
Integrated Debugging of Large Modular Robot Ensembles

Benjamin D. Rister, Jason Campbell, Padmanabhan Pillai, and Todd C. Mowry

Abstract— Creatively misquoting Thomas Hobbes, the pro-
cess of software debugging is nasty, brutish, and all too long.
This holds all the more true in robotics, which frequently
involves concurrency, extensive nondeterminisism, event-driven
components, complex state machines, and difficult platform
limitations. Inspired by the challenges we have encountered
while attempting to debug software on simulated ensembles
of tens of thousands of modular robots, we have developed a
new debugging tool particularly suited to the characteristics of
highly parallel, event- and state-driven robotics software. Our
state capture and introspection system also provides data that
may be used in higher-level debugging tools as well. We report
on the design of this promising debugging system, and on our
experiences with it so far.

I. INTRODUCTION

As ever-more-powerful embedded computers and PCs
have become ubiquitous, robotics software designers have
exploited this additional computational horsepower to per-
form increasingly complex tasks, including vision process-
ing, online learning, and sophisticated planning operations.
Many modern robot designs rely on multiple software mod-
ules executing as concurrent threads, either time-sliced or
spread across multiple cooperating CPUs. While this in-
creased software complexity can help enable more sophisti-
cated functionality, it comes at the cost of a greater likelihood
of implementation or algorithmic errors as well as bugs
due to concurrency, nondeterminism, and subtle interactions
between the multiple threads of execution. Debugging such
multithreaded robotics software is challenging even when it
is run on a simulated platform, and yet more difficult on the
actual embedded hardware itself.

Software development for modular and metamorphic
robotic systems compounds these issues, as it involves sys-
tems of many robots, each with one or more threads of
execution. Programs for even modest modular robot ensem-
bles may involve hundreds of concurrently executing threads.
The Claytronics project [9] envisions using thousands to mil-
lions of tiny modular robots (catoms, short for “Claytronics
atoms”) that dynamically reconfigure to render and animate
3D scenes and structures. Our current simulations routinely
involve over 50,000 robot modules (each with at least one
independent stream of execution), and in the near future we
expect to simulate over a half-million modules. Debugging
software and algorithms at this scale of concurrency is a
daunting task.

B. Rister is with the School of Computer Science, Carnegie Mellon
University, bdr@cs.cmu.edu

J. Campbell and P. Pillai are with Intel Research Pittsburgh,
{jason.campbell, padmanabhan.s.pillai}@intel.com

T. Mowry is with both Carnegie Mellon University and Intel Research
Pittsburgh, tcm@cs.cmu.edu

Based on our frustrations with debugging large modular
robot simulations, we have developed a novel execution
analysis tool that can capture extensive runtime informa-
tion including state transitions, intermodule messaging, and
variable values. With this information, the tool permits in-
teractive visualization and analysis of a program’s operation,
both during and after execution. While originally designed to
debug modular robot code, many aspects of this tool appear
relevant to other robot software and even to general purpose
programming.

We distinguish between several classes of errors experi-
enced in modular robotic systems: algorithmic errors, imple-
mentation errors, and physical errors. Algorithmic errors are
encountered when an algorithm does not always (or ever)
correctly perform its task due to logical flaws. For instance,
a distributed algorithm might never converge to a consensus.
Implementation errors come from improper coding of an
algorithm, not the algorithm itself; one example would be
failing to properly lock a shared data structure. Finally,
physical errors are caused by the underlying hardware, such
as a component failure or actuator inaccuracies.

Our tool is designed to help when debugging algorithmic
errors and many implementation errors. Physical errors and
some low-level implementation errors lie outside the scope
of this work.

II. RELATED WORK

A. Interactive Debuggers

There is a long history of work on interactive debugging
software (e.g., gdb [1] and its many counterparts), and they
have been indispensable tools to programmers for many
decades. From the perspective of debugging modular robotic
systems, however, the problem with these tools is that they
are designed to look at a particular instant in time (time
insensitivity) on a particular thread (thread insensitivity).

Thread insensitivity: When examining a multithreaded
program using a traditional interactive debugger, the interface
typically works on only a single thread at a time. Although
you can switch between threads, it may be unclear which
thread contains the information that you need. Furthermore,
in order to understand the relationships between the states
of different threads, you must switch back and forth to get
information about those relationships. It is also well known
that breakpoints are awkward to implement and interpret in
multithreaded systems [3], [6] since they are defined from
the perspective of a single thread.

Time insensitivity: Traditional debuggers are designed to
show a snapshot of the program state at a particular instant in
time. Unfortunately, by the time that a symptom of problem

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThB7.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2227

"Scrubber control" allows moving
visualization back and forth through time

Simulation progress:
Simulation can continue

independent from visualization

Arrows, colors, and annotations are all
dynamically generated by the debugger

Fig. 1. An example debugging visualization of a Claytronics researcher’s experiment using planar catoms. Long green arrows are displayed to indicate
each catom’s eventual goal, and blue arrows indicate its current estimation of its subgroup’s center of mass. A “scrubber” control, like that found in media
players, allows the programmer to browse through the historical state of the program independent from the simulation’s progression.

becomes obvious, the root cause of the problem has often
occurred sometime in past (possibly on a different thread).
To uncover the root cause of a problem, programmers must
typically resort to an iterative process of re-running the
program, setting earlier and earlier breakpoints in an effort
to “sneak up” on the bug from behind (often guided by leaps
of intuition). Unfortunately, parallel systems are frequently
non-deterministic, making an iterative approach problematic
at best. Even if the program can be replayed deterministically
(e.g., through simulation), this process can be extremely
time-consuming.

In contrast with previous thread-insensitive, time-
insensitive debuggers, the tool that we present in this paper
allows us to easily analyze program behavior across threads
and across time.

B. Tools Designed for Specific Classes of Bugs

Tools such as Purify [10] and race-condition detectors [8]
are very good at solving the specific problem for which
they are built, but offer little leverage against generic bugs.
One potential way to surmount this restriction is by using
a debugging-oriented programming framework such as Val-
grind [7] or Pin [5]. Unfortunately, while these frameworks
can ease the task of writing new debugging tools, this process
is still too labor-intensive for day-to-day debugging.

III. EXAMPLE SCENARIOS

While designing our debugging tool, we gathered informa-
tion and stories from programmers about their experiences
in debugging modular robot algorithms. We present of these

several experiences to concretely frame classes of needed
improvement in this area.

A. Messaging in a Hierarchy

One researcher is developing a hierarchical computation
framework to manage scale and dynamism in large mod-
ular robotic ensembles. After the introduction of a new
communications protocol into the system, messages were
never arriving at their destinations. Debugging this issue was
particularly difficult because a message could pass through
thousands of modules on the way to its eventual destination,
and there was no indication of where along these paths
the messages were being lost. It was furthermore unclear
whether the problem lay in the construction of the routing
tables or in the implementation of the routing itself.

This developer’s only foothold in the problem was that the
simulator could be made deterministic—a luxury not present
in many systems (particularly physical ones). Once a problem
case had been identified, he was able to compile-in printf
statements to follow the progress of a particular message,
work out on paper the causality relationships between cer-
tain values, and iterate back through the causality chain
(recompiling-in new printfs each step along the way). He
eventually determined that the routing tables could contain
incorrect entries. These entries were first spotted visually in
a mass of numbers because they were entirely different than
their counterparts in other modules.

B. Spanning Tree Construction

Another researcher we studied is developing a toolkit
of fundamental algorithms for coordinating actions in lo-

ThB7.1

2228

cal neighborhoods, such as spanning tree construction and
distributed locking. He altered the simulator to color code
the 3D rendering of modules based on the progress of an
internal state machine in order to try to discover the reason
for anomalous behavior. The researcher quickly discovered
that a module was in an unexpected state.

In order to understand how the module came to be in
its unexpected state, the researcher needed to know which
messages were arriving during a short time span at a small
set of nodes in the much larger ensemble. Unfortunately,
due to technical reasons, this simulation could not be run
deterministically. The point of failure was different each run
and could only be identified after running the algorithm for
varying, usually substantial amounts of time.

This bug remained unsolved until the use of an early proto-
type of our system. The capture phase of the implementation
was complete by that point, and we were able to extract
the information needed by the researcher from our database
manually.

IV. DEBUGGING TOOL STRUCTURE

As our debugger is specifically for use in diagnosing
errors in Claytronics modular robotic algorithms, there are
several constraints and assumptions in place that influenced
our design and development:

• Focus Initially on Simulation: The ideas behind the
work can also be applied to physical implementations
of our modular robotic ensembles; however, the man-
ufacturing of our hardware at the scales we desire
remains several years away. Thus, our focus is on
the simulated programming environment in which we
currently perform our research. Nonetheless, when de-
scribing our simulator-based tool, we will point out
some important design points pertinent to future work
on a hardware-based implementation. Conversely, as the
simulator itself is a research system, we allow ourselves
to exploit our control over the runtime environment to
improve the programmer’s experience.

• Embrace a “Legacy” C++ Codebase: While other
languages provide much richer support than C++ for
introspection, the combination of our existing C++
codebase and our use of third-party code and libraries
(including an entire physics engine) meant that changing
language platforms was not an option.

• Reward Programmer Interaction: Automating analyses
is an important part of our debugger; however, we feel
that the programmer has the best understanding of the
program. Debugging is an inherently interactive process,
so we adopt the goal of providing good debugging re-
sults for no programmer effort, with better results being
available for a proportionate amount of programmer
effort.

• Address Current Needs First: As a research system, the
engineering effort required to implement the debugger
must be considered more carefully than in other envi-
ronments where techniques may be previously estab-
lished, systems may be in less continual refinement,

TABLE I
CODE INSTRUMENTATION FEATURES AVAILABLE TO THE PROGRAMMER.

MONITOREDVAR(int,varName)
MONITOREDCLASS(className, parentClass)

BLOCK SIGNPOST("signpost name")
SIGNPOST("signpost name")

and/or engineering teams may be larger. We emphasize
practicality and to produce tools that will actually be
used. For instance, as most important state is stored
in class instance variables in our system, we focus on
these locations as our primary instrumentation points,
while leaving other sites such as function local variables
unaddressed.

Our tool is logically separated into three phases of data
management: A) capture, B) aggregation/storage, and C)
processing/presentation. The capture phase requires a mech-
anism for obtaining information about events and the state of
the program, and is the source of all information about the
program. Once acquired, this data must be stored somewhere
in a usable form—the task of the aggregation and storage
phase. Processing and presentation operations then alternate
as information is presented to the user, who queries the
debugger, resulting in additional processing and information
to present.

A. Capture

Capture of program state and execution details requires
making a tradeoff between generality, programmer ease, and
performance. Ideally, our tool would be able to capture all
relevant information all of the time, without any direct action
by the programmer, and at low overhead, but these desires
often conflict in implementation requirements.

Scalar value monitoring: In our solution, scalar class
instance variables may be included in the captured data
by changing a declaration such as int varName; to
MONITOREDVAR(int,varName);. This macro substi-
tutes a templated wrapper class monitored value around
the scalar value that intercepts all operations performed on
the variable, allowing us to capture not only every value
ever adopted by the variable, but also the origin and uses of
those values. When operating inside the space of monitored
variables, full causality data can also be maintained through
our instrumentation of the operations on the values—we can
form a link from the inputs of the operation, if they are
monitored, to the result.

It’s important to note that no other code must be changed
in order to capture the entire history of a monitored instance
variable. This makes our system extremely amenable to lazy
instrumentation during the development of the program. The
programmer may simply tag variables as they are needed,
rather than having to guess in advance which info may
be buggy or pertinent to other bugs (and potentially hurt
performance by capturing excess data), or worse, to have to
change coding habits to accommodate the debugger.

Object class monitoring: Classes are similarly

ThB7.1

2229

Before instrumentation:
class exampleClass : public exampleParent {
. . .
int exampleInstanceVar;
void doStuff() {

for(int i=0; i<exampleInstanceVar; i++) {
doSomethingElse();
doAnotherThing();

}
}
. . .

}

After instrumentation:
MONITOREDCLASS (exampleClass, exampleParent)
. . .
MONITOREDVAR(int,exampleInstanceVar);
void doStuff() {

for(int i=0; i<exampleInstanceVar; i++) {
BLOCK_SIGNPOST("loop signpost");
doSomethingElse();
SIGNPOST("between something and another");
doAnotherThing();

}
}
. . .

}

Fig. 2. Example class code before and after instrumentation. After
annotating the instance variable declarations, no further modifications to the
code are needed to track changes to the variable’s value. (In particular, no
annotations are required when the variable is used.) Note that the signpost
markers are entirely optional and in this case have been added because
the programmer nominally wanted better localization of events within this
section of code.

handled by a simple substitution of the macro
MONITOREDCLASS(className, parentClass)
for the usual class className : public
parentClass, which both turns the class into a subclass
of monitored class and inserts an instrumented
instance variable into the class itself. Because this instance
variable is constructed with each instance of the class
itself, and destructed when the instance is destructed, it
allows us to execute code at precisely those times without
needing to modify the code or prototype of the monitored
class’s constructor, and without forcing the programmer to
manually insert instrumentation in those locations. Again,
no other code must be changed besides that localized
modification to gain the full benefits of the monitored class.

The monitored values, monitored classes, and
instrumented instance variables inside monitored classes all
register themselves into an index over the memory space,
identifying each class’s location and extent. “Belongs-to”
relationships can be calculated with this data, allowing us
to reason about and display information concerning each
specific instantiation of the variables and classes. We can
determine which class, code module, and catom any particu-
lar variable belongs to, and, conversely, find a variable based
on the same criteria. In a philosophical sense, these are the
addresses to all of the “needles” in our “haystack!”

Signpost marking: To mark locations of note, “signposts”
may be placed in the code both automatically by the system
and manually by the programmer. A special type of signpost

is automatically inserted into each function by a simple
automated script during the compilation process to mark
the entrance and exit from the function. This provides a
stack trace for every operation performed on the monitored
values. The programmer can easily add additional signposts
in locations where he or she would like better resolution. e.g.
as done in Figure 2.

Causality splicing: The signposts and value tracking pro-
duce threads of causality for values. For a given value,
we know which other monitored values contributed to the
generation of that value, as well as the traces of signposts
through the code that led to their assignments. However, there
are some causal relationships that this does not capture.

For instance, when one catom sends a message to another,
the message is created, handled in some simulator-internal
ways, and then later reappears at the destination in the
local event handling code. This leaves us with two threads
of causality—the one leading to the sending, and the one
commencing from the receipt—but without any relationship
between them. We splice together these causality threads by
instrumenting the pertinent data structures in the simulator,
embedding a pointer to the previous causality thread into the
message structure itself.

B. Aggregation and Storage

The main design decision in creating the storage part of
the system was how much processing of the data should
happen at capture time and how much should be deferred to
when the user is performing queries. It is both impractical
and unnecessary to try to perform all analyses at capture
time, but some form of processing can significantly simplify
the implementation of queries. Additionally, there are perfor-
mance concerns involved in selecting different points along
this line—see Section V for more information.

For our implementation of the debugging tool, we chose a
SQL database (SQLite [4]) as a good compromise, requiring
minimal a priori data structure, and providing a rich query
language and optimized implementation for subsequent anal-
yses. The database schema is relatively straightforward, and
is based around three tables which track signposts, events,
and values. The online state manager only needs to maintain
the row ID of the most recent insertion in each table for
cross-referencing purposes; all detailed information can be
immediately discarded following insertion.

The storage phase is also the most interesting one in terms
of moving the debugger into a real distributed, physical
ensemble. In the case of physical robots, the data streams
generated by each module will need to be exported across
some external transport. This process will almost certainly
be bandwidth-limited when confronted with the debugging
information from millions of modules. We will need to
minimize the size of the data stream, likely sacrificing
substantial information and/or real-time qualities.

In contrast, our simulator-based desktop implementation
is only concerned with the size of the data being stored
inasmuch as the resulting disk accesses may impact perfor-
mance. In the simulator, “performance” is a soft restriction,

ThB7.1

2230

Fig. 3. Part of the configuration used to generate Figure 1. The programmer
has specified that arrows should be drawn from each catom’s center to
the point contained in the “dest” and “centerofmass” variables in the
“Consensus” code module. Using our debugger’s interface, the programmer
can interactively configure many attributes of the display based upon the
captured state of the system across time.

as we can simply wait for operations to finish, whereas a
real ensemble would need to proceed regardless of whether
the debugger was able to keep up.

C. Presentation

Unlike classical debuggers, our debugger is designed to
answer questions, not just present facts. Substantial process-
ing may be required to generate the representation presented
to the user from the raw data which was captured during
the run. There are four main aspects to our user presenta-
tion: spatial visualization, state-space visualization, causality
tracing, and captured state browsing.

Spatial visualization: The human brain can quickly assim-
ilate very large amounts of information visually. We exploit
this by providing very flexible customization of the (typically
3D) rendering of the physical configuration of the system.
The displayed location, color, transparency, and textual label
of each catom can be adjusted dynamically based upon any
monitored state. Lines and arrows can also be generated
automatically and rendered based upon monitored state as
well.

Additionally, because we have the entire historical state
available, we are able to provide the user with the ability
to smoothly review data from any point in the simulation
without any need to rerun. Such “time travel” alone can save
users many hours of (re)simulation time.

The most basic application of this visualization is changing
the colors of the catoms in response to their internal state.
Other, more sophisticated possibilities are also available
through a collection of simple value transformers that can
be hooked together to form arbitrarily complex expressions
on the catom’s state.

For instance, one can instruct the debugger to “superim-
pose on each catom the sum of its variables ‘varName’ and
‘otherVar,’ but only if ‘anotherVar’==2.” Important catoms

Fig. 4. An example visualization where the color of each rendered module
is based upon its internal state. In this case, the lighter-colored catoms
have self-identified as part of a larger structure, while the darker catoms
are attempting to move away. Despite the very large number of modules
visible, the programmer can easily identify which self-assigned role each
catom has taken.

can be highlighted, unimportant ones can be faded out, and
distributed data structures can be rendered through arrows in
the real space of the world.

Figure 1, near the beginning of the paper, shows an
example visualization generated by our system which uses
the ability to render arrows in the visualized product. The
arrows are dynamically generated and colored based upon
the monitored state of the catoms. The user has (at debug
time) decreased the opacity of the catoms in order to see
the lines more clearly. The “north” point in each cylindrical
robot is marked by a small white dot. Figure 3 shows part
of the configuration used to produce Figure 1.

Figure 4 is another visualization example, this time using
our ability to color catoms based on their internal state. The
algorithm being run during this simulation starts with a solid
block of catoms, and attempts to form a shape by removing
everything but the intended shape. As the different self-
assigned roles result in the catoms being colored differently,
the programmer can easily spot any discrepancies in the
shape being formed, or errant catom behavior. The marked
slider allows the user to scroll the visualization and state
introspection back and forth through time.

State-space visualization: In addition to the 3D visualiza-
tion in a “real world” space, we also provide 2D graphs for
data values. The distribution of values across time (how a
particular variable changes over time) or space (which values
a variable has across all modules) can be valuable informa-
tion when debugging a large modular robotic ensemble.

For instance, the first graph of Figure 5 shows the distribu-
tion of a “level” variable partway into the construction of the
hierarchy mentioned in Section III-A. While the distribution
is proper for a hierarchy, given that most of the nodes are
leaf nodes (at level 0), the dropoff between levels 0 and
1 is proportionately much sharper than between subsequent
levels. The programmer could then ask the debugger to show

ThB7.1

2231

952

37
10 1

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3

Values of Hierarchy.level

N
u

m
b

e
r
 o

f
c
a
to

m
s

1 1
3
5
7
8
9 9 10

12
13
1515

16161616
1818

19191920
21

24
26
27

30
3233

37

47

66

7071

0

10

20

30

40

50

60

70

80

Catoms where (level=1)

N
u

m
b

e
r
 o

f
c
a
to

m
s
 w

h
e
r
e

(
p

a
r
e
n

t=
s
e
lf

.c
a
to

m
I
D

)

Each bar represents an individual catom
The numbers are the fanouts

2

9 11 12
16

20
23 23

44

58

0

10

20

30

40

50

60

70

Catoms where (level=2)

N
u

m
b

e
r

o
f

ca
to

m
s

w
h

e
re

(p

a
re

n
t=

se
lf

.c
a
to

m
ID

)

Fig. 5. An example state-space debugging visualization of variables and
attributes in a hierarchical computation structure. The second and third
graphs caused the initial realization that there was a fanout problem in the
hierarchical system. If the system were working correctly, the graph would
be approximately flat.

the fanout for the higher levels to see what the distributions
are, as shown in the second and third graphs.

This type of information is simply not handily accessible
in a traditional debugging system. Moreover, if this tool were
available during the debugging described in Section III-A,
the errant values in the routing table would have clearly stood
out as outliers in such a visual representation.

Captured state browsing: As with most debuggers, the
programmer can access the captured state of the system.
Unlike temporally insensitive debuggers, which are snapshot-
based, the programmer can scroll this state view backwards
and forwards in time. This functionality is also the jumping-
off point for the state-space visualization and causality
tracing features of the debugger—by selecting a monitored
variable, the time and space distributions may be generated,
or the value history and causality chain of a particular value
displayed.

Causality tracing: When a value is selected by the user, the
debugger displays the trace of signposts (including function
calls) leading to the operation. If the value was derived from
other monitored values, say through computation or basic
assignment, the contributing values are also displayed and
can be used to follow the causality chain further. Thus,
when a value is determined to be in an invalid state, the
programmer can easily determine what other piece of invalid
state caused the visible anomaly, and determine the original
cause.

In the presentation and analysis phase of the debugger,
the structure and sophistication of the earlier phases pays off
dramatically through the ability to automate these analyses
and convey processed information in an effective way to the
programmer. All of the work that the debugger performs
saves the programmer from having to do that work manually,
whether mentally or on paper. Parsing, collating, and process-
ing data is why computers exist, and properly exploiting this
produces a large improvement in the debugging experience.

V. PERFORMANCE

We measure the performance characteristics of our de-
bugger on the most extensive code module1 to date—the
hierarchical computation framework described in Section III-
A. The simulation was run on a world containing 8008
catoms, and involved two simultaneous instances of hier-
archical computations using the framework. Each instance
of the code module contained three monitored variables:
hostCatom, parent, and level. These three variables
represent the most frequently used variables in the modular
robot code in question. We also included one “dummy”
variable which was never accessed, to demonstrate that the
overhead scales with the amount of use each monitored
variable receives rather than the number of variables being
monitored.

1Code written for our simulated catoms takes the form of a “code module”
which encapsulates a single unit of behavior. To ease development, these
can be enabled or disabled in simulations without recompiling the simulator
itself, and interact with the rest of the simulator through a well-defined API.

ThB7.1

2232

TABLE II
OVERHEAD BY INSTRUMENTATION. 8008 CATOMS RUN AGGREGATION

AND ELLIPSIS CODE MODULES FOR 25 SIMULATOR TICKS.

Time Overhead DB size
mm:ss multiple

baseline 1:30 n/a n/a

world state 0:08 0.09x 17MB
signposts 8:48 5.87x 1.7GB

hostCatom 2:02 1.36x 204MB
parent 0:52 0.58x 61MB

level 0:51 0.58x 89MB
dummy 0:00 0x 0MB

total 14:11 9.45x 2GB

The variable hostCatom is part of the simulator interface
and provides the gateway to the catom’s internal state. It is
accessed multiple times in virtually every function in every
code module, and results in an average of 20 events per
code module per catom per simulator tick. The parent and
level variables are part of the hierarchy system and are
accessed at least once in most functions, for an average of 8
events each per code module per catom per tick. According
to the author of the hierarchical framework, monitoring
these variables would be sufficient to debug about 90% of
problems encountered to date in that system.

A. Instrumentation Overhead

Table II shows the amount of overhead incurred by the
debugger, broken down into the different areas of instrumen-
tation. The total slowdown was 9.45x, placing our technique
between the overheads of traditional general purpose debug-
gers like gdb, and more intense special-purpose analysis tools
like Purify and Valgrind.

Most of the overhead is incurred by the signposts—64%,
to be precise. We track the entire history of signposts that are
encountered to provide the maximal amount of information
to the user about the code paths that led to the events he
or she is interested in. However, of the approximately 24
million signposts we record, only about 8 million are directly
referenced by recorded events. If the user is willing to receive
only the information about the file and function in which
each event occurred, without intermediate signpost traces
between the events, the time overhead from the signposts
can be reduced to approximately 2x the baseline runtime
(from 5.87x), reducing the overall runtime to about 7.45x
the baseline.

The dummy variable had no measurable impact on the run
time, and used no database space. The overhead of moni-
toring variables is proportional to the number of accesses
to the variables, and does not necessarily grow linearly as
additional variables are monitored. Although we are only
monitoring 3 variables in each code module, because these
are the most accessed variables, the overhead we measured is
a significant portion of the overhead that would be measured
if all instance variables were monitored.

Breakdown by phase: With the storage phase disabled,

the capture phase (with all instrumentation above enabled)
incurs an overhead of about 0.51x of the baseline time. The
remainder of the overhead belongs to the storage phase.

How much of the overhead of the storage phase is due
to the storage of the raw data, and how much is due to
the structuring and indexing provided by the database? To
answer this question, we temporarily bypassed the database
and dumped the raw, unstructured data directly to disk and
found that the storage phase was approximately 9x faster.
However, in a sense, the most important benchmark is the
duration between the time between when the simulation
starts and the time when the debugging information may
be accessed in a reasonable way, not the time when the
simulation completes. Feeding the data into a database online
during the simulation also allows for debugging before the
run is complete, without having to carefully manage and
process a constantly-growing file of raw data.

Disk usage and data compression: We consider the disk
usage of 2GB quite acceptable for this purpose, particularly
as the database will generally be transient, existing only for
the duration of the debugging session. If longer-term storage
is desired, or if disk space is at a premium, compression is
highly effective on this data. The 2GB database compresses
down to 244 MB using gzip --best, for a compression
ratio of about 89%.

High compressibility also bodes well for implementation
in a real physical modular robotics ensemble, where inter-
module communications bandwidth may be at a premium.
As the data compresses well, we can transmit substantially
more information across a limited bandwidth connection, at
the expense of the CPU resources needed to perform the
compression and decompression at each end.

B. Presentation

The processing performed during the storage phase pays
off in a snappy, responsive interface during the presentation
of information to the user. As it is generally hard to quantify
how responsive an interface feels, we present some basic
numbers and descriptions to convey the experience of using
our debugger.

The spatial rendering of the system through processed
historical data runs at a comfortable 30fps for most simulated
worlds on a desktop machine equipped with modern acceler-
ated 3D graphics. This is approximately 2x slower than when
drawing directly from the current state of the simulator. The
user can smoothly scroll through time using the slider in the
interface, and the world follows gracefully, only exhibiting
visible lag on the largest of simulated worlds.

Generation of a state visualization showing the distribution
of all values across time or space typically will complete in
about 5 seconds, a short wait given the benefit received from
the analysis. Without the structure of the database, generation
of the analysis can take several minutes or more.

The basic introspection interface, being simpler and in-
volving minimal processing, is instantaneous from the user’s
perspective.

ThB7.1

2233

C. Resource Limits

Our simulator infrastructure is primarily limited in scaling
by memory consumption—the amount of state maintained
for each catom overwhelms the memory system far before
the speed of simulation becomes unbearably slow.

The debugging instrumentation adds a memory overhead
of about 20 bytes per monitored variable or class (depending
on the name of the variable, which must be stored with it).
Compared to the remainder of the state maintained about
each catom, this is non-trivial, but usually not large. In the
experiments mentioned above, memory consumption with
our instrumentation enabled rested about 10% above the
baseline memory consumption.

In a physical modular robotics ensemble, we anticipate
that bandwidth will be the limiting factor. As discussed
above, the data streams we create are highly amenable to
compression.

VI. SUMMARY

We have built a debugger for Claytronics modular robotic
ensembles that is temporally-aware and explicitly attempts
to assist the programmer in debugging within the highly
parallel environment. Historical state from all stages of
execution is available and can be easily accessed by the
programmer. Visualizations in “physical space” and graphs
in data space exploit the visual processing capabilities of
human beings to efficiently and effectively convey very large
amounts of information in a way comprehensible to the
programmer. Finally, our tool has demonstrated effectiveness
against the types of real-world bugs encountered during
actual Claytronics development, and is moving into regular
use by the researchers on the project.

Limitations: At present, our debugger does not handle
pointers; as with most times they come up in program
analysis, they pose formidable challenges. Nonetheless, we
have found the tool applicable in a wide variety of scenarios
without pointer support, and have not yet felt any strong
impetus to add such support. There are also corner cases in
subclassing monitored classes that can confuse the “belongs-
to” analysis, but to date, this has remained a theoretical
limitation—no user has yet encountered any of them in actual
practice.

Similarly, while our system for causality weaving is tied
into our particular simulator’s implementation, the possibility
of more generic causality weaving is an interesting prospect.
However, as messaging is the only case where this has
been required to date, we decided to directly instrument
the simulator instead. This may change in future versions
as researchers grow more sophisticated in their Claytronics
development over time.

Future work: Improvements to our approach to signpost-
ing, perhaps using techniques akin to path profiling [2], could
provide a significant boost to performance.

A future implementation of the capture system might be
best done by a compiler in alliance with a runtime environ-
ment, or even through modifications to a traditional debugger.
However, the implementation described above enables us

to gain research experience with this type of a debugging
environment with a more modest engineering overhead than
a compiler-based solution would incur.

More generally, it may be possible to take our experience
in building a temporally-sensitive, parallelism-facilitating de-
bugger in the context of modular robotics and move towards
the creation of a tool that would apply outside the context to
which we have limited ourselves here. Every programmer has
at some point wished they could simply click on a variable
and ask why it has the value that it has—perhaps such a
tool is not out of the question. This will require techniques
to monitor other types of values, such as those belonging to
global, static, and function local variables.

Finally, as the project’s hardware development continues,
we will likely wish to use a similar tool in the non-simulated
system as well. The stronger real-time requirements of a
physical system coupled with the distributed nature of the
computation will require extensions and changes to the tool
as described here.

VII. ACKNOWLEDGMENTS

We thank Casey Helfrich and Michael Ryan, who are the
primary developers of DPRSim and implementers of many
of the user interface components of the debugging tool. We
also thank the other developers of catom code, including
Michael De Rosa, Ram Ravichandran, Stano Funiak, David
Christensen, Preethi Bhat, and Seth Goldstein for allowing
us to observe their debugging practices, and for answering
the authors’ questions about their methodologies.

REFERENCES

[1] GDB: The GNU Project Debugger. http://www.gnu.org/
software/gdb/.

[2] Thomas Ball and James R. Larus. Efficient path profiling. In
International Symposium on Microarchitecture, pages 46–57, 1996.

[3] J. Fowler and W. Zwaenepoel. Causal distributed breakpoints. In
Proceedings of the 10th International Conference on Distributed
Computing Systems (ICDCS), pages 134–141, Washington, DC, 1990.
IEEE Computer Society.

[4] D. Richard Hipp. SQLite. http://sqlite.org.
[5] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur

Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. In Conference on Programming Language
Design and Implementation (PLDI), 2005.

[6] B. P. Miller and J. D. Choi. Breakpoints and halting in distributed
programs. In Proceedings of the 8th International Conference on
Distributed Computing Systems (ICDCS), pages 316–325, Washington,
DC, 1988. IEEE Computer Society.

[7] Nicholas Nethercote and Julian Seward. Valgrind: A program super-
vision framework. Electronic Notes in Theoretical Computer Science,
2003.

[8] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas Anderson. Eraser: a dynamic data race detector for
multithreaded programs. ACM Trans. Comput. Syst., 15(4):391–411,
1997.

[9] S.Goldstein, J. Campbell, and T. Mowry. Programmable matter. IEEE
Computer, 38, 6:99–101, May 2005.

[10] Rational Software. Purify: Fast detection of memory leaks and access
errors.

ThB7.1

2234

