
The Corridor Map Method: Real-Time High-Quality Path Planning
Roland Geraerts and Mark H. Overmars

Abstract— A central problem in robotics is planning a
collision-free path for a moving object in an environment with
obstacles. Contemporary applications require a path planner
that is fast (to ensure real-time interaction with the environ-
ment) and flexible (to avoid local hazards). In addition, paths
need to be smooth and short. We propose a new framework,
the Corridor Map Method, which meets these requirements.

I. INTRODUCTION

Motion planning is one of the fundamental problems in
robotics. The motion planning problem can be defined as
finding a path between a start and goal placement of a robot
in an environment with obstacles. The past fifteen years,
efficient algorithms have been devised to tackle this problem.
They are successfully applied in fields such as mobile robots,
manipulation planning, CAD systems, virtual environments,
protein folding and human robot planning. See the books
of Choset et al. [3], Latombe [9] and LaValle [10] for an
extensive overview.

Many algorithms require that the complete environment is
known beforehand. However, in robotics, the environment
is often partially unknown. Such environments frequently
contain dynamic obstacles that can block a computed path.
As a result, sensor information is required to avoid the new
obstacles. Even if all information is available, e.g. in static
virtual environments, methods can have difficulties dealing
with the growing sizes of contemporary virtual environments.
Often, only the large obstacles are taken into account to safe
memory and to lower the CPU load. However, also the small
obstacles have to be avoided in real-time.

An important question is how long the computation of
a path may take to ensure real-time behavior. In a virtual
environment, such as a game, very little processor time is
scheduled for the path planner. Especially when many paths
have to be planned simultaneously, only one (of a few) mil-
liseconds per second CPU time per robot is allowed. Larger
running times will lead to stalls in interactive environments.

In conclusion, interactive environments require a motion
planner that is fast and flexible. Flexible planners, such as
Potential Field methods, were introduced in the robotics
community about 20 years ago [8], [13]. A Potential Field
method directs the motion of the robot through an artificial
potential field which is defined by a function over the free
configuration space Cfree (that is, the space of all possible
placements for the robot in the environment). The robot is
pulled toward the goal position as it generates a strong attrac-
tive force. In contrast, the obstacles generate a repulsive force
to keep the robot from colliding with them. The path from

Part of this research has been funded by the Dutch BSIK/BRICKS Project.
R. Geraerts and M.H. Overmars are with Institute of Information and

Computing Sciences, Utrecht University, 3508 TA Utrecht, the Netherlands.
Email: {roland,markov}@cs.uu.nl

the start to the goal can be found by following the direction
of the steepest descent of the potential toward the goal. While
this method has some flexibility to avoid local hazards (such
as small obstacles/other moving objects), it is too costly for
path planning in interactive virtual environments. In addition,
the path will not always be found because the robot often
ends up in a local minimum of the potential.

The Probabilistic Roadmap Method (PRM), developed
in the nineties [1], [12], does not suffer from the local
minima problem. This method consists of two phases. In the
construction phase, a roadmap is created that captures the
connectivity of Cfree with a set of one-dimensional curves.
In the query phase, the start and goal positions are connected
to the graph, and the path is obtained by running Dijkstra’s
shortest path algorithm.

While the PRM has been successfully applied to a broad
range of problems, the method generates ugly paths, i.e. the
paths are only piecewise linear, they have many redundant
motions, and they have little clearance to the obstacles,
resulting in unnatural looking motions. While techniques
exist for optimizing the paths [4], [5], [11], they are too slow
to be applied in the query phase in real-time applications.

By shifting the optimization process to the off-line con-
struction phase, high-quality paths can be computed in a
small amount of time. In [6], we proposed a method that
creates high-quality graphs from which relatively short paths
and paths with a large amount of clearance can be extracted.
While the method may be fast enough for an environment
with one robot, the method will be still too slow for envi-
ronments with many robots.

A disadvantage of these roadmap-based methods is that
they output a fixed path in response to a query. This
leads to predictable motions and lacks flexibility when the
environment or robot changes.

Recently, the concept of path planning inside corridors has
been introduced [7], [14]. By using corridors, the advantages
of the techniques described above are combined. That is,
global motions are directed by a high-quality roadmap, and
local motions are controlled by potential fields inside corri-
dors, providing local flexibility of the path. In [7], corridors
have been exploited to find paths for coherent groups of
robots. Also quantitative measures for the quality of corridors
have been devised [14].

In this paper, we extend and generalize their results by
proposing a general framework, called the Corridor Map
Method (CMM). We show how the framework can be used
to avoid dynamic obstacles and to create short paths. Then
we conduct experiments with 2D problems and conclude that
the framework is capable of creating smooth, short paths for
robots avoiding dynamic obstacles in real-time, i.e. in less
than 1 ms CPU time per second traversed time of the robot.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeC11.3

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1023

II. THE CORRIDOR MAP METHOD

The Corridor Map Method (CMM) creates a system of
collision-free corridors for the static obstacles in an environ-
ment. Paths can be planned inside the corridors for different
types of robots while satisfying additional constraints such
as avoiding dynamic obstacles. We assume that the robot can
be modeled by a ball with radius r.

The CMM consists of an off-line construction phase and an
one-line query phase. In the construction phase, a roadmap
graph G = (V, E) is built which serves as a skeleton for the
corridors (see Fig. 1(a)). Each vertex ν ∈ V corresponds to
a collision-free point in a D-dimensional environment (D is
typically 2 or 3) and each edge ε ∈ E corresponds to a local
path Πε. The path Π is defined as follows:

Definition 1 (Path). A path Π for a point in a D-dimensional
environment is a continuous map Π ∈ [0, 1] → R

D such that
∀t ∈ [0, 1] : Π[t] ∈ Cfree.

With each point Πε[t] on local path Πε, we associate the
radius R[t] of the largest empty ball (in the environment)
centered at Πε[t]. This clearance information and the graph
are now used to define the corridor map (see Fig. 1(b)):

Definition 2 (Corridor map). The corridor map is a graph
G = (V, E) with clearance information. That is, each edge
ε ∈ E encodes a local path Πε together with the radii R of
the corresponding largest empty balls in the environment.

In the query phase, we have to find a path for a robot which
connects the start position to the goal position. For now,
we assume that these positions are vertices ν ′, ν′′ ∈ V . By
running Dijkstra’s shortest path algorithm (while discarding
passages that are too narrow, i.e. edges for which ∃t : R[t] <
r), we extract the backbone path (if one exists) from G.

Definition 3 (Backbone path). Let ε1 . . . εn be the sequence
of edges extracted from G that connects ν ′ with ν′′. The
backbone path B[t] is then defined as Πε1 ⊕ . . .⊕Πεn

where
the operator ⊕ concatenates the local paths Πεi

.

The backbone path, together with the clearance informa-
tion defines a corridor (see Fig. 1(c)):

Definition 4 (Corridor). A corridor C = (B[t], R[t]) is
defined as the union of the set of balls with radii R[t] whose
center points lie along its backbone path B[t].

If the start position s or goal position g is not equal to
one of the vertices, we have to extend the corridor such that
they are included (see Fig. 2). Let s′ and g′ be their closest
points on local paths Πεs

and Πεg
whose balls include s

and g, respectively. Edges εs and εg are split such that they
include vertices s′ and g′, respectively. Finally, let Πs be
the straight-line local path between s and s′ and Πg be the
straight-line local path between g′ to g. Then, the backbone
path is defined as path Πs, concatenated with the shortest
path between s′ and g′, and path Πg . The radii corresponding
to the positions p on Πs (Πg) are equal to the clearance
corresponding to vertex s′ (g′) minus the Euclidean distance
between s′ (g′) and p.

(a) Graph (b) Corridor map

(c) Corridor and backbone path (d) Final path

Fig. 1. The construction phase (top) and the query phase (bottom) of the
Corridor Map Method.

Πs

s
′

g

g
′

s

Πg

︸︷︷︸

εs

︸︷︷︸

εg

Fig. 2. Extending the corridor to include the start and goal positions.

Now that we have defined the corridor, which guides the
global motions of the robot, its local motions are led by
an attraction point, α(x), moving on the backbone path of
the corridor from the start to the goal. The attraction point
is defined such that making a step toward this point leads
the robot toward the goal. In addition, the ball (with radius
R[s]) corresponding to α(x) encloses the robot, ensuring a
collision-free motion. If R[s] ≤ r, there exists no attraction
point, and, hence, no path.

Definition 5 (Attraction point). Let x be the current position
of the robot with radius r. The attraction point α(x) for the
robot at position x is the point B[s] on the backbone path
B having the largest time index s : s ∈ [0 : 1] such that
Euclidean distance (x, B[s]) < R[s] − r.

The attraction point attracts the robot with force F0. Let
d be the Euclidean distance between the robot’s position x
and the attraction point α(x). Then F0 is defined as

F0 = f
α(x) − x

||α(x) − x||
, where f =

1

R[s] − r − d
−

1

R[s] − r
.

The scalar f is chosen such that the force will be 0 when
the robot is positioned on the attraction point. In addition, f
will be ∞ when the robot touches the boundary of the ball.
(However, f will never reach ∞ since we require that the
radii of the balls are strictly larger than r.)

WeC11.3

1024

Local hazards (such as small obstacles or other robots)
can be avoided by adding repulsive forces to F0 toward the
hazards. Hence, the final force F is dependent on the problem
to be solved. We will show some choices in the Section III.

The final path Π is obtained by integration over time while
updating the velocity, position and attraction point of the
robot. In each iteration, we update the attraction point on
the backbone path based on position x of the robot. Now
we have all information needed to compute the force F. By
integrating F, we compute the new velocity vector for x. In
addition, by integrating the velocity vector, we compute the
new position for the robot. We continue moving the robot
until the robot has reached the goal. By using this time
integration scheme, a smooth path is obtained.

Theorem 1 (C1 continuity of the path). The CMM generates
a path Π that is smooth, i.e. C1 continuous.

Proof: The path Π is obtained by integrating the force F

two times, which adds two degrees of continuity to the
path followed by the attraction point. Even though this path
can be discontinuous, it can be easily shown that double
integration leads to C1 continuity. To proof that F can indeed
be integrated, we have to show that the denominators in F are
larger than 0: Since the attraction point α(x) is defined as the
furthest point on the backbone path, the point lies always ‘in
front of’ the robot’s position x (except for the goal position),
and, hence, the term ||α(x) − x|| > 0. In addition, the term
R[s] − r − d > 0 because R[s] > r. Since these two terms
stay positive, F can be integrated (two times), resulting in a
path Π being C1 continuous.

As an example, consider Fig. 1 which shows the stages
of the CMM applied to a simple planar environment. For
this environment, an input graph was created. Its nodes were
sampled on the medial axis to ensure a locally maximum
clearance of the nodes. Its edges (black lines) were retracted
to the medial axis to provide high-clearance local paths
(small discs). The graph, together with the clearance infor-
mation, forms the corridor map which is displayed in the
second picture. The covered area of the map is visualized
in a light color. The next picture shows the corridor and its
backbone path corresponding to a start and goal position of
the query. The final path, displayed in the fourth picture, was
obtained by applying the procedure described above.

III. SPECIFIC CHOICES

An important influence on the quality of the corridor
map, and, hence, the quality of the resulting paths, is the
quality of the input graph. In [6], we proposed the enhanced
Reachability Roadmap Method, which is a technique that
creates high-quality graphs satisfying the following four
properties:

1. The graph is resolution complete. This means that
a valid query (which consists of a start and a goal
position) can always be connected to the graph. If there
exists a path between the start and goal, then it can
always be found (at a given resolution).

(a) Extending the force function (b) Updating the corridor

Fig. 3. Two techniques for obstacle avoidance. The left picture shows
an unchanged corridor that includes five small obstacles. The right picture
shows the updated corridor, swaying around the five obstacles.

2. The graph is small. A small graph assures low query
times and low memory consumption. In addition, when
a graph must obey other criteria, a small graph eases
manual tuning.

3. The graph contains useful cycles. These cycles provide
short paths and alternative routes which allow for vari-
ation in the (global) routes that robots take.

4. The graph provides high-clearance local paths. As the
local paths lie on the medial axis, each point on the
corridor will have a locally maximum clearance. This
will provide the most freedom for the robot to move.

In the remainder of this paper, we will use this technique
for creating the input graphs.

We have seen that moving inside a corridor (instead of
moving along a path) provides enough freedom to obtain a
smooth path. Now we will describe how the framework can
be used to avoid dynamic obstacles and to create shorter
paths.

A. Avoiding dynamic obstacles

Dynamic obstacles are the obstacles in the environment
that are not present (or suppressed) when the corridor map
is created. We consider two approaches for avoiding these
obstacles: updating the force F (by adding a repulsive force
toward the obstacles), and changing the corridor itself. We
assume that the radii of the obstacles are known.

Adding forces: Our goal is to guide the robot around all
dynamic obstacles inside the corridor. To ensure that the
robot does not collide with the obstacles, repulsive forces
are applied. Such a force is only applied if both the robot
and the obstacle are located in the ball corresponding to the
attraction point α(x). For each obstacle Oi : i ∈ [1 : n],
we compute a repulsive force Fi. Let di be the Euclidean
distance between the center of the robot at position x and
the center of obstacle i with radius ri, r be the radius of the
robot, and k : k > 0 be a constant. Then Fi is defined as

Fi = f
x − Oi

||x − Oi||
, where f =

k

di − ri − r
.

The scalar f is chosen such that the force will be ∞ when
the robot and obstacle touch. The larger the distance between
them, the lower the force will be. The constant k is used to
change the influence of the repulsive forces on the robot.

WeC11.3

1025

The final force F can now be calculated by adding the
attractive force F0 and repulsive forces Fi, i.e.

F = F0 + . . . + Fn.

As an example, consider Fig. 3(a). It shows our running
example, but now five small dynamic obstacles have been
added. The final path is obtained after the force function
has been extended. The figure shows that the path has only
changed locally. While this method is flexible, it is hard to
control the ‘shape’ of the path. In addition, future changes of
the path (i.e. shortening the path) are hard since such change
has to operate on a path instead of a corridor. By creating
a sub-corridor inside the corridor, excluding the dynamic
obstacles, we obtain more freedom.

Creating a sub-corridor: Our goal is to create a sub-
corridor C ′ = (B′[t], R′[t]) which lies inside the original
corridor and is absent from the dynamic obstacles Oi : i ∈
[1 : n]. In the following procedure, we initially set B ′[t] and
R′[t] to B[t] and R[t], respectively, where t : t ∈ [0 : 1] is the
time index. Then we move the backbone path and update the
corresponding radii of the balls, as follows. Let di[t] be the
Euclidean distance between the center of obstacle i and the
center of the ball positioned at B[t], i.e. di[t] = ||Oi−B[t]||.
Only if an obstacle Oi is in this ball, i.e. di[t] < R[t], the sub-
corridor is modified. The point B[t] will be moved away in a
straight line from obstacle Oi. The signed distance traveled
by this point, dist , equals to

dist =
di[t] + R[t]

2
.

Hence, the position of ball B′[t] equals to

B′[t] = B[t] + dist ∗
Oi − B[t]

di[t]
,

and the radius R′[t] of the ball equals to

R′[t] = R[t] − |dist |.

We refer the reader to Fig. 3(b) for an example of the
method. The resulting smooth path lies in the updated
corridor, being absent of the five dynamic obstacles. As a
new corridor has been computed, the dynamic obstacles can
be discarded when the path is processed even further, e.g.
when the path is shortened.

B. Creating shorter paths

Our goal is to use the corridor to create shorter paths. In
our standard framework, the robot at position x is attracted
toward the attraction point α(x). Shortcuts in the path can be
made by creating a second valid attraction point α(x+∆t) :
∆t ≥ 0 ∧ x + ∆t ≤ 1 to which to robot is attracted. We
say that an attraction point α(x + ∆t) is valid if the robot,
moved in a straight-line from its current position x to the
attraction point α(x + ∆t), stays inside the corridor.

Suppose now that we want to create a path using a certain
value of ∆t. If the attraction point α(x+∆t) is not valid, we
have to lower ∆t for the robot at position x. We determine
the highest ∆t by decreasing ∆t with small steps until α(x+

(a) α(x + 0.00) (b) α(x + 0.05)

(c) α(x + 0.10) (d) α(x + 0.25)

Fig. 4. Using the corridor to create shorter paths. Shorter paths are obtained
by moving the attraction point α(x) along the backbone path toward to goal.

∆t) is valid. Given ∆t, the resulting force Fs, which has to
be added to force F, equals to

Fs =
α(x + ∆t) − x

||α(x + ∆t) − x||
.

The influence of using different values for ∆t on the
path can be examined in Fig. 4. The first picture shows the
path obtained by only attracting the robot to its attraction
point α(x). The other pictures show the resulting paths for
different values for ∆t. Indeed, shorter paths are obtained
for larger values of ∆t at the cost of increased computation
time.

IV. EXPERIMENTS

In this section, we test the Corridor Map Method (CMM)
on two different environments. We will experimentally check
whether the CMM can produce high-quality paths in real-
time, i.e. the CPU load being less than 0.1%.

A. Experimental setup

We integrated the techniques in a single motion planning
system called SAMPLE (System for Advanced Motion PLan-
ning Experiments), which we implemented in Visual C++
under Windows XP. All experiments were run on a 2.66 GHz
Pentium 4 processor with 1 GB memory. We used Solid for
collision checking [2].

We conducted experiments with the environments depicted
in Fig. 5. The roadmaps, together with their corridor maps are
displayed in Fig. 6. Since we focused on obtaining low query
times and high-quality paths, much time for creating these
graphs could be spent off-line by the enhanced Reachability
Roadmap Method from [6]. This method discretized the

WeC11.3

1026

(a) Maze (b) Field

Fig. 5. The two test environments.

(a) Maze (b) Field

Fig. 6. The input graphs and corresponding corridor maps for two test
environments.

environments with 100x100 cells. The robot is modeled as a
small disc. The environments have the following properties:

Maze This 2D environment is a simple maze composed
of a small number of polygons. The input graph was created
in 1.6 seconds. Since its local paths lie on the medial axis,
the corridor map covers a large portion of the free space,
providing the robot much freedom to move.

Field This 3D environment contains ten cones, two
fences and four trees. Together, they are composed of 16,000
triangles. Consequently, much more time was needed to
create the input graph (i.e. 20 seconds). There are many
alternative routes. Again, the corridor map covers a large
portion of the free space.

We performed three batches of experiments. In the first
batch, we found paths for 100 random queries to get an idea
of how long a query takes to compute. In the second batch,
we defined one query. We added up to 10 dynamic obstacles
close to the backbone path and observed the changes in
running times. In the third batch, we studied the effect of
choosing different values of ∆t on the running time versus
path length.

For each experiment, we provide the average integral run-
ning times (in ms) of the query phase. That is, connecting the
query to the roadmap, computing the corridor and extracting
the path. Often, only the computation for a part of the path
is required/desired. Hence, we also provide the CPU load
(which is defined as the CPU time / traversed time ∗ 100%).
Note that this measure is rather subjective, i.e. increasing the
robot’s speed implies a lower CPU load while decreasing its
speed implies a higher CPU load. Therefore, we also mention
the traversed time.

(a) Extending the force function (b) Updating the corridor

Fig. 7. Obstacle avoidance in the two environments. Ten obstacles are
avoided.

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10

cp
u

lo
ad

 (%
)

number of obstacles

Maze

Adding forces
Updating corridor

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10

cp
u

lo
ad

 (%
)

number of obstacles

Field

Adding forces
Updating corridor

Fig. 8. The performance of the two techniques for avoiding obstacles.

B. Experimental results

1) Measuring the performance of creating smooth paths:
For the Maze environment, a query was computed in 2.41 ms
on average and was traversed in 9.25 seconds. The average
CPU load was 0.026% which means that 0.26 ms CPU time
(per second) was required for one second traversed time. For
the Field environment, a query was computed in 0.84 ms on
average and was traversed in 2.87 seconds. The average CPU
load was 0.029%. We can conclude that the method is very
efficient in producing smooth paths.

2) Dynamic obstacles: We considered two methods for
obstacle avoidance. The first method extended the force
function while the second method updated the corridor. Fig. 7
displays the corridors and paths obtained while avoiding ten
obstacles. The average query times for the Maze environment
ranged between 7.0 and 9.0 ms for the first method, and
between 3.0 and 13.6 ms for the second method. The average
query times for the Field environment ranged between 2.0
and 2.3 ms, and between 1.0 and 7.0 ms for the two
methods, respectively. Fig. 8 shows the results. The figure
makes clear that both techniques are efficient. Nevertheless,
the technique that adds forces is more efficient when more
dynamic obstacles are present.

WeC11.3

1027

3) Short paths: Shorter paths were created by adding a
force toward a new attraction point α(x+∆t) placed between
α(x) and the goal. Fig. 9(a) and (c) show the paths which
have not been shortened, i.e. no additional attraction point
was used. Pictures (b) and (c) show the paths obtained by
using an additional force attracting the robot toward α(t +
0.2). We performed preliminary experiments to study the
relation between ∆t and the path length. The results are
shown in Fig. 10. We conclude for these curved paths, that
short paths can be obtained for small values of ∆t, i.e. ∆t =
0.2. However, the running times were reasonably large due
to the relative expensive computation of the second attraction
point. For ∆t = 0.2 the running times were about four times
as large as the running times corresponding to not using the
new attraction point. For ∆t = 1.0 they were about twelve
times as large. In conclusion, the technique is fast enough
for real-time performance (for small values of ∆t). For larger
values however, the method will not be fast enough. We are
currently investigating how to enhance the technique.

V. CONCLUSIONS AND FUTURE WORK

We presented a new framework, called the Corridor Map
Method (CMM), which can be used for path planning in real-
time interactive applications. The CMM directs the global
motions by a high-quality roadmap. Local motions are con-
trolled by potential fields inside a corridor, leading to smooth
and short paths. In addition, the corridor provides enough
flexibility when dynamic obstacles (or other moving robots)
have to be avoided. Experiments showed that such motions
can be computed in real-time. As we have not optimized our
code yet, we think that the running times can be improved
even more.

The input graphs for the CMM were created by our
Reachability Roadmap Method. Also other methods could
be used to create these graphs. To ensure a high quality
of the graphs, reasonably high computation times were
required in the construction phase. We think that these can be
improved dramatically by incorporating learning techniques.
Nevertheless, these graphs ensured fast running times in the
query phase.

The CMM can also be used for guiding the motions of a
group of robots. In addition, tactical information could be
incorporated in the corridor map to provide clever routes for
the robots. While we focused on 2D problems, the framework
is also applicable to higher-dimensional problems. In future
work, we will extend the experiments with 3D problems. In
addition, we will study how to select alternative corridors
and how to create alternative paths within a corridor.

REFERENCES

[1] J. Barraquand, L. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani,
and P. Raghavan, “A random sampling scheme for path planning,”
International Journal of Robotics Research, vol. 16, pp. 759–744,
1997.

[2] G. Bergen, Collision Detection in Interactive 3D Environments. Mor-
gan Kaufmann, 2003.

[3] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations, 1st ed. MIT Press, 2005.

(a) Maze: α(x + 0.0) (b) Maze: α(x + 0.2)

(c) Field: α(x + 0.0) (d) Field: α(x + 0.2)

Fig. 9. Using the corridor to create shorter paths. Shorter paths are obtained
by moving the attraction point α(x) along the backbone path toward to goal.

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1

pa
th

 le
ng

th

∆(t)

Maze

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

pa
th

 le
ng

th
∆(t)

Field

Fig. 10. The relation between the value of α(x+∆t) and the path length.

[4] R. Geraerts and M. Overmars, “Clearance based path optimization for
motion planning,” in IEEE International Conference on Robotics and
Automation, 2004, pp. 2386–2392.

[5] ——, “On improving the clearance for robots in high-dimensional
configuration spaces,” in IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 2005, pp. 4074–4079.

[6] ——, “Creating high-quality roadmaps for motion planning in virtual
environments,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2006, pp. 4355–4361.

[7] A. Kamphuis and M. Overmars, “Finding paths for coherent groups
using clearance,” in Eurographics/ ACM SIGGRAPH Symposium on
Computer Animation, 2004, pp. 19–28.

[8] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” International Journal of Robotics Research, vol. 5, pp. 90–98,
1986.

[9] J.-C. Latombe, Robot Motion Planning. Kluwer, 1991.
[10] S. LaValle, Planning Algorithms. http://planning.cs.uiuc.edu, 2006.
[11] D. Nieuwenhuisen, A. Kamphuis, M. Mooijekind, and M. Overmars,

“Automatic construction of roadmaps for path planning in games,” in
International Conference on Computer Games: Artificial Intelligence,
Design and Education, 2004, pp. 285–292.

[12] M. Overmars, “A random approach to motion planning,” Utrecht
University, Tech. Rep. RUU-CS-92-32, 1992.

[13] E. Rimon and D. Koditschek, “Exact robot navigation using artificial
potential fields,” IEEE Transactions on Robotics and Automation,
vol. 8, pp. 501–518, 1992.

[14] R. Wein, J. Berg, and D. Halperin, “Planning near-optimal corridors
amidst obstacles,” in International Workshop on the Algorithmic
Foundations of Robotics, 2006.

WeC11.3

1028

