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Abstract— For certain applications, field robotic systems 

require small size for cost, weight, access, stealth or other 
reasons. Small size results in constraints on critical resources 
such as power, space (for sensors and actuators), and 
computing cycles, but these robots still must perform many of 
the challenging tasks of their larger brethren. The need for 
advanced capabilities such as machine vision, application-
specific sensing, path planning, self localization, etc. is not 
reduced by small-scale applications, but needs may vary with 
the task. As a result, when resources are constrained, it is 
prudent to configure the robot for the task at hand; both 
hardware and software. We are developing a reconfigurable 
computing subsystem for resource-constrained robots that 
allows rapid deployment of statically configured hardware and 
software for a specific task. The use of a Field Programmable 
Gate Array (FPGA) provides flexibility in hardware for both 
sensor interfacing and hardware-accelerated computation. In 
this paper, we describe a static reconfiguration architecture we 
call the Morphing Bus that allows the rapid assembly of sensors 
and dedicated computation through reusable hardware and 
software modules. It is a novel sensor bus in the fact that no 
bus interface circuitry is required on the sensor side – the bus 
“morphs” to accommodate the signals of the sensor. 
 

I. INTRODUCTION 
M
bu

ALL-SCALE robots fill specific applications needs, 
t are both size and power limited. Most such robots 

use microcontrollers to perform their control and feedback 
tasks in order to conserve space and power. However, heavy 
computational tasks such as vision, plume tracking, etc often 
require more computational power than conventional 
microcontrollers provide. An alternative to power-hungry, 
full-fledged CPUs for small-scale robots to achieve such 
heavy-duty tasks is the relative power efficiency of 
hardware acceleration.  One way of providing this is to use 
Application Specific Integrated Circuits (ASIC) which are 
custom-designed for a specific task. These, however, are 
often too constraining for a general purpose robot. 

A robot for emergency response might be used for a 
structural inspection at one moment and then to search for 
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survivors the next. It might even be used with another 
agency to investigate a suspicious package. Each operation 
potentially requires a different suite of sensors and/or 
actuators. Due to size and power constraints it is often not 
possible (or even necessary) to carry all the sensors and 
actuators with it for all possible tasks. In this case, the robot 
could be equipped with limited sensors and actuators to 
carry out a bomb squad operation; and these would have to 
be changed for search and rescue in a collapsed building. 

Robot customization thus makes sense for small scale 
robots that must make the most of its limited resources, but 
it causes a burden to the team deploying them. Users are 
typically not robotic experts and do not spend much training 
time learning to configure them prior to deployment. The 
robots should be able to be sent out immediately, but 
generally valuable time would be spent configuring such a 
system and customizing it for the task. 

This paper aims to address these issues, by proposing a 
flexible, low cost, high performance system with easy 
configuration. The system is designed around an FPGA 
fabric that allows the user the flexibility of using different 
devices without having to be concerned with the interfacing 
details. It is based on the novel “morphing bus” concept 
[10].  The novelty of this architecture is the absence of 
interface logic on the side of the sensors and actuators with 
all the interface logic being moved into the FPGA. Every 
component that is connected to the morphing bus has a 
module in VHDL associated with it that performs the data 
processing and interfacing tasks for it. A tool that allows 
quick and easy configuration of the system prior to 
deployment was developed. It provides configuration 
management by abstracting away the details of the 
individual modules and creates a top level module. The 
FPGA fabric provides dedicated hardware. Every device is 
connected directly to the FPGA i.e. to the logic servicing it, 
which results in low latency. Throughput is increased due to 
simultaneous operation of all sensors. Besides as the data 
processing needs are being handled by the FPGA logic the 
processor is freed for task level functions such as 
determining the shortest part to target, or making decisions.  

We built a prototyping system based around the Virtex-
IITM Pro FPGA for our project. The morphing bus uses static 
reconfiguration to interface devices prior to deployment. 
The various VHDL modules along with the order in which 
devices are to be connected are given to the tool developed, 
which generates the appropriate pin mapping and top level 
architecture to support that configuration.  
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The organization of the paper is as follows: section 2 
reviews existing systems that use FPGAs either in robotics 
or for configurable I/O, section 3 explains the Morphing 
bus, section 4 deals with the tool developed to configure the 
morphing bus, section 5 demonstrates results using the tool 
and the new architecture and section 6 summarizes the ideas 
introduced.  

II. LITERATURE REVIEW 
FPGAs are being increasingly used in robotics due to the 

very same reasons of flexibility achievable along with the 
performance of hardware.  

A system is described in [1] that has flexible IO 
peripherals whose interfaces can be added and modified by 
reconfiguring the embedded FPGA. However the only 
extent that they went to in that system was to claim that 
every pin on the chip they fabricated was identical and could 
be controlled either as an input or output; either by the 
microcontroller or FPGA.  

Rauma et al [2] proposed a system which takes 
parameters of bus width, number of modules, number of 
registers etc and a software tool generates the correct 
structure for the control applications. Templates were 
created for every module that described the interface to the 
bus. This bus however was internal to the FPGA. 

Guéganno and D. Duhaut [3] use the FPGA as an I/O card 
but use external interface logic which our system seeks to 
eliminate completely.  

The YaMoR robotic platform [4] can be reconfigured 
both electrically and mechanically. Reconfiguration of the 
electronics is achieved using the Spartan-3 FPGA with a 
Microblaze soft processor. They use the module based flow 
to reconfigure the FPGA. The module is defined in VHDL 
and synthesized by the user. They provide scripts for easily 
generating the corresponding configuration bitstreams for 
dynamic partial reconfiguration. These scripts however are 
only valid for their specific robotic controller and are not 
general.  

Goncalves et al [5] presents a framework called 
ARCHITECT-R for hardware software co-design of FPGAs 
for mobile robotic applications. Their aim is to allow 
applications developed in CES (C for Embedded systems) to 
be translated into hardware/ software components, to be 
executed in a soft core microprocessor and FPGA hardware 

structures. They use an existing framework called NENYA 
[6] to implement a given computing structure in 
reconfigurable logic. NENYA can extract hardware images 
from sequential description to be executed by the 
reconfigurable logic and can even integrate temporal 
partitioning techniques in the compilation process if designs 
require more hardware resources than physically available. 
The goal of that paper was to help design a system; the aim 

of our paper is to speed up deployment while providing 
more performance than multiplexed bus architectures and 
more flexibility than fixed bus architectures. 

 
 
Fig. 1.  Standard bus. 

III. MORPHING BUS 
Numerous bus protocols exist such as I2C, USB, PCI 

VMEBus, etc. Some like the USB achieve plug and play 
capability by storing interface logic on the device. Thus the 
protocol is able to query the device to gather interface 
information from it. Also logic is required for bus arbitration 
in case multiple devices need to be serviced at any given 
time. This standard bus is depicted in Fig. 1.   

The morphing bus exploits the static reconfigurability of 
the FPGA to provide an interface to modular sensors and 
actuators without bus interface logic. As seen in Fig. 2 the 
morphing bus architecture gets rid of the need for interface 
and arbitration logic by providing a dedicated rather than a 
multiplexed bus for each device with the flexibility to swap 
the position of each device. The required data handshaking, 
data translation and signal processing is done on the FPGA.  

  
Fig. 2.  Morphing bus. 

 
The bus is made up of circuit boards (also called “cheese 

wedges” because of their shape: see fig 4) each of which is 
dedicated to only one or more sensors or actuators. The 
main emphasis is that the boards should be of low 
complexity and thus small size. Each board has electrical 
connectors at both ends. All the boards provide the same 
interface to the preceding and succeeding stages. Thus their 
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position in the bus can be swapped. Each board uses as 
many bits of the bus as required to support the logic on that 
wedge and the remaining are fed to the next connector of the 
next stage which in turn does the same and so on.  

Fig 3 shows an example of how the assignment of I/O of 
the FPGA takes place as boards with different functionalities 
are added. The input lines to a wedge are used as follows: 
few initial lines are dedicated to power and ground. These 
are common to all circuit boards and run through all of 
them. Starting from the next connection the wedge circuitry 
uses as many I/O pins as it requires. The remaining lines are 
shifted to the output connector such that the unused lines are 
now immediately after the power lines.  

In fig 3(a) the bare FPGA base board is shown. This is the 
heart of the system and in our case consists of only the 
FPGA and supporting hardware along with a connector to 
start off the bus. Fig 3(b) shows how the bus starts off. A 
camera plugged into the FPGA uses required number of 
lines and the rest are transferred to the start of an output 
connector. The motor driver board uses 2 of these lines and 
passes the remaining in a similar fashion. Thus the FPGA 

pins are assigned sequentially in the same order that the 
devices are being plugged in. If the positions of two circuit 
boards in the chain are swapped, the pins of the FPGA 
connected to each device will differ but overall the same 
pins will be used.  

The morphing bus is currently being designed for use in 
the TerminatorBot [12] and its structure is shown in Fig. 4. 
Because of the shapes of the wedges, when they are stacked 
up they take the form of a spiraling staircase. To provide 
support to this structure mechanical reinforcements are 
provided. Air is blown from the base upward, which follows 
the path along the spiral, cooling the ICs on every wedge. 
The whole structure is enclosed in wrap to maintain rigidity. 
If excessive cooling is required the wrap can be made from a 
conductive material and the various boards can be soldered 
to the wrap to provide additional conductive cooling.  

The number of devices that can be connected in the 
morphing bus architecture is limited by the number of 
available pins routed from the FPGA through the wedges, 
since each board has a dedicated connection to an FPGA 
pin. This is ultimately determined by size of the connector 

 
 
 

Fig. 3.  Wedge diagram for morphing bus. (a) The FPGA base board. (b) When the first circuit board is plugged into the base board, it uses some 
pins for the component supported and the rest are routed through. (c - d) successive boards are plugged into previous ones, forming a chain and all 
having direct connections to the base board FPGA.  
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that can fit on each circuit board which in our case is limited 
by the size of the robot in which this system is being used. 
Also a large portion of the wedge is taken up by the pass 
through routing of the unused lines. However this is 
acceptable, since although this places an upper limit on the 
number of devices, we have the great advantage of being 
able to do without interface and arbitration hardware on the 
devices plugged in. Thus they can be very small, ideal for 
deployed field robots.  

Another concern is that the boards are not hot swappable 
i.e. they have to be plugged in and the device has to be 
configured before the system is turned on. This leads to 
complexity of configuring the system prior to deployment, 
and dealing with module replacement at runtime. To 
simplify system configuration, a tools that takes in the order 
of the devices and HDL interface descriptions of each and 
automatically generating a top level file and a corresponding 

pin configuration file has been developed. These auto 
generated files can be used in the place and route process.   
 

IV. AUTOMATING THE BUS CONFIGURATION 
 

Plug and play based peripherals allow easy and quick 
system setup. However the devices on the morphing bus do 
not use interface or arbitration logic, and thus do away with 
the extra circuitry that allows the host to query the device. 
Due to this the control program has no way of identifying 
the device type. This knowledge is essential as the FPGA 
routing and pin assignment depends on it, to ensure that the 
appropriate module is interfaced to the sensor/ actuator.  

A software configuration tool has been developed to 

support the morphing bus concept. The tool has a database 
containing a library of modules in VHDL or netlist format 
which have been individually compiled and tested. The 
devices connected to the bus prior to deployment, and the 
order in which they are to be connected can be selected. In 
order to configure the FPGA an entire system design file 
along with the interfacing specification has to be provided to 
the Xilinx tools. The software takes the configuration 
assigned above and generates these top level configuration 
files. This makes it easy to use by operators who are 
typically not conversant with programming.  

The tool is only concerned with the interface between the 
bus and the module instantiated in FPGA logic. Thus even 
propriety device cores can be included to handle processing 
requirements of a device if we know the core interfaces to 
the external system.  

 
 

Fig. 4.  TerminatorBot Morphing bus spiraling structure.  (a) One wedge is connected to the base board, starting off a chain where every wedge is 
connected to the previous. (b) FPGA base board. (c) A single cheese wedge.  

V. EXPERIMENTS AND OBSERVATIONS 
In order to verify the functionality and the feasibility of 

the morphing bus, we built a prototype system as shown in 
Fig. 5. By its very design the morphing bus would allow 
direct connections to the FPGA bringing with it the 
associated advantages. Thus we had to prove that the 
morphing bus actually worked for different combinations of 
I/O. Secondly we had to prove that the morphing bus could 
be used easily by a person who could not write a program 
yet who would want to swap sensors and actuators.  

A Xilinx ML310 development board served as the 
computing platform and base board. It contained a Virtex-II 
ProTM FPGA. For the prototype system we used a 20 bit 
wide morphing bus. The devices that we supported were a 
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camera, motor with hardware PID position control, some 
LEDs and switches on boards to simulate other possible I/O 
combinations. One board consisted only of LEDs to simulate 
an O/P only board on the morphing bus, a board of only 
switches simulating an input only device, and one consisting 
of LEDs and switches for I/O. The motors had optical 
encoders, the outputs of which were fed into the FPGA, and 
after processing signals are sent to the motor to control its 
position. Thus we feel that we had a rigorous setup to test 
the functioning of the bus. The camera uses commands from 
the embedded PowerPC core to configure it, and then 
streams data into the FPGA which handles the data 
synchronization and saving to memory.  Image processing 
algorithms could potentially be implemented. 

We connected the modules in various permutations. Then 
using the automated tool we generated the top level VHDL 
module. Using this we programmed the FPGA and tested 

that all the devices in the bus were working as expected for 
the different device orderings. At no point did the user have 
to write a line of VHDL, as all the code was automatically 
generated.  

The tool freed up a lot of time and effort that it would 
otherwise have taken to configure the bus and made it 
accessible to people who may not know coding but have to 
operate the robot in adverse conditions.  

VI. CONCLUSIONS AND FUTURE WORK 
This paper talks about a powerful yet easy to configure 

computing platform, based on an FPGA with an embedded 

processor, and using the Morphing bus concept. This will be 
the backbone for the TerminatorBot and the heterogeneous 
wireless sensor network [13]. With the morphing bus, we 
have a quick and easy to deploy system. It has the flexibility 
of swapping and adding or removing devices prior to 
deployment along with dedicated connections to the 
computing platform without the use of bus interface or 
arbitration logic. A tool that configures the bus was 
developed and tested.  

We are now looking at being able to add or remove 
devices at runtime based on the runtime reconfiguration [7], 
[8], [9] of the FPGA. Augmentation by the control via the 
PowerPC embedded in the chip, gives us a powerful 
platform. Also a study is being done towards task aware 
reconfiguration of the FPGA. Ultimately we hope to have a 
system capable of task aware reconfiguration. 
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