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Abstract— This paper studies the problem of stabilizing
wheeled mobile robots (WMRs) subject to wheel slippage to a
predefined set. When slippage of the wheels can occur, WMRs
can be modeled as hybrid systems. Model predictive control
for such systems typically results in numerical methods of
combinatorial complexity. We show that recently developed
embedding techniques can be used to formulate numerical
algorithms for the hybrid model predictive control (MPC)
problem that have the same complexity as the MPC for smooth
systems. We also discuss in detail the numerical techniques that
lead to efficient and robust MPC algorithms. Examples are
given to illustrate the effectiveness of the approach.

I. INTRODUCTION

Modeling and control of wheeled mobile robots (WMRs)
have been extensively studied in the robotics community
(see [1]–[5] among many other). Most of the works assume
that the contact between the wheels and the ground satisfies
the conditions of pure rolling, which means that slipping can
never happen. These conditions lead to a typical nonholo-
nomic dynamic system. However, in reality slipping is by no
means unusual. For example, wheel slippage can easily occur
when the WMR drives on a slippery surface, when the WMR
makes a high speed turn, or when the torques applied to the
wheels are too large. As the WMR’s dynamics change when
the wheels switch between rolling and sliding, controllability
fails, making stabilization to a predefined set [6] problematic.

Some studies (e.g. [7], [8]) have considered the skidding
and slipping effects. But the proposed controllers are neither
closed-loop nor robust. So the performance cannot be guar-
anteed in the presence of uncertain parameters, unmodeled
friction and external disturbances. In [9], the authors model a
Hilare type WMR with rolling and sliding as a hybrid system
and develops a stabilizing switching controller. However, the
proposed design methodology is difficult to generalize.

Model predictive control (MPC) [10] has been a popular
approach for control of complex systems and is well known
for its robustness. In [11] MPC is employed for tracking
control of nonholonomic WMR, however only pure rolling
(no wheel slippage) is considered.

In this paper, we use the techniques developed in [12]
to solve the problem of stabilizing a 2-wheel WMR to a
specified set. Both rolling and sliding motions of the wheels
are considered. The WMR is modeled as a hybrid system
exhibiting autonomous switches (no control input directly
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causes the switches) and controlled switches (a separate
input directly controls the switches). The approach uses an
extension of the embedding technique in [13] for the solution
of the hybrid optimal control problem at each step of the
MPC algorithm. An integral quadratic penalty function is
utilized in the numerical method. Simulation results are given
to demonstrate the effectiveness of the approach.

II. MODEL

As in [9], we consider a 2 wheel differentially driven
WMR moving on a horizontal plane (Fig. 1). The wheels
of the WMR can either roll or slide (autonomous switches)
and a regenerative brake can be switched on or off as
necessary (controlled switches). The control (torque) inputs
u1 and u2 drive wheels 1 and 2 respectively with power
from a rechargeable battery. Regenerative braking reduces
the amplitude of each wheel’s angular velocity (w1 and w2)
while recharging the battery.
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Fig. 1. A top view and a side view of the WMR.

The generalized coordinates of the WMR are its center of
mass position x and y, body orientation relative to the x-axis
θ, and the angles of the wheels φ1 and φ2. Since φ1 and φ2

themselves are unimportant, the state variables for the system
are zT = [x, y, θ, vx, vy, ω, w1, w2] ∈ R8, where [vx, vy] is
the velocity of the center of mass of the WMR, expressed in
the body frame; ω = θ̇ is the turning velocity of the WMR;
w1 = φ̇1 and w2 = φ̇2 are the rotational velocities of the
wheel 1 and wheel 2, respectively. The equations of motion
for the WMR are:

ẋ = vx cos θ − vy sin θ, v̇x = ωvy +
F 1

x + F 2
x

mb + 2mw
,

ẏ = vx sin θ + vy cos θ, v̇y = −ωvx +
F 1

y + F 2
y

mb + 2mw
,

θ̇ = ω, ω̇ = L
F 1

x − F 2
x

Ib + 2Iv
, (1)

ẇ1 =
F 1

xr + u1

Iw
, ẇ2 =

F 2
xr + u2

Iw
,
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where (i) mb is the mass of the WMR’s body; (ii) mw is
the mass of a wheel; (iii) Ib is the moment of inertia of
the WMR’s body about a vertical axis through the center of
mass; (iv) Iw is the moment of inertia of a wheel around
its axis; (v) Iv is the moment of inertia of a wheel around
vertical axis through the center of mass; (vi) F i

x is the
force between the ground and the i-th wheel in the forward
direction, expressed in the body frame; (vii) F i

y is the force
between the ground and the i-th wheel in the lateral direction,
expressed in the body frame.

If wheel 1 is rolling, the relative velocity between the
ground and the point of contact of wheel 1 is zero:

v1
r = [v1

rx, v
1
ry]T = [vx + Lω + rw1, vy]T = 0. (2)

Analogously, when wheel 2 is rolling,

v2
r = [v2

rx, v
2
ry]T = [vx − Lω + rw2, vy]T = 0. (3)

When wheel i is rolling, the forces F i
x and F i

y are ground
reaction forces that prevent wheel slippage and they can be
eliminated from Eq. (1) using Eq. (2) or Eq. (3). When wheel
i is sliding, F i

x and F i
y are frictional forces arising from

Coulomb’s law:

[F i
x, F

i
y]T = −µd

vi
r

‖vi
r‖

(
mb

2
+mw)g, (4)

where µd is the coefficient of dynamic friction and g is the
gravitational constant.

The autonomous switch from rolling to sliding occurs
when the magnitude of the constraint force F i = [F i

x, F
i
y]T

exceeds the maximum possible magnitude of the static
friction, ∥∥F i

∥∥ > µs(
mb

2
+mw)g, (5)

where µs is the coefficient of static friction. On the other
hand, the switch from sliding to rolling occurs when (i) vi

r =
[vi

rx, v
i
ry]T = 0 , and (ii) the maximum magnitude of the

frictional force exceeds that of the constraint force F i,

vi
r = 0 and

∥∥F i
∥∥ 6 µs(

mb

2
+mw)g. (6)

As mentioned, the system also has controlled switches
where the regenerative brake can be switched on or off
arbitrarily.

When the regenerative brake is off, the actuating torques
of both wheels are

ui = ui1 ∈ [−30, 30], i = 1, 2. (7)

When the regenerative brake is on,

ui = ui2 =

{
−Kbwi, |wi| 6 3
−30 sgn(wi), |wi| > 3

i = 1, 2, (8)

where Kb = 10 is a fixed regenerative braking coefficient.
Note that ui saturates at 30 Nm.

III. METHODOLOGY

In this subsection we will describe the method presented
in [12]. Four quantities are used to describe the evolution
of a control system subject to autonomous and controlled
switches: (i) the discrete state ξ(t) ∈ Dξ = {1, 2, . . . , dξ},
(ii) the continuous state x(t) ∈ Rn, (iii) the discrete control
input α(t) ∈ Dα = {1, 2, . . . , dα}, and (iv) the continuous
control input u(t) ∈ Rm. The discrete state of the system de-
scribes the autonomous switches. We only consider systems
for which the autonomous switches depend on the continuous
state x(t) and the input u(t), they do not depend on the
current discrete state ξ(t). Such systems are usually called
memoryless. Formally, the evolution of the discrete state of
the memoryless system is defined by a piecewise continuous
function η : Rn × Rm → Dξ, that for each continuous state
x and continuous control input u selects the discrete state ξ
of the system:

ξ+(t) = η(x, u). (9)

Let Mi ⊆ Rn × Rm, i ∈ Dξ be the set of pairs (x, u)
corresponding to the discrete state i ∈ Dξ:

Mi = {(x, u) ∈ Rn × Rm | η(x, u) = i},

and let f(i,j), i ∈ Dξ, j ∈ Dα be a collection of C1 vector
fields

f(i,j) : Mi → Rn.

The evolution of the continuous state x(t) is then described
by:

ẋ(t) = f(η(x(t),u(t)),α(t))(x(t), u(t)), x(t0) = x0. (10)

At each t ≥ t0 and for each discrete state ξ(t) ∈ Dξ,
the switching control input α(t) ∈ Dα thus selects the dα

vector field that governs the evolution of the continuous
state. We assume that the continuous control input u(t) is
constrained to the convex and compact set Ω ⊆ Rm and that
the switching control input α(t) and the continuous control
input u(t) are both measurable functions.

Given that the discrete state ξ(t) is completely determined
by x(t) and u(t) through Eq. (9), we can define for each
j ∈ Dα a piecewise C1 vector field:

fj(x(t), u(t)) , f(η(x(t),u(t)),j)(x(t), u(t)), (11)

and rewrite Eq. (10) simply as:

ẋ(t) = fα(t)(x(t), u(t)), x(t0) = x0. (12)

Consider the system described by Eq. (12). Both α(t) and
u(t) are control variables and for the optimal control problem
we require that they are chosen on the interval [t0, tf ] so that
the following initial and terminal constraints are satisfied:
(t0, x(t0)) ∈ T0 × B0 and (tf , x(tf )) ∈ Tf × Bf . We will
assume that the endpoint constraint set B = T0×B0×Tf×Bf

is contained in a compact set in R2n+2. The optimization
functional is defined as

JC(t0, x0, u, α) = g(t0, x0, tf , xf )+∫ tf

t0

f0
(η(x(t),u(t)),α(t))(x(t), u(t))dt,

(13)
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where g is a real-valued C1 function defined on a neighbor-
hood of B, and the functions f0

(i,j) : Mi → R, i ∈ Dξ, j ∈
Dα are of class C1. Given that the evolution of the discrete
state ξ(t) is governed by Eq. (9), we can define similarly as
in Eq. (11) for each j ∈ Dα a new piecewise C1 function

f0
j (x(t), u(t)) , f0

(η(x(t),u(t)),j)(x(t), u(t)), (14)

and rewrite the cost functional as:

JC(t0, x0, u, α) = g(t0, x0, tf , xf )+∫ tf

t0

f0
α(t)(x(t), u(t))dt.

(15)

The hybrid optimal control problem (HOC) is defined:

min
α,u

JC(t0, x0, u, α),

subject to the constraints: (i) x(·) satisfies Eq. (12); (ii)
(t0, x(t0), tf , x(tf )) ∈ B; (iii) for each t ∈ [t0, tf ], α(t) ∈
Dα and u(t) ∈ Ω.

The next step is to embed system (12) into a larger set
of systems. For the HOC, α(t) ∈ Dα = {1, 2, . . . , dα}.
Introduce dα new variables αi ∈ [0, 1], i ∈ Dα, that satisfy

dα∑
i=1

αi(t) = 1. (16)

Let ui be the control input for each vector field fi, i ∈ Dα,
in (10). Now define a new system:

ẋ(t) =
dα∑
i=1

αi(t)fi(x(t), ui(t)), x(t0) = x0, (17)

and the associated cost functional

JE(t0, x0, u, α) = g(t0, x0, tf , xf )+∫ tf

t0

dα∑
i=1

αi(t)f0
i (x(t), ui(t))dt.

(18)

The HOC has become an embedded optimal control problem
(EOC):

min
αi,ui

JE(t0, x0, u, α),

subject to the following constraints: (i) x(·) satisfies Eq. (17);
(ii) (t0, x(t0), tf , x(tf )) ∈ B; (iii) for each t ∈ [t0, tf ] and
each i ∈ Dα, αi(t) ∈ [0, 1] and ui(t) ∈ Ω; (iv) for each
t ∈ [t0, tf ],

∑dα

i=1 αi(t) = 1.
The EOC is amenable to the classical necessary and

sufficient conditions of optimal control theory. Moreover,
it was shown in [13] that the set of trajectories of the
hybrid system (10) is dense (in the L∞ sense) in the set
of trajectories of the embedded system (17). It is also shown
that if one first solves the EOC and obtains a solution, either
the solution is of the switched type, or suboptimal trajectories
of the HOC can be constructed that can approach the value
of the cost for the EOC arbitrarily closely and satisfy the
boundary conditions within ε for arbitrary ε > 0.

A variation of direct collocation [14] is used to nu-
merically solve the EOC. In this case, u(t) and x(t) are

chosen from finite-dimensional spaces. Given basis functions
{φj}N

j=0 and {ψj}M
j=0,

xi =
N∑

j=0

pj
iφ

j(t), pj
i ∈ R, i = 1, . . . , n,

ui =
M∑

j=0

qj
iψ

j(t), qj
i ∈ R, i = 1, . . . ,m.

Since f is only piecewise C1 and as a result x(t) can
be nonsmooth, the basis functions {φj}N

j=0 are chosen to
be nonsmooth. Similarly, since the control u(t) can be
discontinuous, the basis functions {ψj}M

j=0 are chosen to
be discontinuous. Partition the time interval [t0, tf ] into N
subintervals with the endpoints t0 < t1 < . . . < tN−1 <
tN = tf .

The state trajectory is approximated by a piecewise-linear
function:

x̂i(t) = xi(tj) +
t− tj

tj+1 − tj
(xi(tj+1)− xi(tj)) ,

tj ≤ t < tj+1, i = 1, . . . , n.

This approximation corresponds to pj
i = xi(tj) and the

triangular basis functions:

φj(t) =


t−tj−1
tj−tj−1

tj−1 ≤ t < tj ,
tj+1−t
tj+1−tj

tj ≤ t < tj+1,

0 otherwise.

The control input is chosen to be piecewise constant so
that

ûi(t) = ui(tj), tj ≤ t < tj+1, i = 1, . . . ,m.

This approximation corresponds to qj
i = ui(tj) and the

square basis functions:

ψj(t) =

{
1 tj ≤ t < tj+1,

0 otherwise.

Note that the above choice of basis functions implies M =
N − 1.

The system equations are enforced at the midpoints:

˙̂x(t)− f(x̂(t), û(t)) = 0,

for t =
tj + tj+1

2
, j = 0, . . . , N − 1.

(19)

If the original problem contains additional equality and in-
equality constraints they can be easily added in a similar way.
With the chosen representation of x and u, approximation of
the integral (18) with a finite sum (using e.g. trapezoidal
rule), and together with the equality constraints represented
by Eq. (19) the optimal control problem thus becomes a
nonlinear programming problem in the unknowns pj

i and qj
i .

ThB11.4

2375



IV. APPLICATION TO WMR

To apply the above methodology to WMR, observe that
from Eq. (16), α2(t) = 1− α1(t). The embedded control is
thus

ui(t) = α1(t)ui1(t) + (1− α1(t))ui2(t). (20)

Note that in the embedded problem which will be solved,
α1(t) ∈ [0, 1]. The embedded formulation is given by Eqs.
(1) and (20), and the forces F i

x and F i
y in rolling and sliding

mode.
The objective of the control design is to stabilize the WMR

from a given initial state to a predefined set within an allotted
time while minimizing energy usage. Suppose the initial
state is z0 = z(0) and the target set can be described by
zf = z(T ). Note that some state variables in zf may be
free. For example, if the task is to command the WMR to
drive along the line y = 1 with a constant forward velocity
v0, then zT

f = [x(T ), 1, 0, v0, 0, 0,−v0
r ,−

v0
r ] (the values

for w1(T ) and w2(T ) follow from the rolling condition).
As uncontrolled sliding is undesirable, we penalize sliding
motion in our performance index.

There are two problems associated with numerically solv-
ing the optimization problem. One is that the terminal
constraints cannot be imposed as hard constraints because
the system is stabilizable but not controllable in the slid-
ing regime. Using hard constraints could make the op-
timal control problem unfeasible. Therefore, the terminal
state constraints are enforced through the cost functional as
soft constraints. The other problem is that when the state
equations are imposed as hard constraints the numerical
solution becomes difficult. To avoid this, we enforce the state
equations as soft constraints and use the quadratic penalty
function method [15] to numerically solve the optimization
problem. We refer the reader to [15] for the details of the
quadratic penalty function method.

Consider the problem

min
x∈X

f(x) subject to h(x) = 0, (21)

where f : Rn → R, h : Rn → Rm are given functions
and X is a given subset of Rn. For any scalar c, define the
augmented Lagrangian function Lc : Rn ×Rm → R by

Lc(x) = f(x) +
1
2
c |h(x)|2 , (22)

where c is the penalty parameter.
Instead of solving the original problem (21), we would

like to solve a sequence of problems of the form

min
x∈X

Lck
(x), (23)

where {ck} is a penalty parameter sequence satisfying

0 < ck < ck+1, ck →∞. (24)

It can be shown in [15] that, if we can construct a sequence
of approximate problems which converges in a well-defined
sense to the original problem, then the corresponding se-
quence of the approximate solutions will yield in the limit a
solution of the original problem.

Hence the performance index for this study is

J = c0 ‖z(T )− zf‖2 +
∫ T

0

[c1 α1(t)u2
1+

c2 α1(t)u2
2 + c3‖vr‖2 + c4‖DE1 −DE2‖2]dt.

(25)

where the positive weights ci (for i = 0, . . . , 4) are constant.
The term (i) c0 ‖z(T )− zf‖2 drives the final states z(T )
of the WMR toward the desired set (free state variables
are excluded from this term); (ii) c1 α1(t)u2

1 penalizes the
actuating power usage of wheel 1; (iii) c2 α1(t)u2

2 penalizes
the actuating power usage of wheel 2; (iv) c3‖vr‖2 is to
limit sliding motion; (v) c4‖DE1 −DE2‖2 enforces the
constraints of the state equations by gradually increasing c4,
where DE1 and DE2 are the left-hand sides and the right-
hand sides of Eq. (1), respectively. There is no penalty for
regenerative braking usage.

A. MPC Design

To cope with disturbances and modeling uncertainties, an
MPC-type controller is adopted to drive the WMR from a
given initial state z0 to the target state zf at a pre-specified
final time. The MPC approach can be summarized as follows:

1) Given z0, partition the time interval T into N equal
subintervals of length h = T

N , to compute a (backward)
piecewise constant control sequence {û1, . . . , ûN},
where ûT

i = [u1((i− 1)h), u2((i− 1)h)], and the state
values {z1, . . . , zN}.

2) For k = 1, . . . , N , solve the embedded problem over
the receding horizon [tk−1, tN ] by minimizing the
performance index of Eq. (25) with the initial state
zk−1 and obtain the (look ahead) control sequence
{ûk, . . . , ûN}.

3) Apply the control input ûk for the time interval tk−1 ≤
t < tk to the model. The value of the state of the
model at the end of the interval becomes zk, the initial
condition for the next iteration.

4) Repeat steps 2 and 3 until k = N .

B. Numerical Method

A variation of direct collocation [14] is used to numer-
ically solve the EOC at each step of the MPC algorithm.
However, instead of enforcing the state equations explicitly,
the above penalty method is used.

We start with a zero initial guess and compute the optimal
solution for c4 = 1. This solution is subsequently used as
the initial guess for c4 = 10, 102, 103, and 104, the solution
for each step serving as the initial guess for the next step.
Finally term (v) of the performance index is removed and the
state equations are enforced as hard constraints. We used the
solution for c4 = 104 as initial guess and do the optimization
again. In this way it can be guaranteed that the final optimal
solution satisfies the state equations.

V. SIMULATIONS

The parameters used in simulations were mb = 1, mw =
0.5, L = 1, r = 4, µd = 0.6, µs = 0.7, and g = 9.8.
Simulation has been done for the WMR performing two
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Fig. 2. Simulation results for stabilization to a point.

different tasks. The first task is to drive the WMR from the
initial state zT

0 = [0, 4, 1, 0, 0, 0, 1, 1] to the origin (the final
state is zf = 0) within T = 8 sec. Fig. 2 shows the trajectory,
forward velocity, relative velocities of both wheels, angular
velocity of the body, modes and control inputs of the WMR
in task 1. Note that the number of grid points for this
simulation is N = 80. The figures show that both wheels
slide initially and they are both driven to rolling mode after
about 0.2 sec. The WMR reaches the origin within T = 8
sec successfully.

The second task is to stabilize the WMR from the initial
state zT

0 = [0, 1, 1, 0, 0, 0,−1,−2] to the y axis with a
constant forward velocity 1 (which means that the final state
is zT

f = [x(T ), 0, 0, 1, 0, 0,−0.25,−0.25]) within T = 8
sec. See Fig. 3 for the trajectory, forward velocity, relative
velocities of both wheels, angular velocity of the body,
modes and control inputs of the WMR in task 2. The number
of grid points for this simulation is N = 50. From the figures
we can see that both wheels slide initially. Wheel 1 switches
to rolling at about 0.15 sec while wheel 2 switches to rolling
at about 0.3 sec. Again, the WMR is stabilized to the desired

trajectory within T = 8 sec without any difficulty.
From the simulation results for these two examples we can

see that the WMR is successfully stabilized to the predefined
set within an allotted time in spite of the initial sliding
condition. The approach achieves good performance.

VI. CONCLUSIONS

The paper studies application of hybrid model predictive
control (MPC) to stabilization of wheeled mobile robots
(WMRs) subject to wheel slippage. The approach is based
on the theoretical insight from [13] and numerical techniques
from [12]. Wheel slippage in the WMR results in a hybrid
system, but using the results from [13] the hybrid optimal
control resulting from the application of MPC can be formu-
lated as a smooth MPC problem and thus effectively solved
using the numerical methods developed in [12]. To improve
the convergence of the MPC we use the quadratic penalty
function. Simulation results show that the performance of the
approach is good.

Although the WMR studied in the paper is a simple 2-
wheel mobile robot, the approach can be easily extended to
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Fig. 3. Simulation results for stabilization to a line.

other WMRs, or other complex robotic systems. Also, the
set to which the WMR is stabilized can be generalized from
a point or a line to more complex trajectories.
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