
A Robot in a Water Maze:
Learning a Spatial Memory Task
Mark A. Busch, Marjorie Skubic, James M. Keller, and Kevin E. Stone

 Abstract – This paper explores several novel approaches
to solve the Morris water maze task. In this spatial
memory task, the robot must learn how to associate
perceptual information with a particular location to aid in
navigating to the goal. A Self-Organizing Feature Map
(SOFM) is used to discretize the perceptual space. The
robot must then learn to associate these perceptual states
with an action used to navigate through the
environment. Two navigational approaches are proposed.
The first approach involves computing a probabilistic
graph between SOFM nodes and then searching the graph
to locate a path to the goal. The second approach uses
temporal difference learning to learn the association
between an SOFM node and an action that will direct it to
the goal. The paper compares the effectiveness of these
two approaches and discusses their respective utility.

 Index Terms – Morris water maze, Robot spatial memory, Self-
organizing feature maps, Spatial learning

I. INTRODUCTION

Given the ease with which animals seem to learn and live
in unstructured environments, it is reasonable to draw on
biological systems as inspiration for creating robots that can
also survive in unstructured settings. In this paper, our
inspiration comes from an experiment in spatial learning that
is typically performed using rats, called the Morris water
maze.

The typical environment of the water maze is a pool of
opaque water about 1 to 2 meters in diameter with colored
visual cues situated around the pool [1]. A small raised
platform is hidden somewhere in the pool, just under the water
surface. In the water maze experiments, a rat is placed in the
water and swims around the pool looking for an escape. In this
case, the only escape is the hidden platform, which cannot be
sensed from a distance. The rat can only sense the platform
when it lands on top of it. After reaching the platform, the rat
is plucked from its perch and once again placed in the water.
Over time and with several trials, the rat learns quickly to
locate the platform based on internal and external perceptual
cues.

M. A. Busch is in the Computer Science Department of the University of

Missouri, Columbia, MO 65201 USA (e-mail: mab9a5@mizzou.edu).
M. Skubic, J. M. Keller, and K. E. Stone are in the Electrical and

Computer Engineering Department of the of the University of Missouri,
Columbia, MO 65201 USA (email: skubicm@missouri.edu,
kellerj@missouri.edu, kes25c@mizzou.edu)

The water maze problem represents an interesting study in
spatial memory, spatial navigation, and learning. This
experimental setting provides a useful tool in evaluating the
learning of a spatial memory task and is sometimes used as an
assessment of spatial learning in rats, e.g., in testing the effects
of drugs [2]. Here, our intent is to use it as an assessment tool
for investigating perceptual representations and comparing
different spatial learning and navigation techniques developed
for a mobile robot.

We are not the first to use the water maze experiment for
simulated or physical robots. Brown and Sharp [3] used a
simulated water maze environment to investigate a neural
network-based model of the hippocampus. Neural firings
caused the simulated rat to turn in the left or right direction by
a certain angle. Results with their model matched the results of
experiments with real rats.

Redish and Touretzky [4] investigated a computational
model of the hippocampus that supports the dual mechanisms
of self-localization and route replay, using a simulated
environment. They hypothesized that 5 steps occur in rats
learning the water maze: (1) an exploration phase in which the
rat learns the environment, (2) self-localization, which allows
the rat to determine its position in the water relative to the
platform goal, using perceptual cues, (3) route learning, i.e.,
the storing of path information as the rat traverses along a
route, (4) replay of routes during sleep, and (5) consolidation
in which the dreamed routes are stored in long term memory.

Balakrishnan et al. [5] also tested a model using simulated
animats that incorporated both the cognitive route map
concept and self-localization, associating sensory inputs with
the direction of the platform. Their animats performed
similarly to real rats in the water maze.

Foster et al. [6] use a temporal difference learning
approach to explore the mechanisms by which place cells in
the rodent brain assist in navigation for a Morris-type water
maze. Unlike our work, they do not address visual perceptual
cues as an additional mechanism by which the rodent brain
can navigate.

Krichmar et al. [7] used a physical robot to perform a dry
variation of the water maze experiment, in an effort to
investigate a neural model of the brain. A rectangular
environment was set up as the “water” area and a circle of
reflective paper (sensed by an IR sensor) comprised the hidden
platform. The motivation of their work was to study a complex
model of the brain that simulated the nervous system and
investigate the effects of the learning process. A color camera
was used to input perceptual information; the robot turned left
and right to obtain multiple camera views. Odometry was used

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThA3.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1727

to provide heading information. A BEOWULF cluster of 12
Pentium IV computers was used for the brain. Results showed
that the robot learned to navigate to the platform after about 8
trials. The best way to apply this change to the final version
of the compliment is to gauge asunder the grunge movement.
It is also important to fix the first value and allow the other to
vary. Consider these modifications when examining the final
product

In this paper, we modelled our environment on
Krichmar’s work, although our experiments are done in
simulation to test the concept. Some further distinction should
be made between Kritchmar’s and our experiments. Firstly,
unlike Kritchmar, we do not use any odometry information to
guide the robot. This significantly handicaps the speed with
which the robot learns and forces the robots to infer odometry
from only the change in perceptual cues. In addition, our
experiments use a random starting location to force the robot
to comprehend, in some meaningful way, the entire water
maze environment.

 Section II describes the environment setting and the
robot configuration. In Section III, we describe a technique
used to discretize the perceptual space using a self-organizing
feature map. Next, we present two novel methods of
performing the water maze task. The first method uses a graph
technique to represent traversal through the space. Given a
goal location as represented by a node, a graph search is
performed to find the route to the goal. The second method
uses temporal difference learning to learn the association
between a perceptual node and the desired robot command to
direct the robot to the goal node. The two methods are
evaluated and compared using a set of experiments, as
presented in Section V. We also investigate different
resolutions in the discretization of the perceptual space.
Concluding remarks and future work are included in Section
VI.

II. THE WATER MAZE SETTING

The environment in which the robot will navigate was
designed to emulate the environment of water maze
experiments done with rodents and particularly Krichmar’s
experimental environment. The Player/Stage robot simulator
[8] was used to simulate the environment along with the
robot’s navigation. The basic layout of the environment can
be seen in Figure 1. The environment consists of an 8 x 10
meter room in which a hidden circular platform with a radius
of 0.8 meters is located. The robot is considered to be on the
hidden platform when its center of mass is within 0.8 meters
of the center of the platform. On the walls are 18 panels of
various widths and colors. The robot must navigate to the
hidden platform using only the perceptual information
pertaining to the colored panels on the walls. This setup
varies from Krichmar’s in that during his experiments the
robot also had explicit access to heading information. For our
experiments, it is anticipated that the robot will infer its
heading from the perceptual information. In addition, the

robot can sense when it is directly on top of the goal platform
but cannot see it from a distance.

The simulated robot has three cameras each with a 60º
field of view. The cameras are positioned as shown in Figure
2. In addition to the cameras, the robot has a laser range
finder for obstacle avoidance and an infrared sensor to detect
the goal platform.

The robot has five potential actions available at any time
step: hard left, left, forward, right, and hard right. These
moves involve a rotation of -30º, -15º, 0º, 15º, and 30º
respectively followed by a forward translation of 0.5 meters.

When the laser range finder determines that the wall is
within 0.4 meters of the robot, an obstacle avoidance
procedure is activated. This involves the robot stopping,
turning in place away from the wall until its front directional
axis is 30º beyond parallel with the wall, and then choosing an
action based on its updated perceptual state.

Fig. 1. The water maze environment inspired by Krichmar’s work. The
gridlines correspond to one meter. There are a total of 18 panels on the
environment’s walls that the robot uses for navigation: 5 green panels on the
north wall, 4 yellow panels on the east wall, 6 blue panels on the south wall,
and 3 red panels on the west wall.

III. PERCEPTUAL DISCRETIZATION

To simplify the problem of navigating in the environment,
the perceptual space was discretized. This allowed the robot
to create a mapping between a state and the appropriate action
at that state. A Self-Organizing Feature Map (SOFM) [9] was
used to discretize the unmanageably large number of
perceptual configurations into a small and manageable number
of perceptual states.

Only the pixel heights of the colored panels in the
simulated camera viewpoints were presented to the SOFM for
discretization. Each camera has the potential to witness any of
the 18 colored panels and consequently the vector for each
camera consists of 18 bins. If the camera observes a panel, its
pixel height is recorded for that bin; otherwise a value of zero
is recorded. It is important to note that when viewing a panel
of a particular color the robot does not know which of the

ThA3.2

1728

panels of that color it is viewing. Accordingly, the heights of
panels viewed are placed into the first appropriate bin of that
particular color. For example, a camera can potentially view
three red panels. Therefore, there are three bins in the camera
vector that can potentially hold the pixel heights of red panels.
If only two red panels are in the image generated by a camera
then the height of the leftmost viewed panel is recorded in bin
one and the height of the rightmost viewed panel is recorded
in bin two. Bin three is given a value of zero to represent that
the camera did not observe a third red panel. Because there
are 18 bins per camera and 3 cameras per robot, there are a
total of 54 features per perceptual vector.

To create the SOFMs for these experiments, the
perceptual vectors for 10,000 random locations and
orientations within the environment were used as the training
data. An example of an 8 x 8 SOFM generated with this data
can be seen in Figure 3. To illustrate the resolution of
perceptual discretization, one node of a 20 X 20 SOFM along
with its corresponding area in the water maze is given in
Figure 4.

(a)

 Left Forward Right

(b)

Fig. 2. (a) The configuration of the robot’s cameras (b) The corresponding
images obtained from the cameras.

Fig. 3. A visualization of one camera’s segment of an 8 x 8 SOFM. For each
node the color and relative height of panels are shown.

(a)

(b)

Fig. 4. An example of a node from a 20 x 20 SOFM. (a) The location and
orientation of samples in the water maze environment that correspond to this
SOFM node. The arrow direction shows the orientation for that sample and in
this example generally points in the northwest direction. The color of the
arrow denotes how closely the sample point perceptual vector matches the
prototype vector, with red being the closest followed by green and then blue.
(b) The prototypical relative heights and colors for each of the 3 cameras at
this SOFM node.

ThA3.2

1729

IV. NAVIGATIONAL APPROACHES

Once the perceptual space is discretized, an appropriate
action must be determined given the current state of the robot.
The SOFM node that most closely resembles the robot’s
current perception represents the current state of the robot and
is determined using Euclidean distance between feature
vectors. The two approaches used for these experiments are
explained in this section and are experimentally compared in
Section V.

A. An Attributed Probabilistic Graph Search

This approach is trained offline using information from
SOFM node transitions to create a directed graph. The nodes
of this graph correspond to the nodes of the SOFM. Each
edge of the graph has an attribute that corresponds to one of
the five possible actions: hard left, left, forward, right, and
hard right. The value of an edge from node A to node B with
attribute C gives the probability of traversing from an area in
the water maze which corresponds to SOFM node A to the
area corresponding to node B by performing action C.

 After collecting the SOFM node transition data, the
graph is populated with edge values that represent the ratio
between the recorded frequency of transitions from node A to
node B via action C and the total number of transitions from
node A. An example of a small segment of this type of
probabilistic graph is given in Figure 5.

When recording the transitions for creating the graph, an
extra “goal” node that does not directly correspond to any
SOFM node is created. This “goal” node is considered to be
the result of an action if the robot immediately moves to the
hidden platform as a result of that action. In essence, the
perceptual information of being on the platform supersedes
any other perceptual information.

To decide what actions to take from the current position to
reach the “goal” node the robot employs a graph search from
the current node to the “goal” node. In particular, a modified
version of Dijkstra’s Algorithm [10] was implemented.
Dijkstra’s Algorithm assumes that when edges are
concatenated to make a path, the resulting cost of that path is
the summation of the costs for each of the edges. However,
for a probabilistic graph, the resulting path cost should be the
product of the costs of the edges. The only other alteration to
Dijkstra’s Algorithm is that the robot needs to find the highest
probability of reaching the goal not the shortest cost path. To
reconcile this difference the multiplicative inverse of the
probabilty for an edge is used for the graph search. Once the
path with the highest probability of reaching the “goal” node
is determined, the robot performs the action that is attributed
to the first edge of that path.

It may seem tempting to follow the attributes of the entire
path; however, it is very unlikely that the robot will actually
follow the exact path specified due to uncertainty in the
system. To illustrate this point, consider that although self
transitions occur in about half of the sample transitions, they
are inconsequential when attemping to find the optimal path.
Therefore, with each edge of the optimal path the probability
of that path decreases by at least a factor of 2 and more often
by a factor of 10. On a typical path of length 3, the probability

will often be at least around 0.001. This implies that the
optimal path found should not be used as a strict roadmap to
the goal but rather as a gauge of the general direction to the
goal from the robot’s current position. For these reasons, the
robot recalculates the optimal path after each move and then
moves accordingly.

B. Temporal Difference Learning

 The second approach utilizes the Working Memory
Toolkit [11] developed at Vanderbilt University to learn a
mapping between a SOFM node and an action taken by the
robot. The toolkit maintains the action preferences of the
robot for each node of the SOFM. The initial behavior of the
robot is determined by the random initialization of the
toolkit’s preferences.

The other crucial feature of the Working Memory Toolkit
is its usage of Temporal Difference (TD) learning [12]. By
rewarding and punishing the robot during training, the system

Fig. 5. A section of a probabilistic graph. This graph conveys that if the robot
is at node A and performs the hard right action there is a 0.8 probability of
immediately moving to node B and a 0.2 probability of immediately moving
to node D.

can mold its behavior. A training episode lasts until the robot
either finds the goal or 50 moves have been made. For these
experiments, the robot was punished if it did not find the
platform by the end of the episode or if obstacle avoidance
was engaged. The robot was rewarded when it located the
platform. After each episode, the action preferences for each
SOFM node experienced are updated, and the robot uses these
new preferences for the next episode.
 An additional important aspect of this system is the
concept of a delayed reward. The robot knows very little of
the status of its current episode until the episode is finished.
Because the goal area is only 2.5% of the total environment
area, the robot will often require a long time to locate the goal
during the initial learning phase when its actions are

ThA3.2

1730

determined by the initial randomness. This type of “needle-in-
a-haystack” problem significantly slows the learning process.

V. EXPERIMENTS

A. Comparing the Two Navigational Approaches
 This experiment varies the number of samples used to
initialize both the graph search and the temporal difference
methods and compares the average number of actions needed
to reach the goal from a uniformly distributed random starting
location. The maximum average number of moves needed per
episode is 50 since both the graph search and the temporal
difference method will be stopped after 50 actions. Also, for
this experiment a SOFM size of 20 x 20 was used. A SOFM
of this size allowed for a fairly fine discretization of the
perceptual space. Further analysis of SOFM configurations
can be found in the next experiment.
 For the graph search, the number of node transition
samples was limited at several points from 0 to 100,000. After
training the probabilistic graph with this data, the robot
attempted to find the goal for 1000 episodes. The average
number of moves taken per episode for each of the sample
sizes is graphed in Figure 6.
 For the temporal difference method, the number of moves
taken during the training phase was limited to predefined
points between 0 and 100,000. After the system learns for the
set number of moves the learning is turned off and the
performance is tested for 1000 episodes. The results of this
process are also summarized in Figure 6.
 As would be expected with no training, both the graph
search approach and the TD approach yield similar results
with an average episode length of 36.2 and 36.4 respectively.
With relatively little experience, of about 1000 samples, the
graph search does considerably better than the TD approach.
This can be attributed to the ability of the graph search
algorithm to be able to generate a path to the goal with very
little data. This path will be far from optimal; however, the
first action on that path most often points in an approximately
correct direction. Because the robot only uses the first action
of the path, this limited information may be sufficient. The
TD approach does not have the capability to find a path
through the SOFM nodes and therefore requires a more
complete picture of the SOFM node to action mapping to
efficiently reach the goal. As the number of samples
approaches 10,000, the TD approach actually outperforms the
graph search. This relationship will be investigated in future
experiments. Given the different utilities of the two examined
approaches, it is reasonable to assume that some combination
of the two may yield improved results, as proposed by Redish
and Touretzky [4] and Balakrishnan et al. [5].

10

15

20

25

30

35

40

0 1 2 3 4 5

Log10(Training Data Size)

A
ct

io
ns

 N
ee

de
d

Pe
r E

pi
so

de

TD-learning

Graph Search

Fig. 6. A comparison of the two navigational approaches.

B. An Analysis of SOFM Size Efficiency
 This experiment was designed to determine the optimal
number of nodes for the SOFM. Six sizes of SOFMs were
tested: 4 x 4, 8 x 8, 12 x 12, 14 x 14, 16 x 16, and 20 x 20. A
database of 300,000 perceptual vectors from the water maze
was used to determine the variation in the x and y water maze
coordinates for the perceptual vectors that mapped to a
specific node. For each SOFM size, the average variation
over all the nodes was computed. Any node that had no
perceptual vectors map to it was discounted from the
computations. In addition, the area encompassed by each
SOFM node was computed by calculating the convex hull of
the vectors that map to that node. With that information, the
average area of a node given a SOFM size was computed.

The results for these tests, given in Table I, are
understandable considering that as the SOFM size increases
the nodes should increase their specificity as relating to area
within the water maze. Further study is needed to determine if
this extra specificity actually aids the robot’s navigation.
Figure 7 illustrates the area covered by a typical 8 x 8 SOFM
node. When compared with the coverage of the 20 x 20
SOFM node from Figure 4a, the 8 x 8 node clearly has a much
larger range of positions and orientations.

TABLE I
THE EFFECT OF SOFM SIZE ON NODE COVERAGE

SOFM Size xσ yσ Average Area (m2)

4 x 4 1.84 0.79 24.1
8 x 8 1.26 0.62 13.3
12 x 12 0.96 0.50 8.41
14 x 14 0.99 0.55 7.82
16 x 16 0.85 0.49 6.18
20 x 20 0.81 0.36 4.36

xσ and yσ are the average standard deviations in meters of the x and y

coordinates for nodes of this sized SOFM.

ThA3.2

1731

Fig. 7. An example of the positions in the environment that map to one node
of an 8 x 8 SOFM. The arrow direction shows the orientation for that sample
and in this example generally points somewhere between west and north. The
color of the arrow denotes how close the sample point perceptual vector is to
the prototype vector, with red being the closest followed by green and then
blue. Notice the difference in area of coverage, due to SOFM size, from
Figure 4a.

VI. CONCLUDING REMARKS

This paper presented several methodologies that can be
used to simulate the proposed mechanism by which rodents
learn a mapping between perception and location. These
methodologies included using SOFMs to discretize the
perceptual space, using a probabilistic graph-searching
algorithm for path planning, and using temporal difference
learning to learn a mapping between a SOFM node and an
action. The main rationale for using temporal difference
learning is its ability to adapt to new situations such as if the
platform was moved during trials.

The two navigational approaches of probabilistic graphs
and TD learning were compared and it was found that each is
suited to a slightly different situation. It was found that the
probabilistic graph algorithm outperformed the temporal
difference approach with relatively little training; however,
with additional training the temporal difference approach
tended to be the more successful algorithm. This relationship
lends itself to further experimentation. Future work will also
include more exhaustive analysis into the effect that SOFM
size has on the convergence times of the navigational training
process and the number of samples needed to generate an
effective SOFM. These experiments will aid in the ultimate
goal of implementation on a physical robot, which will allow
further testing of the learning efficiency of the working
memory approach.

ACKNOWLEDGMENTS

This work has been funded by the U.S. National Science

Foundation under grant EIA-0325641.

REFERENCES

[1] R. Morris, p. Garrud, J. Rawlins, and J. O’Keefe, “Place navigation

impaired in rats with hippocampal lesions,” Nature, vol. 297, 1982, pp.
681-683.

[2] C.V. Vorhees, T.M. Reed, M.R. Skelton, and M.T. Williams,
“Exposure to 3,4-methylenedioxymethamphetamine (MDMA) on
postnatal days 11-20 induces reference but not working memory
deficits in the Morris water maze in rats: implications of prior
learning,” International Journal of Developmental Neuroscience,
2004, vol. 22, no. 5/6, pp. 247-259.

[3] M.A. Brown, and P.E. Sharp, “Simulation of spatial learning in the
morris water maze by a neural network model of the hippocampal
formation and nucleus accumbens,” Hippocampus, 1995, vol. 5, pp.
171-188.

[4] A.D. Redish and D.S. Touretzky, “The role of the hippocampus in
solving the Morris water maze,” Neural Computation, 1998, vol. 10,
no. 1, pp. 73-111.

[5] K. Balakrishnan, R. Bhatt, and V. Honavar, “A Computational Model
of Rodent Spatial Learning and Some Behavioral Experiments,” In
Proceedings of the Twentieth Annual Meeting of the Cognitive Science
Society, 1998, Madison, WI.

[6] D.J. Foster, R.G.M. Morris, and Peter Dayan, “A Model of
Hippocampally Dependent Navigation, Using the Temporal Difference
Learning Rule,” Hippocampus, 2000, vol. 10, pp. 1-16.

[7] J.L. Krichmar, D. A. Nitz, J.A. Gally, and G. M. Edelman,
“Characterizing functional hippocampal pathways in a brain-based
device as it solves a spatial memory task,” In Proc National Academy
of Science USA, 2005, vol. 102, pp. 2111-2116.

[8] Gerkey, B.P., Vaughan, R.T. and Howard, A. 2003. The Player/Stage
Project: Tools for Multi-Robot and Distributed Sensor Systems. In
Proc. IEEE Intl. Conf. Advanced Robotics, Coimbra, Portugal.

[9] Kohonen, T. 1990. The self-organizing map. Proc. IEEE 78, 1464-
1480.

[10] E. W. Dijkstra. 1959. A note on two problems in connexion with
graphs. In Numerische Mathematik. 269–271.

[11] J.L. Phillips and D.C. Noelle, “A Biologically Inspired Working
Memory Framework for Robots,” in Proc. of the 27th Annual Meeting
of the Cognitive Science Society, Stresa, Italy, July 2005.

[12] Sutton, R.S. 1988. Learning to predict by the methods of temporal
differences. Machine Learning, vol. 3, pp. 9-44.

ThA3.2

1732

