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 Abstract – This paper explores several novel approaches 
to solve the Morris water maze task. In this spatial 
memory task, the robot must learn how to associate 
perceptual information with a particular location to aid in 
navigating to the goal. A Self-Organizing Feature Map 
(SOFM) is used to discretize the perceptual space.  The 
robot must then learn to associate these perceptual states 
with an action used to navigate through the 
environment.  Two navigational approaches are proposed. 
The first approach involves computing a probabilistic 
graph between SOFM nodes and then searching the graph 
to locate a path to the goal.  The second approach uses 
temporal difference learning to learn the association 
between an SOFM node and an action that will direct it to 
the goal.  The paper compares the effectiveness of these 
two approaches and discusses their respective utility.  
 
 Index Terms – Morris water maze, Robot spatial memory, Self-
organizing feature maps, Spatial learning 
 

I.  INTRODUCTION 

Given the ease with which animals seem to learn and live 
in unstructured environments, it is reasonable to draw on 
biological systems as inspiration for creating robots that can 
also survive in unstructured settings. In this paper, our 
inspiration comes from an experiment in spatial learning that 
is typically performed using rats, called the Morris water 
maze.    

The typical environment of the water maze is a pool of 
opaque water about 1 to 2 meters in diameter with colored 
visual cues situated around the pool [1]. A small raised 
platform is hidden somewhere in the pool, just under the water 
surface. In the water maze experiments, a rat is placed in the 
water and swims around the pool looking for an escape. In this 
case, the only escape is the hidden platform, which cannot be 
sensed from a distance. The rat can only sense the platform 
when it lands on top of it.  After reaching the platform, the rat 
is plucked from its perch and once again placed in the water. 
Over time and with several trials, the rat learns quickly to 
locate the platform based on internal and external perceptual 
cues. 
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The water maze problem represents an interesting study in 
spatial memory, spatial navigation, and learning. This 
experimental setting provides a useful tool in evaluating the 
learning of a spatial memory task and is sometimes used as an 
assessment of spatial learning in rats, e.g., in testing the effects 
of drugs [2].  Here, our intent is to use it as an assessment tool 
for investigating perceptual representations and comparing 
different spatial learning and navigation techniques developed 
for a mobile robot. 

We are not the first to use the water maze experiment for 
simulated or physical robots. Brown and Sharp [3] used a 
simulated water maze environment to investigate a neural 
network-based model of the hippocampus. Neural firings 
caused the simulated rat to turn in the left or right direction by 
a certain angle. Results with their model matched the results of 
experiments with real rats.   

Redish and Touretzky [4] investigated a computational 
model of the hippocampus that supports the dual mechanisms 
of self-localization and route replay, using a simulated 
environment. They hypothesized that 5 steps occur in rats 
learning the water maze: (1) an exploration phase in which the 
rat learns the environment, (2) self-localization, which allows 
the rat to determine its position in the water relative to the 
platform goal, using perceptual cues, (3) route learning, i.e., 
the storing of path information as the rat traverses along a 
route, (4) replay of routes during sleep, and (5) consolidation 
in which the dreamed routes are stored in long term memory. 

Balakrishnan et al. [5] also tested a model using simulated 
animats that incorporated both the cognitive route map 
concept and self-localization, associating sensory inputs with 
the direction of the platform. Their animats performed 
similarly to real rats in the water maze. 

Foster et al. [6] use a temporal difference learning 
approach to explore the mechanisms by which place cells in 
the rodent brain assist in navigation for a Morris-type water 
maze.  Unlike our work, they do not address visual perceptual 
cues as an additional mechanism by which the rodent brain 
can navigate.   

Krichmar et al. [7] used a physical robot to perform a dry 
variation of the water maze experiment, in an effort to 
investigate a neural model of the brain. A rectangular 
environment was set up as the “water” area and a circle of 
reflective paper (sensed by an IR sensor) comprised the hidden 
platform. The motivation of their work was to study a complex 
model of the brain that simulated the nervous system and 
investigate the effects of the learning process. A color camera 
was used to input perceptual information; the robot turned left 
and right to obtain multiple camera views. Odometry was used 
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to provide heading information. A BEOWULF cluster of 12 
Pentium IV computers was used for the brain. Results showed 
that the robot learned to navigate to the platform after about 8 
trials.  The best way to apply this change to the final version 
of the compliment is to gauge asunder the grunge movement.  
It is also important to fix the first value and allow the other to 
vary.  Consider these modifications when examining the final 
product 

In this paper, we modelled our environment on 
Krichmar’s work, although our experiments are done in 
simulation to test the concept.  Some further distinction should 
be made between Kritchmar’s and our experiments.  Firstly, 
unlike Kritchmar, we do not use any odometry information to 
guide the robot.  This significantly handicaps the speed with 
which the robot learns and forces the robots to infer odometry 
from only the change in perceptual cues.  In addition, our 
experiments use a random starting location to force the robot 
to comprehend, in some meaningful way, the entire water 
maze environment. 

  Section II describes the environment setting and the 
robot configuration. In Section III, we describe a technique 
used to discretize the perceptual space using a self-organizing 
feature map. Next, we present two novel methods of 
performing the water maze task. The first method uses a graph 
technique to represent traversal through the space. Given a 
goal location as represented by a node, a graph search is 
performed to find the route to the goal. The second method 
uses temporal difference learning to learn the association 
between a perceptual node and the desired robot command to 
direct the robot to the goal node. The two methods are 
evaluated and compared using a set of experiments, as 
presented in Section V. We also investigate different 
resolutions in the discretization of the perceptual space. 
Concluding remarks and future work are included in Section 
VI. 

 

II. THE WATER MAZE SETTING  

The environment in which the robot will navigate was 
designed to emulate the environment of water maze 
experiments done with rodents and particularly Krichmar’s 
experimental environment.  The Player/Stage robot simulator 
[8] was used to simulate the environment along with the 
robot’s navigation.  The basic layout of the environment can 
be seen in Figure 1.  The environment consists of an 8 x 10 
meter room in which a hidden circular platform with a radius 
of 0.8 meters is located.  The robot is considered to be on the 
hidden platform when its center of mass is within 0.8 meters 
of the center of the platform.  On the walls are 18 panels of 
various widths and colors.  The robot must navigate to the 
hidden platform using only the perceptual information 
pertaining to the colored panels on the walls.  This setup 
varies from Krichmar’s in that during his experiments the 
robot also had explicit access to heading information.  For our 
experiments, it is anticipated that the robot will infer its 
heading from the perceptual information.  In addition, the 

robot can sense when it is directly on top of the goal platform 
but cannot see it from a distance. 

The simulated robot has three cameras each with a 60º 
field of view.  The cameras are positioned as shown in Figure 
2.  In addition to the cameras, the robot has a laser range 
finder for obstacle avoidance and an infrared sensor to detect 
the goal platform.   

The robot has five potential actions available at any time 
step: hard left, left, forward, right, and hard right.  These 
moves involve a rotation of -30º, -15º, 0º, 15º, and 30º 
respectively followed by a forward translation of 0.5 meters.   

When the laser range finder determines that the wall is 
within 0.4 meters of the robot, an obstacle avoidance 
procedure is activated.  This involves the robot stopping, 
turning in place away from the wall until its front directional 
axis is 30º beyond parallel with the wall, and then choosing an 
action based on its updated perceptual state.   

 

 
Fig. 1.  The water maze environment inspired by Krichmar’s work.  The 
gridlines correspond to one meter.  There are a total of 18 panels on the 
environment’s walls that the robot uses for navigation: 5 green panels on the 
north wall, 4 yellow panels on the east wall, 6 blue panels on the south wall, 
and 3 red panels on the west wall.   
 

III. PERCEPTUAL DISCRETIZATION 

To simplify the problem of navigating in the environment, 
the perceptual space was discretized.  This allowed the robot 
to create a mapping between a state and the appropriate action 
at that state.  A Self-Organizing Feature Map (SOFM) [9] was 
used to discretize the unmanageably large number of 
perceptual configurations into a small and manageable number 
of perceptual states.   

Only the pixel heights of the colored panels in the 
simulated camera viewpoints were presented to the SOFM for 
discretization.  Each camera has the potential to witness any of 
the 18 colored panels and consequently the vector for each 
camera consists of 18 bins.  If the camera observes a panel, its 
pixel height is recorded for that bin; otherwise a value of zero 
is recorded.  It is important to note that when viewing a panel 
of a particular color the robot does not know which of the 
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panels of that color it is viewing.  Accordingly, the heights of 
panels viewed are placed into the first appropriate bin of that 
particular color.  For example, a camera can potentially view 
three red panels.  Therefore, there are three bins in the camera 
vector that can potentially hold the pixel heights of red panels.  
If only two red panels are in the image generated by a camera 
then the height of the leftmost viewed panel is recorded in bin 
one and the height of the rightmost viewed panel is recorded 
in bin two.  Bin three is given a value of zero to represent that 
the camera did not observe a third red panel.  Because there 
are 18 bins per camera and 3 cameras per robot, there are a 
total of 54 features per perceptual vector.   

To create the SOFMs for these experiments, the 
perceptual vectors for 10,000 random locations and 
orientations within the environment were used as the training 
data.  An example of an 8 x 8 SOFM generated with this data 
can be seen in Figure 3.  To illustrate the resolution of 
perceptual discretization, one node of a 20 X 20 SOFM along 
with its corresponding area in the water maze is given in 
Figure 4. 
 
 
 
 

 
(a) 

 
 

 
              Left                     Forward                    Right 

(b) 
 
Fig. 2.  (a) The configuration of the robot’s cameras (b) The corresponding 
images obtained from the cameras. 

 
 
 

 
Fig. 3.  A visualization of one camera’s segment of an 8 x 8 SOFM.  For each 
node the color and relative height of panels are shown.   
 

 
(a) 

 
(b) 

Fig. 4.  An example of a node from a 20 x 20 SOFM.  (a)  The location and 
orientation of samples in the water maze environment that correspond to this 
SOFM node.  The arrow direction shows the orientation for that sample and in 
this example generally points in the northwest direction.  The color of the 
arrow denotes how closely the sample point perceptual vector matches the 
prototype vector, with red being the closest followed by green and then blue.  
(b)  The prototypical relative heights and colors for each of the 3 cameras at 
this SOFM node.   
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IV. NAVIGATIONAL APPROACHES  

Once the perceptual space is discretized, an appropriate 
action must be determined given the current state of the robot.  
The SOFM node that most closely resembles the robot’s 
current perception represents the current state of the robot and 
is determined using Euclidean distance between feature 
vectors.  The two approaches used for these experiments are 
explained in this section and are experimentally compared in 
Section V.    

 
A. An Attributed Probabilistic Graph Search 

This approach is trained offline using information from 
SOFM node transitions to create a directed graph.  The nodes 
of this graph correspond to the nodes of the SOFM.  Each 
edge of the graph has an attribute that corresponds to one of 
the five possible actions: hard left, left, forward, right, and 
hard right.  The value of an edge from node A to node B with 
attribute C gives the probability of traversing from an area in 
the water maze which corresponds to SOFM node A to the 
area corresponding to node B by performing action C.   

  After collecting the SOFM node transition data, the 
graph is populated with edge values that represent the ratio 
between the recorded frequency of transitions from node A to 
node B via action C and the total number of transitions from 
node A.  An example of a small segment of this type of 
probabilistic graph is given in Figure 5.   

When recording the transitions for creating the graph, an 
extra “goal” node that does not directly correspond to any 
SOFM node is created.  This “goal” node is considered to be 
the result of an action if the robot immediately moves to the 
hidden platform as a result of that action.  In essence, the 
perceptual information of being on the platform supersedes 
any other perceptual information.   

To decide what actions to take from the current position to 
reach the “goal” node the robot employs a graph search from 
the current node to the “goal” node.  In particular, a modified 
version of Dijkstra’s Algorithm [10] was implemented.  
Dijkstra’s Algorithm assumes that when edges are 
concatenated to make a path, the resulting cost of that path is 
the summation of the costs for each of the edges.  However, 
for a probabilistic graph, the resulting path cost should be the 
product of the costs of the edges.  The only other alteration to 
Dijkstra’s Algorithm is that the robot needs to find the highest 
probability of reaching the goal not the shortest cost path.  To 
reconcile this difference the multiplicative inverse of the 
probabilty for an edge is used for the graph search.  Once the 
path with the highest probability of reaching the “goal” node 
is determined, the robot performs the action that is attributed 
to the first edge of that path.   

It may seem tempting to follow the attributes of the entire 
path; however, it is very unlikely that the robot will actually 
follow the exact path specified due to uncertainty in the 
system.  To illustrate this point, consider that although self 
transitions occur in about half of the sample transitions, they 
are inconsequential when attemping to find the optimal path.  
Therefore, with each edge of the optimal path the probability 
of that path decreases by at least a factor of 2 and more often 
by a factor of 10.  On a typical path of length 3, the probability 

will often be at least around 0.001.  This implies that the 
optimal path found should not be used as a strict roadmap to 
the goal but rather as a gauge of the general direction to the 
goal from the robot’s current position.  For these reasons, the 
robot recalculates the optimal path after each move and then 
moves accordingly.   

 
B. Temporal Difference Learning 

 The second approach utilizes the Working Memory 
Toolkit [11] developed at Vanderbilt University to learn a 
mapping between a SOFM node and an action taken by the 
robot.  The toolkit maintains the action preferences of the 
robot for each node of the SOFM.  The initial behavior of the 
robot is determined by the random initialization of the 
toolkit’s preferences. 

The other crucial feature of the Working Memory Toolkit 
is its usage of Temporal Difference (TD) learning [12].  By 
rewarding and punishing the robot during training, the system 

 
Fig. 5.  A section of a probabilistic graph.  This graph conveys that if the robot 
is at node A and performs the hard right action there is a 0.8 probability of 
immediately moving to node B and a 0.2 probability of immediately moving 
to node D. 
 
can mold its behavior. A training episode lasts until the robot 
either finds the goal or 50 moves have been made.  For these 
experiments, the robot was punished if it did not find the 
platform by the end of the episode or if obstacle avoidance 
was engaged.  The robot was rewarded when it located the 
platform.  After each episode, the action preferences for each 
SOFM node experienced are updated, and the robot uses these 
new preferences for the next episode.   
 An additional important aspect of this system is the 
concept of a delayed reward.  The robot knows very little of 
the status of its current episode until the episode is finished.  
Because the goal area is only 2.5% of the total environment 
area, the robot will often require a long time to locate the goal 
during the initial learning phase when its actions are 
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determined by the initial randomness.  This type of “needle-in-
a-haystack” problem significantly slows the learning process.   
  

V. EXPERIMENTS 

A. Comparing the Two Navigational Approaches  
 This experiment varies the number of samples used to 
initialize both the graph search and the temporal difference 
methods and compares the average number of actions needed 
to reach the goal from a uniformly distributed random starting 
location.  The maximum average number of moves needed per 
episode is 50 since both the graph search and the temporal 
difference method will be stopped after 50 actions.  Also, for 
this experiment a SOFM size of 20 x 20 was used.  A SOFM 
of this size allowed for a fairly fine discretization of the 
perceptual space.  Further analysis of SOFM configurations 
can be found in the next experiment.   
 For the graph search, the number of node transition 
samples was limited at several points from 0 to 100,000.  After 
training the probabilistic graph with this data, the robot 
attempted to find the goal for 1000 episodes.  The average 
number of moves taken per episode for each of the sample 
sizes is graphed in Figure 6. 
 For the temporal difference method, the number of moves 
taken during the training phase was limited to predefined 
points between 0 and 100,000.  After the system learns for the 
set number of moves the learning is turned off and the 
performance is tested for 1000 episodes.  The results of this 
process are also summarized in Figure 6. 
 As would be expected with no training, both the graph 
search approach and the TD approach yield similar results 
with an average episode length of 36.2 and 36.4 respectively.  
With relatively little experience, of about 1000 samples, the 
graph search does considerably better than the TD approach.  
This can be attributed to the ability of the graph search 
algorithm to be able to generate a path to the goal with very 
little data.  This path will be far from optimal; however, the 
first action on that path most often points in an approximately 
correct direction.  Because the robot only uses the first action 
of the path, this limited information may be sufficient.  The 
TD approach does not have the capability to find a path 
through the SOFM nodes and therefore requires a more 
complete picture of the SOFM node to action mapping to 
efficiently reach the goal.  As the number of samples 
approaches 10,000, the TD approach actually outperforms the 
graph search.  This relationship will be investigated in future 
experiments.  Given the different utilities of the two examined 
approaches, it is reasonable to assume that some combination 
of the two may yield improved results, as proposed by Redish 
and Touretzky [4] and Balakrishnan et al. [5]. 
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Fig. 6.  A comparison of the two navigational approaches.   
 
B. An Analysis of SOFM Size Efficiency 
 This experiment was designed to determine the optimal 
number of nodes for the SOFM.  Six sizes of SOFMs were 
tested: 4 x 4, 8 x 8, 12 x 12, 14 x 14, 16 x 16, and 20 x 20.  A 
database of 300,000 perceptual vectors from the water maze 
was used to determine the variation in the x and y water maze 
coordinates for the perceptual vectors that mapped to a 
specific node.  For each SOFM size, the average variation 
over all the nodes was computed.  Any node that had no 
perceptual vectors map to it was discounted from the 
computations.  In addition, the area encompassed by each 
SOFM node was computed by calculating the convex hull of 
the vectors that map to that node.  With that information, the 
average area of a node given a SOFM size was computed. 

The results for these tests, given in Table I, are 
understandable considering that as the SOFM size increases 
the nodes should increase their specificity as relating to area 
within the water maze.  Further study is needed to determine if 
this extra specificity actually aids the robot’s navigation.  
Figure 7 illustrates the area covered by a typical 8 x 8 SOFM 
node.  When compared with the coverage of the 20 x 20 
SOFM node from Figure 4a, the 8 x 8 node clearly has a much 
larger range of positions and orientations.       
 
 
 
 
 

TABLE I 
THE EFFECT OF SOFM SIZE ON NODE COVERAGE 

SOFM Size xσ  yσ  Average Area (m2) 

4 x 4 1.84 0.79 24.1 
8 x 8 1.26 0.62 13.3 
12 x 12 0.96 0.50 8.41 
14 x 14 0.99 0.55 7.82 
16 x 16 0.85 0.49 6.18 
20 x 20 0.81 0.36 4.36 

xσ  and  yσ  are the average standard deviations in meters of the x and y 

coordinates for nodes of this sized SOFM. 
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Fig. 7.  An example of the positions in the environment that map to one node 
of an 8 x 8 SOFM.  The arrow direction shows the orientation for that sample 
and in this example generally points somewhere between west and north.  The 
color of the arrow denotes how close the sample point perceptual vector is to 
the prototype vector, with red being the closest followed by green and then 
blue. Notice the difference in area of coverage, due to SOFM size, from 
Figure 4a.   
 

VI. CONCLUDING REMARKS  

This paper presented several methodologies that can be 
used to simulate the proposed mechanism by which rodents 
learn a mapping between perception and location.  These 
methodologies included using SOFMs to discretize the 
perceptual space, using a probabilistic graph-searching 
algorithm for path planning, and using temporal difference 
learning to learn a mapping between a SOFM node and an 
action.  The main rationale for using temporal difference 
learning is its ability to adapt to new situations such as if the 
platform was moved during trials.   

The two navigational approaches of probabilistic graphs 
and TD learning were compared and it was found that each is 
suited to a slightly different situation.  It was found that the 
probabilistic graph algorithm outperformed the temporal 
difference approach with relatively little training; however, 
with additional training the temporal difference approach 
tended to be the more successful algorithm.  This relationship 
lends itself to further experimentation.  Future work will also 
include more exhaustive analysis into the effect that SOFM 
size has on the convergence times of the navigational training 
process and the number of samples needed to generate an 
effective SOFM.  These experiments will aid in the ultimate 
goal of implementation on a physical robot, which will allow 
further testing of the learning efficiency of the working 
memory approach.   
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