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Abstract— This paper presents the search problem formu-
lated as a decision problem, where the searcher decides whether
the target is present in the search region, and if so, where it
is located. Such decision-based search tasks are relevant to
many research areas, including mobile robot missions, visual
search and attention, and event detection in sensor networks.
The effect of control strategies in search problems on decision-
making quantities, namely time-to-decision, is investigated in
this work. We present a Bayesian framework in which the
objective is to improve the decision, rather than the sensing,
using different control policies. Furthermore, derivations of
closed-form expressions governing the evolution of the belief
function are also presented. As this framework enables the
study and comparison of the role of control for decision-making
applications, the derived theoretical results provide greater
insight into the sequential processing of decisions. Numerical
studies are presented to verify and demonstrate these results.

I. INTRODUCTION

The goal in a search problem is to generate the search
paths in uncertain environments that best enable the searcher
to locate a target (perhaps among other objects) using one or
more mobile sensor platforms, possibly under resource con-
straints. Inspired by the seminal works of B. Koopman [1]
and L.D. Stone [2], this physical search theory has been
extensively developed.

Beyond the search for targets using mobile sensors, how-
ever, the search problem can be generalized to represent the
class of problems where choice of observations is controlled
to best search for an object or outcome. For instance, the
scheduling of individual sensor nodes in a wireless sensor
network or the selection of the focus-of-attention in visual
systems can also be formulated as search problems, where
a control policy is generated to improve the information
obtained by observations.

This paper presents a formal framework which casts the
search problem as a decision between hypotheses about the
decision-maker’s current knowledge. In the specific case
typically considered in the physical search theory literature,
the decision reflects a belief of whether or not the target of
interest is present in the search region. However, our general
formulation allows for analysis of the belief evolution as
more observations are taken, as well as the definition of
measures of the quality of the decision, such as performance
and robustness of the decision-making process.

Given its relevance to a variety of autonomous, mobile
sensor applications, search theory has been studied exten-
sively in the literature. In addition to the defining works
mentioned previously, [3] discusses various components of
the search problem, including classes of search paths, models

1-4244-0602-1/07/$20.00 ©2007 IEEE.

for detection, and approaches for detecting mobile targets,
e.g., amidst false targets. Further works, such as [4] and [5]
address issues of dynamic coverage, e.g. using (possibly
multiple) mobile robots, for optimally navigating in a region
to gather sensory information regarding entities such as
changing environmental parameters or the location of land
mines. Relevant research presented in [6] and the refer-
ences therein also present a Bayesian construction for the
problem of searching for lost targets, using the probability
of detection of these targets as the objective function for
optimal search trajectory generation. As developed in [6],
the Bayesian filtering approach offers an advantage over
other methods for maintaining and updating all information
relevant to the search (e.g. the target probability density
function), and is thus the subject of much study.

The contributions of this paper include the formulation
of the search control problem as a decision-making problem
rather than a sensing task, where measures associated with
decisions, e.g. confidence and robustness of the decision
or time until the decision is made, are used to design an
appropriate control policy. Our formulation of the search
problem as a detection problem also allows us to include
practical sensor artifacts (such as false alarms and missed
detections) which have not be completely considered in
other formulations [6] of the search problem. Furthermore,
we derive closed-form formulas for representing the current
belief in many practical cases. These formulas offer both
significant insights into the search problem, and enable
efficient computations for implementation of various search
strategies, including ones relevant to other types of search.
For example, in “lookahead search” (see below), we are able
to practically compute a lookahead window of more than
one step, whereas prior work [6] was limited to one step
due to a lack of such efficient formulas. Next, we formalize
two new search strategies (which we term the “saccadic
search” and “Drosophila-inspired search”) which have not
previously appeared in the robotics literature. Numerical
studies compare the different searching strategies in test
cases. Finally, the analytic framework presented in this paper
provides a foundation for investigation of other decision-
based planning tasks.

Section II provides the formulation and definition of the
search problem. Section III analyzes the search problem in
the context of decision-making. Analytic expressions for the
evolution of the decision-making process are also derived.
The problem of control for search is framed as a control for
decision-making task in Section IV, where several choices
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of relevant decision-based objective functions are proposed.
Results and insights gained from this examination are also
discussed in this section, followed by concluding remarks
and avenues for additional research in Section V.

II. SEARCH PROBLEM STATEMENT

A. Problem Setup

Consider the initial task of searching for a single, sta-
tionary target, denoted xp, in an environment, A, which
is discretized into |.A| cells. This discretization may reflect
partitions of the environment due to system requirements,
such as limited range of the detector, or alternatively physical
representations of the environment, e.g. rooms in a building.
The formulation presented here can be extended to a non-
discretized search area. Discrete approaches also lend them-
selves to the practical implementation of the algorithms in
physical systems. Hereafter, the expression xr € A will
denote the presence of the target, T, in region .4, while
xr ¢ A will otherwise denote the fact that the target
is not present in A. Similarly, zr = a and zr # a
denote the presence or absence of the target in the a'" cell
(a € Z* < |AJ), respectively.

B. Search as a Decision Problem

The primary question at hand is to determine whether or
not the target is present in the region A, and if the target is
present, in which cell it is located. The former task can be
easily constructed as a decision between the two hypotheses,

by defining the binary random variable H, such that
_ 0, ifaxr ¢ A,

1, ifzp e A
The objective is now to determine the probability that

the affirmative hypothesis is true, i.e. Pr(H = 1). This
probability is a measure of the aggregate belief (ranging
between 0 and 1) that the target is present somewhere in
the region .A. In a similar manner, the individual cell belief
probability, Pr(xr = a), represents the probability that the
target is specifically located in cell a. This latter probability
expression addresses the secondary question of identifying
the location of the target within 4. It can be immediately
seen (by the Law of Disjoint Probabilities) \tﬂﬁt

P{H=1)=Prizr=1V---Var=|A)=Y  Prer=a).

We take a decision theoretic approach beause we would
like to admit detection sensors models that allow for false
alarms and missed detections. In that case, a decision
theoretic approach is needed, as detection of a target can
only be guaranteed in a probabilistic sense. While our
basic formulation allows for multiple searchers, the concrete
formulas and simulations of this paper focus on the case of
a single searcher.

C. Target Detection

Practically speaking, measurements are generally taken in
the presence of noise. Given that these discrete measure-
ments are drawn from a continuous interval of possible val-
ues, consider a detection binary random variable, denoted d,
which can take values of either O or 1. This detection variable

FrD5.3

represents the decision of whether or not the detection of a
specific target in a given cell has been made. Note that no
assumptions are made to restrict forms of the distribution
from which the measurement noises are sampled.

To augment our notation for the purposes of the search
problem, define df” to be the detection measurement at
discrete time step ¢ taken in cell a. This subscript term, a;,
is included when referring to the [*"* detection measurement
(allowing for multiple measurements) of the specified cell a,
and will be omitted otherwise when there is no ambiguity.

In this manner, we can construct the following detection
model for the imperfect detection measurement, given the
presence or absence of the target in the cell:

Prgdé = OIxT = a; =0,

ey ) Pr(d, =1er=a) =1-8,

P’I"(da|1'T) : P'f'(dz — 0|xT ;é a) =1- a,
Pr(d, =1lzr #a) =a,

where « and (3 are the detection error probabilities for false
alarms and missed detections, respectively. These error rates
quantify the noise characteristics of the sensor, and for a
given sensor («, (3) can be determined experimentally or by
sensor specifications. In the parlance of decision theory, the
detector model is nothing more than the likelihood function
of receiving a measurement given the hypothesis, and the
error probabilities («,/3) represent the power of the decision
test for the sensor.

Before the start of the search and any measurements are
taken, the prior belief that the target is in A is defined to
be Pr(H = 1) = 4, for 0 < § < 1. For example, a prior
belief value of § = 1 indicates that the target is certainly
present in the region, and the search problem reduces to
simply localizing the target, once detected, within the region.
Non-unity values of §, however, allow for the possibility that
the target isn’t in the region to begin with. The confidence
in this prior belief is reflected in the evolution of the belief
as a function of observations, and is one of the advantages
of the framework presented in this paper.

The search problem. The statement of the search task
as defined above is as follows: Given the detector model
(o, B) and the prior belief §, determine the evolution of the
belief that the target is present in region A as a function
of the observations made until time t, i.e. Pr(H = 1|D%),
where Dt = {d',... d'}. This belief evolution ultimately
governs the decision of whether (and if so, where) the target
is located in A, thereby completing the search.

IT1I. DISCRETE BAYESIAN FORMULATION

The use of Bayesian filters for autonomous applications is
ubiquitous in the robotics community. The primary reasons
for their popularity are their applicability to general (i.e.
non-Gaussian) probability density functions, as well as their
inherent recursive formulation, such that arbitrary probability
density functions (PDF’s) can be maintained and updated in
a relatively efficient recursion algorithm.

A. Recursive Computation of the Cell Belief Probabilities
Introduced in the previous section, the probability distri-
bution of interest is the belief function, B(t), defined by
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|A]
B(t) £ Pr(H = 1/D") = Y Pr(er = aD'). (1)
a=1
This expression shows that in order to compute the aggregate

belief probability, given a sequence of ¢ observations, one
must compute the individual cell belief probabilities. Note
that Pr(xzr) represents the PDF of the target location, z.
Computation of the cell belief probability is done using
Bayesian filtering [7], which incorporates the propagation
of the target PDF with an update step after an observation
is received. The prediction component of the discrete filter
utilizes the discrete analog of the Chapman-Kolmogorov
equation (e.g. see [6]), which includes the convolution of
the process model of the target with the target PDF of the
previous time step.
For simplicity, the results presented in this paper assume
a stationary target, but note that extensions to search for
a dynamic target are a straight-forward application of this
prediction step, as the motion of the target can be composed
with the results given below to yield the desired result.
Given that we are interested in how observations affect
the belief function, we focus instead on how the observation
update is computed for each cell probability in Equation (1):
Pr(dt|zr=a, D1
Pr(zr=a|D")= (Pkr|(d§th’—1) )

where one can recognize the numerator term to be the detec-
tor model (i.e. likelihood function), and Pr(zr = a|D'™1)
is the belief function for the previous time step, which pro-
vides the recursion in the filter. The term in the denominator,
Pr(dt|D*=1), is the marginalization of the measurement,
and can be computed in closed-form by
Pr(di|D'™") = Y Pr(di|H,D'"")Pr(H|D'™").
H={0,1}
Making use of the fact that
Pr(di|H =1,D'1)
_ S8 PrdiJer=b, DY) Prier =b|D'Y)
S Prer=b|Dt)

Pr(zp=a|D'™1),

3

and that
Pr(di|H = 0,D'') = Pr(d|vr # b, DY), Vb,

we arrive after algebraic manipulations at the final expres-
sion for the update of the individual cell belief probabilities:

Pr(zp = a|D") =
Pr(di|xr = a, D*™1) Pr(zr = a|D'1)
Prdl|xr =k, D'™Y Prxr =k|D'™?
+Pr(d},|H=0,D""") (1 - Prizyr =k|D'™ "))

. Q)

This recursive expression provides a compact and efficient
way to update the belief function at every time step as the
searcher observes a sequence of unexplored and/or previ-
ously visited cells. The benefit of its simplicity is seen both
in analytic extensions and in algorithmic implementations
demonstrated in the following sections.
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B. Closed-Form Expressions for Uniform PDF’s

Simplification of the update expressions can be made un-
der the assumption that the initial belief probability density
function is uniformly distributed. Given no prior knowledge
of the distribution on the target’s location, one can use this
uniform distribution to represent maximal uncertainty. In this
case where each of the initial (i.e. prior to any observations
being taken) cell belief probabilities are uniform (constant),
we can generate several closed-form expressions for the
evolution of the belief function parameterized by the number
of measurements taken. These functions provide insight into
the search process, as well as form the foundation for
computationally efficient algorithms.

For a sequence of null detections (D! = 0) and for
uniform prior probabilities, Pr(zr=a) = %,V a, we find

185+ (1—a)(JA] — )5
S+ (1 —a)(|A] —ts)

Pr(H =1|D" =0) 3)

Figure 1 plots, for different values of the false alarm rate
«, the evolution of the belief function for a searcher with a
constant 10% missed detection rate while it searches a 10 x
10 array of cells. Such graphs enabled by our closed-form
formulas give insight into how the belief function evolves
as a function of time and sensor characteristics.

1
0.5 /
@ 0.4] —_— =0
S —=0.1
Q — =0).2
<€ 0.3 (02
b —a=03
% —0=0.4
@02 increasing o. o=0.5
= 0=0.6
— =0.7
0.1F [ ) —
\ B=0.1,5=0A5‘ 0‘8-2
L — =0,
o e =1
0 20 100

40 60
Time step t, (JA|=100)
Fig. 1. Evolution of B(t), given a sequence of null observations, D¢ = 0,
for varying «, constant 3 = 0.1, and § = 0.5

In the case of uniform priors, we can explicitly take the
derivative of the above expression to determine the rate-of-
change of the belief as a function of time step t:

A1 = a)(a+8-1)1 -4

gPr(H:l\Dt:O): T
[AI(1 —a)+té(a+B—1)]

ot

The belief evolution for a consecutive sequence of null
measurements followed by a non-null measurement is often
of interest (e.g. [7], [8]). This belief is given succinctly by

Pr(H=1|d"=1,D""' =0)
_ af(t—1)§+ (1-B)(1—a)d + a(l—a) (|A|-1)§
afB(t—1)0+ (1-8)(1—a)d + a(l—ap) (JA]—1d)

, (4)

where we again see the advantage of such a closed-form
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expression in that we can easily compute its derivative:

%PT(H =1d"'=1,D"""=0)
|Ala?(1 — a)(a+ B —1)(1 —6)d .
A1 = @) + (1 = ta)s(a + 8 - 1)]*

Figure 2 illustrates the belief evolution where a non-null
observation is received by the detector during the course
of the search (at ¢ = 65), where the searcher sequentially
enters a new cell at each step. As can be seen, the perfect
detector (i.e. & = 8 = 0) can immediately decide the target
is present upon arrival of a non-null observation, and thus
the belief in this case jumps to unity, which ends the search
task. In contrast, since false alarms are possible with an
imperfect detector, only an incremental increase in the belief
is registered with a positive detection.

1

o
©

o
[}

©
3

o
[}

Belief function, B
o
(4]

0.4
0.3
0.2
== Perfect detector
01F |- Imperfect detector o=02p4=01
0O 10 20 60 70

30 40 50
Time step t, (JA|=100)
Fig. 2.  Effect of receiving a non-null observation at ¢ = 65 on the
evolution of the belief for the perfect and imperfect detector.

The special case of uniform prior distributions is presented
to simply demonstrate the structure of the Bayesian frame-
work, but we stress the fact that the general case of non-
uniform prior belief probabilities are easily and efficiently
incorporated into the decision-based formulation, as will be
shown in the following section.

IV. CONTROL FOR DECISION-MAKING

Having generated a method for computing the belief
evolution for a sequence of imperfect observations, we can
now investigate how to appropriately choose the sequence
of cells to observe, called the search control policy, in order
to improve the decision-making performance, as defined by
some metric. The task of generating this policy defines the
search path control problem. In this section, we examine
several intuitive and known strategies and also propose novel
ones which are facilitated by the decision-making framework
presented in this paper. In addition to being relevant to
the target search problem studied here, these novel search
strategies also offer insight into other search problems that
arise in visual search and sensor networks.

A. Search Strategies
This section presents an examination of the different
search strategies. Of importance is the specification of the
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search termination criteria. An additional advantage of the
decision framework proposed in this paper is that it intrinsi-
cally defines the conditions for terminating the search. More
specifically, the search continues as long as the value of the
belief function, as defined previously by Equation (1), lies
within threshold values, A and B (0 < B < A < 1). A
belief threshold value of A = 1 (B = 0) requires that the
search terminate only when the searcher is absolutely certain
that the target is present (absent). These decision thresholds
offer additional degrees of freedom in the search problem
definition, and can be used in the specification of the search
problem. Our construction of the search problem has the
form of the sequential hypothesis-testing methodology, or
the Sequential Probability Ratio Test (SPRT), developed by
Wald and Wolfowitz [9]. In the SPRT framework, obser-
vations are gathered as long as there is ambiguity in the
acceptance or rejection of the hypothesis, which, in our case,
is the determination of the presence or absence of the target
within region A according to the thresholds A, B.

Further, in formulating the search problem as a decision
to be made by the searcher, we can choose from a multitude
of measures relevant to decision-making, such as time till
decision, asymptotic confidence thresholds, rate-of-change
of the belief function, and so on [10].

In this paper, we focus only on the amount of time
expended until a decision is made regarding the presence
or absence of the target as the measure of performance of
the decision. This time till decision is denoted ¢4, and is
given by

tq = min {arg(B(t) = A),arg(B(t) = B)}.
In the context of search and detection problems, this metric
of time-to-decision is akin to the time-to-detection measure,
as seen in the search theory literature [2].

Each search control strategy described below specifies
which cell, k?, to visit next at time #, given the sequence
of previous observations up to time ¢ — 1, D'~'. Where
relevant, dynamic constraints on the searcher may limit
the reachability of cells and require that the next cell
be within some distance x from the current cell, such
that Ak 2 |kt — k71| < k for choice of k!, where | - ||
denotes an appropriate distance metric. Further, since, by
construction, the entire probability distribution function,
Pr(zr|D'™1), at time, t — 1, is known, the cell containing
the maximal cell belief value, k%, L at time, ¢t — 1, can easily
be determined and used to guide the selection of k.

Random Search: Serving as a baseline strategy for
comparison, a searcher employing a random walk provides
a lower bound on the time to decision for any complete
search, which is one that guarantees visiting all cells at least
once [2]. The control signal for this strategy is:

k' = rand (k)

Ak<k
where the rand function denotes the random selection of the
next cell, given that it is a reachable cell. Note that this
strategy does not require knowledge of the belief function.
Variations on this strategy include biased random walk
methods, where, on the average, the searcher tends toward

(Strategy I)
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the peak of the distribution. Such an approach may be useful
for low computation, local sensing of the belief gradient,
which may be relevant in foraging or source (e.g. odor,
chemical plume) localization.

Sweeping Search: The sweeping approach, where the
searcher moves from one cell to the next in an incremental
fashion, represents the classical Boustrophedan searching
strategy used in classical robotic coverage algorithms [5].
The sweeping search also does not use the belief function
in selecting the next cell to visit.

kt :kt_1+1

One advantage of this approach is that the coverage of the
region is done in linear time and minimizes the number of
revisits to a cell (i.e. a cell will be revisited only after all
other cells have been visited). However, in the presence of
noisy detections, multiple measurements in individual cells
may be beneficial for reducing the uncertainty present in
those cells.

Optimal Lookahead Search: In optimal path-planning,
the goal is to generate the search trajectory along which
an objective function is maximized. As is well known, the
solution to such problems is often computationally expen-
sive, if not intractable [11]. E.g., the problem of search on
a discrete grid to minimize the time to detection is N P-
hard [12]. Choosing probability of detection as the objective
function to be optimized, as in, e.g. [7], is even more
difficult, being provably N P-complete. Hence, we must
seek suboptimal solutions to solve the search path-planning
problem, resorting to approximation or heuristic methods.

A common approach is to use a “lookahead” window of
w time steps, over which the optimization of the path is
done. Also known in optimal control as receding horizon
control [13], this approach generates a sequence of actions,
or policy, for the next w steps, denoted m = {k1, ...k, }, and
finds the optimal policy, 7*, which maximizes the objective
function along the path over the horizon window, i.e.

(Strategy 1I)

7 = arg {rl?mj{ }ZPr(xT:kj|Dt,dkl,...,dkjfl).
=k kot

The first step of this optimal policy is then selected to be
the next cell to be visited in the next time step. Implemen-
tation of the lookahead search algorithm in pseudo-code is
described in Table I.

At the next time step, the optimal trajectory over the
window is recomputed. Note that for w = 1, the one-
step lookahead strategy is exactly the discrete gradient-
approximation of the belief, which is simply the greedy
algorithm for maximally increasing the objective function.
More generally, the planning window size w can be chosen
to provide an approximation to the optimal solution while
maintaining computational feasibility. In this manner, the
closed-form expressions derived in this paper offer substan-
tial implementation advantages by enabling search path plans
over longer planning horizons.

“Saccadic” Search: Here we formalize a strategy that
derives its name from the way the eye in the human visual
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TABLE I
PSEUDO-CODE FOR THE LOOKAHEAD ALGORITHM

function Lookahead(current cell kt—1, belief B;_1, window size w)
returns: optimal policy, 7¢~1 and utility, U (nt~1)

Define set of allowable actions (e.g. list of reachable cells)
For each action, k*
Take a detection measurement, dt, in cell kt
Compute belief function, By, over all cells (Equation 2)
If not at end of window
Lookahead(kt, B;, w — 1)
Else
Store belief in k¢ as utility value

% depth-first optimization

end

Identify the utility-optimizing action, k?
Return augmented policy ¢ and utility, U (%)

system saccades, or executes a rapid jump in its focus
of attention, from one salient feature in its visual field to
another [14]. This strategy focuses the search on the cell
containing the maximal belief probability at every time step,
executing a ‘“saccade”-like jump from peak to peak.

K=kl 2 argmkax(Pr(xT = k|D'™1))

max

(Strategy IV)

As alluded to by its namesake, this search strategy may
offer some insight into or provide a model for understanding
the mechanisms governing human visual search, in which
information is likely gathered sequentially using foveated
glimpses of patches of the visual field, which can be modeled
as observations of cells in the presented framework. Other
relevant uses include, as an example, sensor networks for
event detection applications, where sensor nodes (i.e. cells)
are triggered by possible events (such as intrusion). In these
applications, a belief-dependent decision or action is exe-
cuted in the context of search. The framework presented in
this paper enables the examination of these additional classes
of the search problem beyond the canonical example of
autonomous search of a physical environment using mobile
sensor platforms, and is one of the main contributions of
this work.

“Drosophila-inspired” Search: One of the limitations of
the previous proposed search strategy is that “saccading” to
the cell with the highest belief value in the next step may not
be dynamically feasible, e.g. for a mobile sensor platform
with finite velocity. However, the computational simplicity
of determining the maximum belief value offers an advan-
tage to more computationally expensive, planning-oriented
approaches. We propose this strategy as a low-computation-
expense, high-information-gain alternative method. Inspired
by observations of the search trajectories of individual fruit
flies (Drosophila melanogaster), which are walking on a
surface in search of food using visual sensory feedback,
this strategy mimics the insects’ behavior of finding a peak,
pursuing a straight-line trajectory (with minimal deviation)
towards this peak, and upon arrival, finding another peak and
following another straight-line path to this next peak [15].
In this algorithm, the searcher determines and stores the cell
with the highest belief value, k,,4,. Recall that x represents
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a constraint on how far the searcher can travel in a single
time step, and can either be given by the searcher dynamics
or specified by the desired resolution of the search. Then the
next cell to observe is determined by:

t_ . _ i1
k' = arg Amkglﬁ(HkmM EHD (Strategy V)

For fruit flies walking on a flat surface (i.e. in continuous
R? space), the use of the 2-norm (i.e. Euclidean distance)
offers a reasonable approximation to their behavior, and
|| - |l is also used and shown in [6] to address scenarios
of premature search termination due to sensitivities in the
optimization routine.

B. Numerical Studies and Discussion

This section investigates the performance of each search
control strategy in simulation. Because we allow for uncer-
tainty in the sensor detection process, the belief evolution is
studied in a statistical manner to deduce relevant parameters
and conclusions for the decision-making process. In partic-
ular, we are interested in the time steps — equivalently, the
expected number of observations — until decision.

For illustrative purposes, our simulations are based on
a 10 x 10 grid, with the prior belief probability density
function modeled as a discrete approximation to a Gaussian
distribution (see Figure 3), centered about the cell (,7) =
(1,3) with covariance values o; = 7 and o; = 15, and
appropriately normalized such that Zl;ill Pr(zp =a) = 4.
However, it is important to note that any form for the initial
belief PDF can be utilized due to the Bayesian formulation
of this framework.

Initial Belief PDF

Fig. 3. The model of a Gaussian distribution and its discrete approximation
for the initial prior belief probability density function.

Consider a single, stationary target located in cell (4,3)
in the grid of |.A| = 100 cells. Note that in this example the
initial belief (i.e. prior to taking any observations) allocates
belief probability erroneously by attributing greater likeli-
hood of finding the target in cells which do not contain the
target, and vice versa. The robustness of the decision-based
belief framework presented in this paper is demonstrated by
the eventual correction of this “bad guess” by sequential
accumulation of information.

Simulation runs of 5000 trials of each of the different
search strategies were executed for constant values of initial
prior belief = 0.5, and false alarm and missed detection
error rates, & = 0.2 and 3 = 0.1, respectively. Random noise
is injected into the observation process according to these
error rates thereby introducing randomness in the iterations
on the evolution of the belief function. A sample run of
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the simulation utilizing the “saccadic” search strategy is
depicted in Figure 4, for which the belief evolution is shown
in Figure 5.

t =2, BeliefSum = 0.48321

Cell coordinate i

Cell coordinate j Cell coordinate | Cell coordinate j

Fig. 4. Sample simulation run implementing the “saccadic” search strategy.
The highlighted cell represents the one currently being observed.
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Fig. 5. Plot of the belief evolution over the duration of the example simu-
lation run. The search terminates when the belief reaches 1, corresponding
to the decision that the target is present in .A.

Random walk and sweeping strategy. As mentioned
previously, the random walk and sweeping strategies gen-
erate search paths that ignore any available information
about the belief of the target’s presence. As such, these
approaches do not offer much in the way of performance, as
the time until decision are orders of magnitude larger when
compared to the lookahead, ‘“saccadic,” or “Drosophila-
inspired” strategies. Instead, the random walk and sweeping
methods can serve as lower bounds on performance for
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strategies that do take the current belief into account in
determining search trajectories.

Look-ahead strategy. Figure 6 illustrates the histogram
plot of the decision times for those trials employing the
lookahead strategy for varying window sizes, w = {1, 2, 3}.
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Fig. 6. Histogram plots of the lookahead search strategy for window sizes,
w = {1, 2,3}, with modes ty = {57, 51,48}, respectively.

From this plot, we can easily identify the mode (i.e., the
most frequent value of the histogram) of the decision time
distributions for each of the window sizes to be:

57, w=1
decision time, t4 : 51, w=2
48, w=3

As expected, there is a slight improvement in performance
(i.e. a shorter time to decision) for increasing window sizes,
which is due to the fact that, for longer planning horizons,
additional information is taken into account in generating the
search path. However, given the fact that the performance
of the lookahead algorithm is greatly dependent on initial
conditions (e.g. initial location of the searcher relative to the
target, error in the initial prior belief probability distribution,
size of the environment, etc.), the cost of computational
burden seems to outweigh the improvement in performance.
Instead, observing that the random-walk and sweeping
strategies are extremely inefficient in their searches, a one-
step lookahead control law (i.e. steepest gradient ascent),
albeit suboptimal, may serve as a reasonable compromise
between performance and complexity.

“Saccadic” and “Drosophila-inspired” strategy. Fig-
ures 7 and 8§ illustrate the average behavior of the “saccadic”
and “Drosophila-inspired” strategies. The “saccadic” ap-
proach yields a distribution of decision times with the mode
at t; = 61, where, as might be expected, the “Drosophila-
inspired” approach requires additional observations, making
a decision at t; = 89 on the average. This relationship
between these two strategies is intuitive, considering that the
“saccadic” approach accrues the maximal amount of belief
information at every time step, while, in the “Drosophila-
inspired” strategy, the transit time to get to this maximal cell
must be integrated. In this manner, this latter approach can
be thought of as “saccadic” search with inertia or damping.
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Fig. 7. Histogram of the “saccadic” search strategy, with mode t; = 61.
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Fig. 8. Histogram of the “Drosophila-inspired” search strategy, with mode
tq = 89.

An interesting observation can be made regarding the
appearance of additional smaller peaks in the histogram plots
of these strategies. These secondary peaks correspond to
distinct “modes” in the search evolution, which depend on
the sequence of observations of the cell containing the target.
As depicted in Figures 7 and 8, the primary peak corresponds
to the trials where the first visit to the target cell resulted in
a positive detections, and similarly for the subsequent peaks
and corresponding revisits of the target cell.

These two strategies provide very computationally cheap
approaches to search, which serve well in a host of applica-
tions where computation power is limited, e.g. sensors em-
bedded on micro-aerial vehicles or simple nodes in a sensor
network. Specifically, while the lookahead strategies offer
slightly better performance, a more comprehensive metric of
performance which accounts for computing time of search
paths would immediately illuminate the immense advantages
of the “saccadic” and “Drosophila-inspired” strategies. In
the case of search using mobile sensors, we see that in
these scenarios it may be more prudent to have simpler, fast-
moving detectors rather than necessitating computationally
powerful (which usually translates to more hardware and less
dynamic capability) sensor platforms. Furthermore, unlike
the optimization-based lookahead schemes, these strategies
have the added benefit that their performance is largely
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TABLE II
COMPARISON OF TIME-TO-DECISION PERFORMANCE OF VARIOUS
BELIEF-BASED SEARCH CONTROL STRATEGIES

Strategy # of time steps
Lookahead (w=1) 57
Lookahead (w=2) 51
Lookahead (w=3) 48

“Saccadic” 61
Drosophila-inspired 89

independent of the initial conditions, and they also avoid
the issues of getting stuck in local minima of the objective
function which plague most optimization routines.

A side-by-side comparison of the search control strategies
which use the belief function in determining the search path
is provided in Table II.

V. CONCLUSIONS AND FUTURE WORK

The theory of search is relevant to many interesting
applications, and as such, has engendered a rich and active
field of research, particularly in the study of searching for
targets using mobile sensor platforms. In many of these
contexts, the problem of interest is the generation of search
paths that will improve the detection of the target(s) by the
optimization of some objective function.

The research presented here offers a Bayesian framework
that views search as a decision problem. The approach
allows for imperfect sensors, which have not been well ad-
dressed in the literature on robotics coverage, and also allows
for additional theoretical results and insights. Specifically,
we formulated and investigated the belief evolution of the
target’s presence in the search region. We derived analytic
closed-form expressions that govern the belief function,
which serve two main purposes, both offering a more general
understanding of the search problem (e.g. notions of rate-of-
change of belief) and facilitating the easier implementation
of search strategies in physical search systems.

Additionally, we examined and proposed several different
strategies for generating search paths and found that the
decision framework enables the use of a variety of measures
of the search performance, including the time until a decision
is made about the presence or absence of the target. We eval-
uated the different approaches using this metric in simulation
studies, observing that slight increases in performance are
often not worth the computational burden, which is a relevant
and/or necessary consideration for many applications of
interest.

Further, the two approaches proposed — the “saccadic”
and “Drosophila-inspired” strategies — highlight the rele-
vance and general notion of the search problem to other
classes of search-related tasks. The decision-based formu-
lation discussed in this paper offers a common framework
for examining these types of problems, ranging from human
visual search to efficient event detection in sensor networks
to the search ethology exhibited by insects, and perhaps
more interestingly, may provide a method for uncovering
the mechanisms which govern the behavior of systems in
these search tasks.

FrD5.3

There are many avenues for future research. Of immediate
interest is the investigation of other measures of perfor-
mance, including notions of achievable confidence in the
decision for limitations on the number of observations as
well as the role of (possibly changing) error rates « and
on the evolution of the belief. These concepts can be best
studied by definition and derivation of the expected value
of the belief function, due to the randomness introduced
by uncertainty in the detections. Utilizing tools such as the
SPRT may offer avenues for theoretical developments.

In the context of search with mobile sensors, a wide
range of interesting problems exist, including the use of
the decision framework for examining target identification,
switching task allocation (e.g. whether to continue the search
vs. perform the rescue), and coordination of a team of sen-
sors which may fuse decisions rather than use sensor-based
estimates. Another particularly intriguing extension to this
work is the search for antagonistic targets, which maneuver
to hinder the progress of the search. Game-theoretic notions,
such as levels of rationality (which are related to lookahead
strategies), are certainly relevant as applied to search [16]
and pursuit-evasion [8], and thus merit further research into
these areas.
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