

Morphing Bus: A rapid deployment computing architecture for high
performance, resource-constrained robots

Colin D’Souza, Byung Hwa Kim, and Richard Voyles, Senior Member, IEEE

Abstract— For certain applications, field robotic systems

require small size for cost, weight, access, stealth or other
reasons. Small size results in constraints on critical resources
such as power, space (for sensors and actuators), and
computing cycles, but these robots still must perform many of
the challenging tasks of their larger brethren. The need for
advanced capabilities such as machine vision, application-
specific sensing, path planning, self localization, etc. is not
reduced by small-scale applications, but needs may vary with
the task. As a result, when resources are constrained, it is
prudent to configure the robot for the task at hand; both
hardware and software. We are developing a reconfigurable
computing subsystem for resource-constrained robots that
allows rapid deployment of statically configured hardware and
software for a specific task. The use of a Field Programmable
Gate Array (FPGA) provides flexibility in hardware for both
sensor interfacing and hardware-accelerated computation. In
this paper, we describe a static reconfiguration architecture we
call the Morphing Bus that allows the rapid assembly of sensors
and dedicated computation through reusable hardware and
software modules. It is a novel sensor bus in the fact that no
bus interface circuitry is required on the sensor side – the bus
“morphs” to accommodate the signals of the sensor.

I. INTRODUCTION
M
bu

ALL-SCALE robots fill specific applications needs,
t are both size and power limited. Most such robots

use microcontrollers to perform their control and feedback
tasks in order to conserve space and power. However, heavy
computational tasks such as vision, plume tracking, etc often
require more computational power than conventional
microcontrollers provide. An alternative to power-hungry,
full-fledged CPUs for small-scale robots to achieve such
heavy-duty tasks is the relative power efficiency of
hardware acceleration. One way of providing this is to use
Application Specific Integrated Circuits (ASIC) which are
custom-designed for a specific task. These, however, are
often too constraining for a general purpose robot.

A robot for emergency response might be used for a
structural inspection at one moment and then to search for

Manuscript received September 15, 2006. This work was supported in

part by NSF Safety, Security and Rescue Research Center.
C. J. D’Souza is a Masters Student of Electrical Engineering at the

University of Minnesota, Minneapolis MN 55455. (dsouz007@umn.edu)
B. H. Kim, is a PhD student of Electrical Engineering at the University

of Minnesota, Minneapolis MN 55455. (bhkim@ece.umn.edu)
R. Voyles is with the Computer Engineering Department, University of

Denver, Denver, CO 80208 USA. (Richard.Voyles@du.edu)

survivors the next. It might even be used with another
agency to investigate a suspicious package. Each operation
potentially requires a different suite of sensors and/or
actuators. Due to size and power constraints it is often not
possible (or even necessary) to carry all the sensors and
actuators with it for all possible tasks. In this case, the robot
could be equipped with limited sensors and actuators to
carry out a bomb squad operation; and these would have to
be changed for search and rescue in a collapsed building.

Robot customization thus makes sense for small scale
robots that must make the most of its limited resources, but
it causes a burden to the team deploying them. Users are
typically not robotic experts and do not spend much training
time learning to configure them prior to deployment. The
robots should be able to be sent out immediately, but
generally valuable time would be spent configuring such a
system and customizing it for the task.

This paper aims to address these issues, by proposing a
flexible, low cost, high performance system with easy
configuration. The system is designed around an FPGA
fabric that allows the user the flexibility of using different
devices without having to be concerned with the interfacing
details. It is based on the novel “morphing bus” concept
[10]. The novelty of this architecture is the absence of
interface logic on the side of the sensors and actuators with
all the interface logic being moved into the FPGA. Every
component that is connected to the morphing bus has a
module in VHDL associated with it that performs the data
processing and interfacing tasks for it. A tool that allows
quick and easy configuration of the system prior to
deployment was developed. It provides configuration
management by abstracting away the details of the
individual modules and creates a top level module. The
FPGA fabric provides dedicated hardware. Every device is
connected directly to the FPGA i.e. to the logic servicing it,
which results in low latency. Throughput is increased due to
simultaneous operation of all sensors. Besides as the data
processing needs are being handled by the FPGA logic the
processor is freed for task level functions such as
determining the shortest part to target, or making decisions.

We built a prototyping system based around the Virtex-
IITM Pro FPGA for our project. The morphing bus uses static
reconfiguration to interface devices prior to deployment.
The various VHDL modules along with the order in which
devices are to be connected are given to the tool developed,
which generates the appropriate pin mapping and top level
architecture to support that configuration.

S

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeA10.5

1-4244-0602-1/07/$20.00 ©2007 IEEE. 311

The organization of the paper is as follows: section 2
reviews existing systems that use FPGAs either in robotics
or for configurable I/O, section 3 explains the Morphing
bus, section 4 deals with the tool developed to configure the
morphing bus, section 5 demonstrates results using the tool
and the new architecture and section 6 summarizes the ideas
introduced.

II. LITERATURE REVIEW
FPGAs are being increasingly used in robotics due to the

very same reasons of flexibility achievable along with the
performance of hardware.

A system is described in [1] that has flexible IO
peripherals whose interfaces can be added and modified by
reconfiguring the embedded FPGA. However the only
extent that they went to in that system was to claim that
every pin on the chip they fabricated was identical and could
be controlled either as an input or output; either by the
microcontroller or FPGA.

Rauma et al [2] proposed a system which takes
parameters of bus width, number of modules, number of
registers etc and a software tool generates the correct
structure for the control applications. Templates were
created for every module that described the interface to the
bus. This bus however was internal to the FPGA.

Guéganno and D. Duhaut [3] use the FPGA as an I/O card
but use external interface logic which our system seeks to
eliminate completely.

The YaMoR robotic platform [4] can be reconfigured
both electrically and mechanically. Reconfiguration of the
electronics is achieved using the Spartan-3 FPGA with a
Microblaze soft processor. They use the module based flow
to reconfigure the FPGA. The module is defined in VHDL
and synthesized by the user. They provide scripts for easily
generating the corresponding configuration bitstreams for
dynamic partial reconfiguration. These scripts however are
only valid for their specific robotic controller and are not
general.

Goncalves et al [5] presents a framework called
ARCHITECT-R for hardware software co-design of FPGAs
for mobile robotic applications. Their aim is to allow
applications developed in CES (C for Embedded systems) to
be translated into hardware/ software components, to be
executed in a soft core microprocessor and FPGA hardware

structures. They use an existing framework called NENYA
[6] to implement a given computing structure in
reconfigurable logic. NENYA can extract hardware images
from sequential description to be executed by the
reconfigurable logic and can even integrate temporal
partitioning techniques in the compilation process if designs
require more hardware resources than physically available.
The goal of that paper was to help design a system; the aim

of our paper is to speed up deployment while providing
more performance than multiplexed bus architectures and
more flexibility than fixed bus architectures.

Fig. 1. Standard bus.

III. MORPHING BUS
Numerous bus protocols exist such as I2C, USB, PCI

VMEBus, etc. Some like the USB achieve plug and play
capability by storing interface logic on the device. Thus the
protocol is able to query the device to gather interface
information from it. Also logic is required for bus arbitration
in case multiple devices need to be serviced at any given
time. This standard bus is depicted in Fig. 1.

The morphing bus exploits the static reconfigurability of
the FPGA to provide an interface to modular sensors and
actuators without bus interface logic. As seen in Fig. 2 the
morphing bus architecture gets rid of the need for interface
and arbitration logic by providing a dedicated rather than a
multiplexed bus for each device with the flexibility to swap
the position of each device. The required data handshaking,
data translation and signal processing is done on the FPGA.

Fig. 2. Morphing bus.

The bus is made up of circuit boards (also called “cheese

wedges” because of their shape: see fig 4) each of which is
dedicated to only one or more sensors or actuators. The
main emphasis is that the boards should be of low
complexity and thus small size. Each board has electrical
connectors at both ends. All the boards provide the same
interface to the preceding and succeeding stages. Thus their

WeA10.5

312

position in the bus can be swapped. Each board uses as
many bits of the bus as required to support the logic on that
wedge and the remaining are fed to the next connector of the
next stage which in turn does the same and so on.

Fig 3 shows an example of how the assignment of I/O of
the FPGA takes place as boards with different functionalities
are added. The input lines to a wedge are used as follows:
few initial lines are dedicated to power and ground. These
are common to all circuit boards and run through all of
them. Starting from the next connection the wedge circuitry
uses as many I/O pins as it requires. The remaining lines are
shifted to the output connector such that the unused lines are
now immediately after the power lines.

In fig 3(a) the bare FPGA base board is shown. This is the
heart of the system and in our case consists of only the
FPGA and supporting hardware along with a connector to
start off the bus. Fig 3(b) shows how the bus starts off. A
camera plugged into the FPGA uses required number of
lines and the rest are transferred to the start of an output
connector. The motor driver board uses 2 of these lines and
passes the remaining in a similar fashion. Thus the FPGA

pins are assigned sequentially in the same order that the
devices are being plugged in. If the positions of two circuit
boards in the chain are swapped, the pins of the FPGA
connected to each device will differ but overall the same
pins will be used.

The morphing bus is currently being designed for use in
the TerminatorBot [12] and its structure is shown in Fig. 4.
Because of the shapes of the wedges, when they are stacked
up they take the form of a spiraling staircase. To provide
support to this structure mechanical reinforcements are
provided. Air is blown from the base upward, which follows
the path along the spiral, cooling the ICs on every wedge.
The whole structure is enclosed in wrap to maintain rigidity.
If excessive cooling is required the wrap can be made from a
conductive material and the various boards can be soldered
to the wrap to provide additional conductive cooling.

The number of devices that can be connected in the
morphing bus architecture is limited by the number of
available pins routed from the FPGA through the wedges,
since each board has a dedicated connection to an FPGA
pin. This is ultimately determined by size of the connector

Fig. 3. Wedge diagram for morphing bus. (a) The FPGA base board. (b) When the first circuit board is plugged into the base board, it uses some
pins for the component supported and the rest are routed through. (c - d) successive boards are plugged into previous ones, forming a chain and all
having direct connections to the base board FPGA.

WeA10.5

313

that can fit on each circuit board which in our case is limited
by the size of the robot in which this system is being used.
Also a large portion of the wedge is taken up by the pass
through routing of the unused lines. However this is
acceptable, since although this places an upper limit on the
number of devices, we have the great advantage of being
able to do without interface and arbitration hardware on the
devices plugged in. Thus they can be very small, ideal for
deployed field robots.

Another concern is that the boards are not hot swappable
i.e. they have to be plugged in and the device has to be
configured before the system is turned on. This leads to
complexity of configuring the system prior to deployment,
and dealing with module replacement at runtime. To
simplify system configuration, a tools that takes in the order
of the devices and HDL interface descriptions of each and
automatically generating a top level file and a corresponding

pin configuration file has been developed. These auto
generated files can be used in the place and route process.

IV. AUTOMATING THE BUS CONFIGURATION

Plug and play based peripherals allow easy and quick
system setup. However the devices on the morphing bus do
not use interface or arbitration logic, and thus do away with
the extra circuitry that allows the host to query the device.
Due to this the control program has no way of identifying
the device type. This knowledge is essential as the FPGA
routing and pin assignment depends on it, to ensure that the
appropriate module is interfaced to the sensor/ actuator.

A software configuration tool has been developed to

support the morphing bus concept. The tool has a database
containing a library of modules in VHDL or netlist format
which have been individually compiled and tested. The
devices connected to the bus prior to deployment, and the
order in which they are to be connected can be selected. In
order to configure the FPGA an entire system design file
along with the interfacing specification has to be provided to
the Xilinx tools. The software takes the configuration
assigned above and generates these top level configuration
files. This makes it easy to use by operators who are
typically not conversant with programming.

The tool is only concerned with the interface between the
bus and the module instantiated in FPGA logic. Thus even
propriety device cores can be included to handle processing
requirements of a device if we know the core interfaces to
the external system.

Fig. 4. TerminatorBot Morphing bus spiraling structure. (a) One wedge is connected to the base board, starting off a chain where every wedge is
connected to the previous. (b) FPGA base board. (c) A single cheese wedge.

V. EXPERIMENTS AND OBSERVATIONS
In order to verify the functionality and the feasibility of

the morphing bus, we built a prototype system as shown in
Fig. 5. By its very design the morphing bus would allow
direct connections to the FPGA bringing with it the
associated advantages. Thus we had to prove that the
morphing bus actually worked for different combinations of
I/O. Secondly we had to prove that the morphing bus could
be used easily by a person who could not write a program
yet who would want to swap sensors and actuators.

A Xilinx ML310 development board served as the
computing platform and base board. It contained a Virtex-II
ProTM FPGA. For the prototype system we used a 20 bit
wide morphing bus. The devices that we supported were a

WeA10.5

314

camera, motor with hardware PID position control, some
LEDs and switches on boards to simulate other possible I/O
combinations. One board consisted only of LEDs to simulate
an O/P only board on the morphing bus, a board of only
switches simulating an input only device, and one consisting
of LEDs and switches for I/O. The motors had optical
encoders, the outputs of which were fed into the FPGA, and
after processing signals are sent to the motor to control its
position. Thus we feel that we had a rigorous setup to test
the functioning of the bus. The camera uses commands from
the embedded PowerPC core to configure it, and then
streams data into the FPGA which handles the data
synchronization and saving to memory. Image processing
algorithms could potentially be implemented.

We connected the modules in various permutations. Then
using the automated tool we generated the top level VHDL
module. Using this we programmed the FPGA and tested

that all the devices in the bus were working as expected for
the different device orderings. At no point did the user have
to write a line of VHDL, as all the code was automatically
generated.

The tool freed up a lot of time and effort that it would
otherwise have taken to configure the bus and made it
accessible to people who may not know coding but have to
operate the robot in adverse conditions.

VI. CONCLUSIONS AND FUTURE WORK
This paper talks about a powerful yet easy to configure

computing platform, based on an FPGA with an embedded

processor, and using the Morphing bus concept. This will be
the backbone for the TerminatorBot and the heterogeneous
wireless sensor network [13]. With the morphing bus, we
have a quick and easy to deploy system. It has the flexibility
of swapping and adding or removing devices prior to
deployment along with dedicated connections to the
computing platform without the use of bus interface or
arbitration logic. A tool that configures the bus was
developed and tested.

We are now looking at being able to add or remove
devices at runtime based on the runtime reconfiguration [7],
[8], [9] of the FPGA. Augmentation by the control via the
PowerPC embedded in the chip, gives us a powerful
platform. Also a study is being done towards task aware
reconfiguration of the FPGA. Ultimately we hope to have a
system capable of task aware reconfiguration.

REFERENCES

Fig. 5. Experimental Setup - The prototype system showing the base board and “wedges”. The components used are labeled.

[1] M. Borgatti, F. Lertora, B. Foret, and L. Cali, “A Reconfigurable
System Featuring Dynamically Extensible Embedded Microprocessor,
FPGA, and Customizable I/O”, IEEE Journal of Solid-State Circuits,
Vol. 38, Issue 3, March 2003, pp. 521 – 529.

[2] K. Rauma, O. Laakkonen, T. Harkonen, O. Pyrhonen, and J. Luukko,
“New Bus Structure for Programmable Logic Devices Controlling
Power Electronics”, 2005 IEEE 36th Conference on Power Electronics
Specialists, June 12, 2005, pp. 2705 – 2708.

[3] C. Guéganno and D. Duhaut, “An hardware/software architecture for
the control of self reconfigurable robots”, DARS-2004, France June
2004.

WeA10.5

315

[4] A. Upegui, R. Moeckel, E. Dittrich, A. Ijspeert, and E. Sanchez, “An
FPGA Dynamically Reconfigurable Framework for Modular
Robotics”, Workshop Proceedings of the 18th International
Conference on Architecture of Computing Systems 2005 (ARCS
2005), Berlin, Germany, pp. 83-89.

[5] R. A. Gonçalves, P.A. Moraes, J. M. P. Cardoso, D. F. Wolf, M. M.
Fernandes, R. A. F. Romero, E. Marques, “ARCHITECT-R: A System
for Reconfigurable Robots Design”, in ACM Symposium on Applied
Computing (SAC 2003), March 9-12, Melbourne, Florida, pp. 679-
683.

[6] Cardoso, J.M.P.; Neto, H.C.; "Fast hardware compilation of behaviors
into an FPGA-based dynamic reconfigurable computing system" XII
Symposium on Integrated Circuits and Systems Design, 1999.
Proceedings. 29 Sept.-2 Oct. 1999 Page(s):150 - 153.

[7] Xilinx. Two flows for partial reconfiguration: Module based or
difference based. Application Note 290, Xilinx, 2004. Xilinx. ISE 8.1i
Documentation. Xilinx.

[8] Gregory Mermoud, “A Module-based dynamic partial reconfiguration
tutorial”, Logic Systems Laboratory, EPFL, Nov. 2004.

[9] Creating a partially reconfigurable design with Xilinx EDK (Modular
Design with EDK) http://wiki.ittc.ku.edu/rtrjvm/EDK_and_MD

[10] B.H. Kim, C. D'Souza, R.M. Voyles, J. Hesch, S. Roumeliotis, “A
Reconfigurable Computing Platform for Plume Tracking with Mobile
Sensor Networks”, Proceedings of the 2006 SPIE Defense and
Security Symposium, Orlando, FL, April, 2006.

[11] W. Zhao, B.H. Kim, A.C. Larson and R.M. Voyles, ¡°FPGA
Implementation of Closed-Loop Control System for a Small-Scale
Robot¡±, in Proceedings of the 2005 International Conference on
Advanced Robotics, Seattle, WA, 2005.

[12] Richard M. Voyles, “TerminatorBot: A Robot with Dual-Use Arms
for Manipulation and Locomotion”, in Proceedings of the 2000 IEEE
International Conference on Robotics and Automation, San Francisco,
CA, April 2000, pp.61-66.

[13] Jaewook Bae, Amy Larson and Richard Voyles, “Wireless Video
Sensor Networks over Bluetooth : High-Bandwidth Multi-Hop
Networks for Resource-Constrained Robots” Submitted to ICRA
2007.

WeA10.5

316

