system in a quasi-batch mode by
performing batch learning after each ‘training session’. We
will explore this possibility in future work.
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(a) Untrained Student (b) Teacher demonstrates (c) Student generalizes (d) Assistance Required (e) Student succeeds

Fig. 4. The Ball seeking task. At first (a), the new student knows nothing and does not react to the ball. After the teacher demonstrates the seek behavior
(b), the student can perform it as well (c). When encountering a new situation (d), the student continues to behave but requests more education. After the
user delivers more training, the student can successfully complete its task (e). (Ball highlighted for visibility)

B. The Demonstration Box

DL places very few bounds on what serves as a demon-
strator. Conceptually, DL treats the demonstrator as a kind of
intermittent oracle, an entity that has a latent control policy
and gives outputs representing this policy in return for inputs,
but not all of the time. In the experiments discussed here,
all of our demonstrators have been hand-coded controllers
that have been toggled on and off by human users. The use
of compiled code has allowed us to provide demonstration
outputs at the input framerate, as well as avoid some of the
inconsistencies associated with human users. Our future goal
is to allow human users to not only control the presence
or absence of instruction, but to also dictate the content of
the instruction, perhaps using teleoperation. In this manner
we hope to allow non-technical users to teach our robots to
perform various tasks.

C. The Platform Box

The inputs and outputs of the DL system are also left
underdefined. This allows it to operate in many different
perceptual and action spaces depending on how much pre-
and post- processing occurs. By connecting DL directly to
the sensors and motors of a robot, we can teach simple
behaviours such as the head/tail mirroring discussed above.
However, by inserting more advanced perceptual and action
systems between the hardware and the DL system, learning
can take place on these perceptual concepts (such as a pink
ball or walking). It is important that the perception and action
concepts provided be sufficient for the desired task, as we
cannot ask the robot to learn to do a task that it does not
have the tools to perform. For this reason we require that
the demonstrator be able to perform the task given access to
the same inputs and outputs. Furthermore, multiple copies of
DL can interact with each other and a system that utilizes
DL with various amounts of pre- and post- processing could
learn cognitive tasks at multiple resolutions.

VII. CONCLUSION

If robots are to be ubiquitous and interact with non-
technical users, they will require methods of modifying their
behaviour over the course of their lifetime. Here we have
presented a learning system that enables a robot to learn
tasks from demonstration in a mixed-initiative manner. The

system, Dogged Learning, deals with abstractions of learning
and demonstration and is thus well suited for comparing
different learning algorithms and demonstrative techniques.
As implemented on a Sony Aibo with LWPR learning and
hand-coded demonstration, DL has successfully been used
to learn multiple cognitive behaviours.
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