
The Frugal Feeding Problem:

Energy-efficient, multi-robot, multi-place rendezvous

Yaroslav Litus, Richard T. Vaughan, Pawel Zebrowski

Autonomy Lab, School of Computing Science, Simon Fraser University, Canada

{ylitus, vaughan, pzebrows}@sfu.ca

Abstract— We consider the problem of finding an energy-
efficient route for a service robot to rendezvous with every
member of a heterogeneous team of mobile worker robots. We
analyze the general and special cases of the problem, finding
it to be at least as hard as the travelling salesman problem.
Decomposing the problem into two components: (i) an ordering
of robot meetings; and (ii) finding an optimal set of meeting
places given an ordering, we present useful solutions to part
(ii) only. We propose and compare a discrete algorithm for the
restricted meeting location case and two numerical algorithms
for the continuous case with weighted Euclidean distance energy
cost functions. Anticipating future work, we speculate briefly
on suitable ordering heuristics and the need for an integrated
method.

I. PROBLEM DESCRIPTION AND CHARACTERIZATION

Assume a team of robots is working in some environment.

For prolonged operation, the worker robots can recharge by

docking with a dedicated refueling (or equivalently, recharg-

ing) robot called a tanker, as described in [1]. If fuel is a

precious resource, as is common in real world applications,

then an important measure of system efficiency is the ratio

of fuel expended by the workers in doing work to the total

energy expended by all robots. In this paper we seek to

minimize the total amount of fuel spent driving robots to

refueling rendezvous.

As a generalization, the following natural problem can be

stated: given a set of original locations of worker robots

and tanker robot, find the set of meeting points such that

the tanker meets every worker and that minimizes the total

energy spent on locomotion. By analogy to a mother animal

attending her offspring we dub this problem the “Frugal

Feeding Problem”. It can be stated formally as follows:

Definition 1 (Frugal Feeding Problem): Given tanker lo-

cation p0 ∈ R
d, workers locations ri ∈ R

d, i = 1..k and

locomotion cost functions Ci : R
d × R

d → R, i = 0..k find

min
π,p1,p2,...pk

k
∑

i=1

(

C0(pi−1, pi) + Cπ(i)(rπ(i), pi)
)

(1)

Here C0(x, y) gives the cost of tanker relocation from x to

y, Ci(x, y) gives the corresponding cost for worker i, and

π : {1..k} → {1..k} permutes the workers according to the

order in which they are attended by tanker.

Definition (1) could be amended to require the tanker to

return to its original location after attending all workers,

perhaps to refuel itself. This modification does not change

the following analysis.

The problem has two components. One is combinatorial

(finding the order in which robots should be attended),

another is analytical (finding the meeting points for the given

order).

We will denote the solution points as p∗i and corresponding

permutation as π∗. The possibility of several robots being

attended in one place is permitted, and captured by the

possible coincidence of some meeting points p∗i .

The Fermat-Torricelli problem (also called the Steiner-

Weber problem) asks for the unique point x minimizing the

sum of distances to arbitrarily given points x1, . . . , xn in Eu-

clidean d-dimensional space. Elaborating on the conventions

in the Fermat-Torricelli problem literature [2], we name the

location of solution points as follows.

Definition 2 (Special cases for solution): If p∗i = rj for

some j, we will call p∗i worker absorbed. In this case worker

i should either remain still and wait for the tanker to come

to it, or it should move to the location of another worker. If

p∗i = p0, we call p∗i tanker absorbed. In this case the tanker

should not move, but worker i should move to the tanker’s

original location. Otherwise, p∗i is not coincident with the

starting point of any robot, and we call it floating. We show

below that all of these are plausible contingencies.

The problem definition does not commit to any particular

locomotion cost function. Cost functions could be complex to

account for the presence of obstacles or other heterogeneities

of environment or robots. Unfortunately the nature of the

cost function can make the complete problem very difficult

to solve. Here we use the straightforward cost function

Ci(x, y) = wi||y − x|| (2)

So the cost of relocating a robot is simply the weighted

Euclidean distance between the origin and destination. This

serves as an approximation of the energy losses due to

friction if wi is set proportional to the robot weight. The

analysis that follows assumes a cost function based on the

l2-norm, though similar arguments apply to more complex

cost functions.

II. ANALYSIS

The first observation we make is that solution points p∗i
can not lie outside the convex hull of {p0, r1, r2, ...rk}. This

can be seen by considering a candidate meeting point outside

the hull: replacing the candidate point with the closest point

on the convex hull will unambiguously decrease the value

of the goal function. Also, it is easy to prove the convexity

of the objective function in (1) (see, e.g. [3, p. 239] for the

idea of the proof).

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeA1.5

1-4244-0602-1/07/$20.00 ©2007 IEEE. 27

A. Special cases

Under certain conditions we can quickly find solutions

without solving the general problem. We show first the

sufficient condition for the case where the meeting point is

absorbed at the worker’s own location:

Lemma 1: If wi ≥ 2w0 then p∗i = ri. If wi > 2w0, then

p∗i = ri is the unique solution for pi.

Proof: The components of the objective function in (1),

which depend on pi are

gi(pi) = w0||pi−pi−1||+w0||pi+1−pi||+wi||pi−ri|| (3)
We can consider gi in isolation. Point p∗i = argmin gi(pi)

is the solution to the weighted Fermat-Torricelli problem

formed by points pi−1, pi+1, ri with corresponding weights

w0, w0, wi. As shown by Kupitz [2] there is a sufficient

condition for the solution to be exactly at point ri (the

absorbed case) if points are non-collinear:

||w0(~u(ri, pi+1) + ~u(ri, pi−1))|| ≤ wi, (4)

where ~u(x, y) = (y − x)/||y − x|| gives the unit vector in

direction from point x to point y. Now we find the upper

bound of the left side of (4) to solve for the condition,

sufficient for any pair of pi−1, pi+1 which satisfies the

non-collinearity condition. The left side can achieve value

2w0 only when pi−1 = pi+1, thus for the non-collinear

case the condition is wi ≥ 2w0. We complete the proof

by considering the collinear case. [3, p. 251] gives the

sufficient condition for the collinear case of the Fermat-

Torricelli problem. Point pmin is unique, if W− < W/2 and

W+ < W/2, where W− is the total weight of the points to

the one side of pmin, W+ is the total weight of the points to

the other side, and W is the weight of the minimum point

itself. If W− = W+ = W/2, then pmin is one of the many

minimum points which comprise a closed segment and are

defined by these equalities. Interpreting these conditions for

our case we obtain the desired result.

Now we show the sufficient conditions for the case where

the tanker stands still and all workers are charged at the

tanker location.

Lemma 2: If
∑k

i=1 wi ≤ w0 then p∗i = p0 for all i. If

inequality is strict, then this solution is unique.

Proof: Let Ca =
∑k

i=1 wi||ri − p0|| be the cost of

a complete tanker absorbed solution, and C(p1, p2, ...pk) =
∑k

i=1 (wi||ri − pi|| + w0||pi − pi−1||) denote the cost of an

alternative solution. We will show that for all values of

pi, i = 1..k inequality Ca − C(p1, ...pk) ≤ 0 holds.

Ca − C(p1, ...pk) =
k

∑

i=1

wi(||ri − p0|| − ||ri − pi||) −

−w0

k
∑

i=1

||pi − pi−1|| ≤

(triangle inequality)

≤
k

∑

i=1

wi||pi − p0|| − w0

k
∑

i=1

||pi − pi−1|| ≤

(let ||pj − p0|| = max
i

{||pi − p0||}))

≤
k

∑

i=1

wi||pj − p0|| − w0

j
∑

i=1

||pi − pi−1|| ≤

(series of triangle inequalities)

≤
k

∑

i=1

wi||pj − p0|| − w0||pj − p0|| ≤ 0

The case with strict inequality is argued similarly.

B. Complexity

Lemma 1 can be used to show that the frugal feeding

problem is NP-hard because of its combinatorial component

which finds the best order in which robots are visited. To do

this we reduce the geometric salesman problem to the frugal

feeding problem.

Theorem 1: GEOMETRIC TRAVELING SALESMAN ≤
FRUGAL FEEDING

Proof: Given an instance of the geometric traveling

salesman problem (set of points ai, i = 0..n where a0 is the

original location of the salesman) we create the following

frugal feeding problem. Assign p0 = a0;w0 = 1; ri =
ai, wi > 2 for i = 1..n. According to Lemma 1, for any

considered order of meetings (given by permutation π in

(1)) optimal locations pi = rπ(i). This means that the set

of solution points coincides with the set of robot locations,

{p∗i } = {ri}. Thus the solution for the frugal feeding

problem will be the minimum traveling path between all

points ri starting at location p0 which is exactly the solution

to the original problem.

Theorem 1 proves that the combinatorial component of

the frugal feeding problem is not easier than the traveling

salesman problem. Thus, a search for efficient domain-

specific heuristics looks more promising than attempts to find

an exact solution. An interesting opportunity for future work

is to find an algorithm which will solve the combinatorial

component (meeting order) and analytical component (ren-

dezvous locations) simultaneously. Literature on the traveling

salesman problem is abundant, so depending on the particular

initial conditions, a suitable heuristic could be selected.

For example, if the number of robots is large and time is

critical, heuristics presented in [4] could be used. A cheap

and simple alternative ordering could be a nearest-neighbor

series, starting at po. We conjecture that the order given by

the solution to the geometric traveling salesman problem set

on the points p0, r1, ...rn may be a reasonable approximation

to the optimal order π∗. A possible heuristic is to use this

order and avoid the expansion of the permuted orderings, but

we do not yet have results to evaluate this idea.

In the remaining analysis we will assume that the order π
is given. For the practical experiments we use brute force by

iterating through all possible orderings, solving the analytical

component for each of the orderings and using the ordering

which resulted in the best solution.

The analytical component of the problem is a specific case

of the facility location problem [5], where points p0, r1, ...rn

serve as the existing facilities, points p1, ..., pn are new

facilities and the costs are set appropriately. Because the

WeA1.5

28

Fig. 1. Illustrative example. (a) Grid world with rectilinear distances.
Tanker is denoted as T , workers as R1, R2, R3, possible meeting locations
as A, B, C. (b) Construction of maps for problem solution. (c) Function,
used in the selection of the minimum cost value.

gradient and Hessian of the cost function are not defined

at the locations of existing facilities, defining gradient-based

numerical methods is not trivial. Moreover the instance of

the facility location problem we consider could be degenerate

at the optimal solution, since more then one new facility

may coincide with the same existing facility [6]. This makes

finding a good numerical algorithm even more difficult.

Below we present three methods to solve the analytical

component of the frugal feeding problem. We start from the

case where locations of pi are restricted to some finite set and

proceed with two custom numerical methods for the general

case with cost functions, described by (2).

III. RESTRICTED LOCATIONS CASE

Assume that the locations where the tanker could attend

workers are not arbitrary, but are limited to a fixed set of

places. This models, for example, a list of coffee shops where

a consultant can meet clients, or a list of air strips where

a robot reconnaissance airplane could meet a ground-based

tanker truck. The finite set of meeting places could also be

a division of continuous space into a regular grid.

In this discrete version, the optimization problem (1) is

extended with a constraint p∗i ∈ L, where L is the set of

possible meeting places. L could be a superset of the original

robot locations {ri}∪{p0}. The naive brute-force algorithm

for solving the analytical part of the problem will take

O(|L|kk) time (|L|k possible meeting points arrangements

and O(k) to calculate the cost value). However, it is possible

to exploit the structure of the objective function and to

provide the algorithm with running time O(|L|2k). This

algorithm is based on the ideas of dynamic programming

[7]. First we consider an example which will explain the

approach, then we describe the algorithm formally.

A. Illustrative example

Consider the setting described in Fig.1a. The tanker is

located at point T , and three workers are located at R1, R2,

and R3. All robots can move into the 4-connected adjacent

cells only, and the locomotion cost for tanker and workers

is the rectilinear (Manhattan) distance between the points,

measured in number of cells moved. The set of possible

meeting places is restricted to three points L = {A,B,C}.

We will solve the problem by building a sequence of maps

illustrated in Fig.1(b),(c).

The first map M1(p2) gives the answer to the question:

“for the given location p2 of meeting with robot R2, what

is the best place p1 to meet robot R1 in terms of the cost of

moving tanker from T to p1 and then to p2 plus the costs

of moving R1 to p1?” The map also provides corresponding

minimal costs. For example, if robot R2 is to be met at point

B, then the best place to meet R1 is A and associated costs

are 5 (Fig. 1b). If there are several locations which yield

the same minimum cost, any of them could be used without

affecting the quality of the solution.

Using R1 we can build the second map M2(p3) which

again answers the question “for the given location p3 of

meeting with robot r3 what is the cheapest place p2 to meet

R2 in terms of the accumulated minimum cost of the tanker

arriving at p2 (this is given by M1(p2)), relocating to point

p3 plus the costs of moving R2 to p2.”

Finally, using M2 we can build the function S3(p3) which

shows the minimum total cost for each possible point for

charging p3 (Fig. 1c). This cost is the accumulated minimum

cost of the tanker getting to p3 which is given by M2(p3)
plus the cost of moving R3 to p3. By minimizing S3 we

conclude, that the best place for charging r3 is B. Now we

can roll back the maps and find the rest of the locations.

The best place to charge R2 is given by M2. Thus, p∗2 =
M2(p

∗
3) = M2(B) = B. Similar, p∗1 = M1(p

∗
2) = A. The

solution to the problem is (A,B,B) and the minimum cost

is 9.

B. Formal presentation

Now we formally state the procedure described above.

Consider the following reformulation of the problem (for a

given ordering of robots):

min
pk

[Ck(rk, pk) + (5)

min
pk−1

[C0(pk−1, pk) + Ck−1(rk−1, pk−1) +

min
pk−2

[C0(pk−2, pk−1) + C(rk−2, pk−2) + ... +

min
p1

[C0(p1, p2) + C1(r1, p1) + C0(p0, p1)]...]]]

The equivalence of the analytical part of (1) and (5) is

the corollary of the obvious equality minx,y f(x, y) =
minx[miny f(x, y)].

Now consider the following sequence of functions:

S1(p1, p2) = C0(p1, p2) + C1(r1, p1) + C0(p0, p1); (6)

Si(pi, pi+1) = C0(pi, pi+1) + Ci(ri, pi) + Si−1(pi),

for i = 2..k − 1;

Sk(pk) = Ck(rk, pk) + Sk−1(pk)

Problem (5) could be solved by sequentially building the

WeA1.5

29

mappings

M1(p2) = (min
p1

S1, arg min
p1

S1); (7)

Mi(pi+1) = (min
pi

Si, arg min
pi

Si), for i = 2..k − 1;

Mk = (min
pk

Sk, arg min
pk

Sk);

Each mapping Mi is built by considering every value in L
as a parameter and for each value of parameter every value

in L is considered as a possible solution to the minimization

problem. If minimization does not yield a unique solution, we

arbitrarily select one of the minimizing points. Thus, it takes

O(k|L|2) steps to build all maps. Mk1 gives the minimum

value for (5) and Mk2 gives point p∗k. The rest of the points

could be found as p∗i = Mi(p
∗
i+1)2.

The last thing to mention before continuing with the

general case is that the algorithm presented in this section

does not depend on the particular form of the movement cost

functions.

IV. CONTINUOUS CASE

From now on we will use the energy cost

functions, described by (2). We introduce some

notation to describe the algorithms below. The

desired convergence precision is ǫ. The objective

function is F (p1, p2, ...pk). Define f((si), (ci), x) =
∑

i ci||x − si||, g((si), (ci), x) =
∑

x6=si
ci∇||x − si||,

G((si)(ci), x) =
∑

x6=si
ci∇

2||x − si||, λ((si), (ci), x) =
∑

x6=si
ci/||x − si||.

At the time of writing we do not have a formal analysis

of the convergence properties of these algorithms. However,

both methods are based on the generalizations of algorithms

for the Fermat-Torricelli problem which have proofs of

convergence (see [8], [9] cited by [10]).

A. First order method

We describe one step s(x) of this iterative method. It is

used recursively to obtain a sequence of solution approxima-

tions xt+1 = s(xt) until ||xt − xt−1|| < ǫ.

At iteration t given a current approximation to the solution

pt
i, i = 1..k

1) Let S(i) = (pi−1, pi+1, ri),W (i) = (w0, w0, wi) for

i = 1..k − 1; S(k) = (pk−1, rk),W (k) = (w0, wk)
2) Next approximation pt+1

i = P (S(i),W (i), pi)

Here P (S, W, p) denotes the step of the first-order Wang

acceleration of the Weiszfeld algorithm for the Fermat-

Torricelli problem [10]. Given the set of points si with

weights ci, i = 1..m and current approximation x we can

calculate F ((si), (ci), x) as follows:

1) Compute g′ = g((si), (ci), x). Compute σ = ||x −
sj || = mini{||x − si||}. If σ > 0 , goto step 2, else

goto step 3

2) If g′ = 0 then return x, else return x −
g′/λ((si), (ci), x)

3) If ||g′|| ≤ cj then return x, otherwise return x −
[g′/λ((si), (ci), x))][(||g′|| − cj)/||g

′||]

B. Second order method

The second order method we propose is a Newton min-

imization procedure. We exploit the fact that the Hessian

of the objective function has a block-diagonal structure. Be-

cause of this it is possible to calculate the Newton direction

separately for each of solution point approximations pi. If

the Hessian for some point is singular, or does not exist

because pi is absorbed, then the first order step is used to

calculate the direction. After all directions are calculated, the

line search is performed to calculate the length of the step.

This method is based on a second order Xue method for the

Fermat-Torricelli problem [10].

Initially set δi = δ, where δ is a cutoff parameter. At

iteration t given current approximation to the solution pt =
(pt

i), i = 1..k and current values of cutoff parameters δt
i

1) Let S(i) = (pi−1, pi+1, ri),W (i) = (w0, w0, wi) for

i = 1..k − 1, S(k) = (pk−1, rk),W (k) = (w0, wk)
2) For i = 1..k calculate direction and new value of cutoff

parameter (δt+1
i , di) = Q(S(i),W (i), δt

i , pi)
3) Next approximation pt+1 = pt + αd ,where α is a

largest number in {1, 1/2, 1/4, ...} such that F (pt +
αd) ≤ F (pt)

Here Q(S, W, δt
i , pi) calculates the direction for a particular

component of the solution approximation and a new cutoff

parameter value. Given a set of points si with weights ci,

i = 1..m and current approximation x we can calculate

Q((si), (ci), δ, x) as follows:

1) Compute g′ = g((si), (ci), x). Compute σ = ||x −
sj || = mini{||x − si||}. If σ = 0, then set δ+1 = δ,

goto step 4. If σ ≥ δ, then set δ+1 = δ, goto step 3.

2) (Cutoff step) If f((si), (ci), sj) ≤ f((si)(ci), x) then

return (δ+1, sj − x)
3) Compute G′ = G((si), (ci), x) If G′ is singular, goto

step 4. Otherwise solve system G′d = −g′ for d and

return (δ+1, d)
4) If ||g′|| ≤ cj then return (δ+1, 0), otherwise return

(δ+1,−[g′/λ((si), (ci), x))][(||g′|| − cj)/||g
′||])

V. EXPERIMENT

A. Experimental setting

We performed a series of experiments to empirically eval-

uate the performance of the methods described above. Three

different settings are considered, each in a 2-dimensional

continuous world with a tanker and five robots placed as

shown in Fig.3. The standard locomotion function (2) is

used. The three settings differ only in the weights in the

cost functions. In Fig.3 the robot start positions are indicated

by solid black dots, with the size of the dot representing

the relative locomotion cost. The first setting (Map 1) has

the weight of the tanker w0 = 20, the worker robots have

weights wi = 1. In the second setting (Map 2) w0 = wi = 1.

In the last setting (Map 3) w0 = 1, wi = 2. Map 1 should

have solutions which are tanker absorbed, since the weights

satisfy the conditions of Lemma 2. Map 2 could possibly

have some floating solution points, and Map 3 satisfies the

sufficient conditions in Lemma 1, thus all of the solution

WeA1.5

30

points should be worker absorbed. Therefore, these three

settings cover three major classes of solutions. Though we

can use the sufficient conditions provided in Section III to

find the solutions for Map 1 and Map 3 at once, we use these

maps to see how well the methods will perform in capturing

the absorbed cases.

As explained in Section II-B the combinatorial component

of the problem is tackled by iterating through all possible

orders of visits. Investigating faster methods is left as future

work. Here we compare 5 different ways to solve the

analytical part of the problem. These are:

1) Discrete100 covers the embedding square of all robots

with a 100 point (10 by 10) uniform rectangle grid

and applies the discrete method described in Section

III.

2) Discrete400 uses the discrete method on a 400 point

(20 by 20) grid.

3) Nelder-Mead is a simplex optimization method which

works by querying the value of the objective function

in the vertexes of the simplex and updates that simplex

accordingly [11, Ch. 8]. Thus, it does not require any

special properties of the objective function to operate.

For this method the desired precision of optimization

is set to 10−4 and maximum number of iteration is

2000.

4) First Order is the method described in Section IV-A

with the desired precision set to 1.

5) Second Order is the method described in Section IV-

B with the desired precision set to 10−1 and cutoff

parameter δ = 10.

These first and second order precision parameter values

are selected experimentally to give comparable running times

for the numerical methods in all three settings, since we are

interested in finding a method which will find good solutions

quickly in all three representative settings. All three numer-

ical methods start from the same solution approximation,

which is p0
i = rk+1−i. An alternative approximation could

be to set each meeting place to the weighted average between

original tanker location and original worker location, p0
i =

(w0p0 + wipi)/(w0 + wi). We plan to explore the influence

of the starting point on the convergence in our future work.

B. Experimental results

Figure 2 shows the results of running each of the five

methods in three experimental settings. The first thing to

note is the increase in run-time between the 100 point and

400 point grids for the Discrete method, consistent with

the complexity estimates presented in Section III. Run-time

grows quadratically in the size of the grid. Thus, for practical

purposes the discrete method can be recommended only if

the number of a priori allowed meeting locations is small,

or, similarly, the required precision is low so that the search

space can be covered by a coarse grid. The fact that the

discrete method failed to find the absorbed solutions for Map

1 and 3 is evident from the cost of the solution not being

minimal between all methods. The reason for this is that

the grid nodes failed to capture the appropriate points. Thus,

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 10 100 1000

T
o

ta
l
lo

c
o

m
o

ti
o

n
 c

o
s
t

o
f

s
o

lu
ti
o

n

Compute time (seconds) [log scale]

Discrete 100

Discrete 400

Nelder Mead

First Order

Second Order

(a) Map 1: w0 = 20, wi = 1|i > 0 (Tanker absorbed)

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 10 100 1000

T
o

ta
l
lo

c
o

m
o

ti
o

n
 c

o
s
t

o
f

s
o

lu
ti
o

n
Compute time (seconds) [log scale]

Discrete 100

Discrete 400

Nelder Mead

First Order

Second Order

(b) Map 2:w0 = wi = 1

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 10 100 1000

T
o

ta
l
lo

c
o

m
o

ti
o

n
 c

o
s
t

o
f

s
o

lu
ti
o

n

Compute time (seconds) [log scale]

Discrete 100

Discrete 400

Nelder Mead

First Order

Second Order

(c) Map 3: w0 = 1, wi = 2|i > 0 (Worker absorbed)

Fig. 2. Experimental results. Solution quality is plotted against compute
time for each solution method, each of three settings (maps). Maps 1-3
differ only in locomotion cost weights on the single tanker w0 and five
worker wi|i > 0 robots.

if a discretization is used to find the solution, the original

locations of workers and robots should be included in the

set of possible locations L even if the search grid does not

capture them.

Fig.3a,b,c shows the solutions found by the numerical

methods on Map 1, which is constructed to be a tanker

absorbed case. The first order method finds the best-quality

solution but takes a relatively long time for the method to

converge. The second order method converges faster, but

the solution it finds is worse. However, a change of the

required convergence precision of second order method to

WeA1.5

31

Map Nelder Mead 1st Order 2nd Order

1

(a) (b) (c)

2

(d) (e) (f)

3

(g) (h) (i)

Fig. 3. Rendezvous solutions discovered. Tanker is at the solid spot on
figure (a), other points show workers. Circles denote meeting places. Tanker
route is shown with solid lines, workers routes are shown with dashed lines.

10−4 increases the time to 16.2s while beating the first order

solution quality with the value 2346.71. This confirms our

expectation that the second order method should be able to

find a high-quality solution faster than the first order method.

The Nelder Mead method converges quickly on this map,

however the quality of the solution it found is relatively poor.

Map 2 reveals an interesting result. The first order method

manages to find a better solution (Fig.3(e)) in less time than

the second order method takes to find an inferior solution

(see Fig.3(f)). Though the difference between the quality of

solutions is only 1.2%, it shows, that there is potential for

improvement of the second order procedure. Inspection of

the sequence of approximations that the second order method

produced for this Map shows that many steps had a singular

Hessian, thus the method resorts to the first order direction

calculation. One of the potential improvements is to take

special care of these points. Nelder-Mead performed better

on Map 2 than on Map 1, still taking a relatively short time

to run (Fig.3(d)).

Map 3 shows that all methods find the same order of

tanker/worker meetings. Due to the cutoff procedure used

in the second order method, it is able to converge precisely

to the locations of workers (Fig.3(i)), providing the best

solution. The first order method fails to put one of the

meeting places at the location of the worker. (Fig.3(h)). The

Nelder-Mead method fails to place two of the meeting places

at the best location (Fig.3(g)).

Between-map comparison of the numerical methods shows

that the second order method seems to be the safest choice

for practical purposes. However, since the first order pro-

cedure performs well for the floating case, it could be of

practical use when absorbed cases are not likely (based on

consideration of the initial conditions). This issue requires

more investigation and is left as future work. Finally, the

Nelder-Mead method (provided by a multitude of numerical

method code libraries) could be used if the quality of the

solution is not critical, and convenient implementation is

preferred.

VI. CONCLUSIONS AND FUTURE WORK

We have defined and analyzed the frugal feeding problem,

which is concerned with finding the set of meeting places for

a tanker robot to rendezvous with multiple worker robots,

such that the total locomotion cost is minimized.

This paper has provided and compared a variety of partial

solutions to the problem, dealing only with finding an

optimal set of meeting places given an ordering of meetings.

The discrete methods produce optimal results in polynomial

time; a useful improvement over exponential time naive brute

force approach. Our numerical algorithms for the general

problem are shown empirically to converge to good solutions.

There are many opportunities for future work, including

the search for algorithms which will solve both components

of the problem simultaneously. Our preferred class of so-

lutions are distributed online heuristics which will achieve

near-optimal solutions without precomputing a complete

solution in advance, preferably coping with uncertainty in

information about robot locations.

ACKNOWLEDGEMENTS

This work was supported by NSERC in Canada. The

authors gratefully acknowledge the advice of Greg Mori

and three anonymous reviewers. Yaroslav Litus thanks Bob

Hadley for his generous support.

REFERENCES

[1] P. Zebrowski and R. Vaughan, “Recharging robot teams: A tanker ap-
proach,” in Proceedings of the International Conference on Advanced

Robotics (ICAR), Seattle, Washington, July 2005.
[2] Y. Kupitz and H. Martini, “Geometric aspects of the generalized

fermat-torricelli problem,” Bolyai Society Mathematical Studies, vol. 6,
pp. 55–129, 1997.

[3] H. M. V. Boltyanski and V. Soltan, Geometric methods and optimiza-

tion problems. Kluwer Academic Publishers, 1999.
[4] G. Reinelt, “Fast heuristics for large geometric travelling salesman

problems,” ORSA Journal on Computing, vol. 4, no. 2, 1992.
[5] Z. Drezner, Ed., Facility location. A survey of application and methods.

Springer-Verlag, 1995.
[6] Y. Li, “A newton acceleration of the weiszfeld algorithm for mini-

mizing the sum of euclidean distances,” Ithaca, NY, USA, Tech. Rep.,
1995.

[7] R. Bellman, Dynamic programming. Dover Publications, 2003.
[8] C. Wang, “On the convergence and rate of convergence of an iterative

algorithm for the plant location problem,” Qufu Shiyun Xuebao, vol. 2,
1975.

[9] G.-L. Xue, “A fast convergent algorithm for min
P

m

t=1
ct||x − at||

on a closed convex set,” Journal of Qufu Normal University, vol. 13,
no. 3, pp. 15–20, 1987.

[10] J. Rosen and G.-L. Xue, “Computational comparison of two algorithms
for the euclidean single facility location problem,” ORSA Journal on

Computing, vol. 3, no. 3, 1991.
[11] J. H. Mathews and K. K. Fink, Numerical Methods Using Matlab,

4th ed. Prentice-Hall Inc., 2004.

WeA1.5

32

