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Abstract— Categorizing visual elements is fundamentally im-
portant for autonomous mobile robots to get intelligence such
as new object acquisition and topological place classification.
The main problem of visual categorization is how to reduce
the large intra-class variations, especially surface markings
of man-made objects. In this paper, we present a robust
method by introducing intermediate blurring and entropy-
guided codebook selection in a bag-of-words framework. Inter-
mediate blurring can filter out the high frequency of surface
markings and provide dominant shape information. Entropy
of a hypothesized codebook can provide the necessary measure
for the semantic parts among training exemplars. From the
first step, a generative optimal codebook for each category is
learned using the MDL (minimum description length) principle
guided by entropy information. From the second step, a final set
of codebook is learned using the discriminative method guided
by the inter-category entropy of the codebook. We select the
necessary parameters through various evaluations and validate
the effect of the surface marking reduction method using a
Caltech-101 DB, which has large intra-class variations. Finally,
we briefly introduce the impact of the method to the object
categorization and segmentation problem.

I. INTRODUCTION

Currently, many researchers have tried to develop human-

like visual perception capabilities such as self-localization

and object recognition for the intelligent mobile robots. Let’s

imagine that we have bought a new service robot and put it

our home. The robot should adapt to the strange environment

automatically. It will wander the house and categorize each

room as a kitchen, bath room, or living room. Additionally,

it will categorize novel objects such as the doors, sofas,

dining tables, chairs or refrigerators. As we can see in this

scenario, the two basic functions of an intelligent mobile

robot are categorizing places and objects for automatic high-

level learning about new environments. In the current state-

of-the-art, topological localization remains at the level of

image identification or matching to the same environment

[9], [13]. Object identification (recognition) of the same

objects is almost matured due to the introduction of local

invariant features such as SIFT and its generalized version,

G-RIF [7], [14]. Currently, the categorization of general

objects or scenes is an active research area in computer vision

society [6], [15].

However, vision-based categorization of visual elements is

a very challenging problem due to large intra-class variations.

Fig. 1: Various types of surface markings for the man-made objects
such as umbrellas and ewers.

Among many sources of them, such as geometric shape

variations and photometric color variations, surface markings

are dominant in man-made objects as shown in Fig. 1. Note

the large variations of the surface markings at the interior

regions of the objects. The effect of surface marking is much

larger in man-made objects than in animals or plants due

to creative design for beauty. These markings degrade the

generalization capability of any categorization methods.

Until now, most researchers have focused on how to min-

imize the intra-class variations caused by the object shape.

We can categorize the current object representation schemes

according to the relation of the geometric strength and intra-

class variation. As the strength of a geometric relation is

weaker, the amount of intra-class variation is smaller. On the

other hand, the discrimination power is reduced due to the

weak spatial relation. Since the PCA (principle component

analysis) can represent whole objects directly, it is very weak

to the geometric variations [12]. The constellation model of

visual parts can handle geometric variations more flexibly

[6], [16]. Flexible shape samples using geometric blur can

represent large variations of shapes [2]. Bag of words,

derived from document indexing, is a very robust method to

visual variation because it considers no geometrical relations

[3]. Texton, which is a more generalized version of bag

of words, can categorize textured regions such as forest,

sky, and sea [19]. A compromise of both extremes is the

implicit shape model, which assigns pose information for

each codebook [11].

In this paper, our basic object representation is the bag

of words approach to take advantage of its simplicity and
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Fig. 2: The bag of visual words-based object representation
scheme.

robustness to large geometric shape variations. However,

we focus on how to reduce surface markings during visual

word or codebook generation. First, we apply intermediate

blurring to extract important object shape information. It is

motivated from cognitive experiments showing that human

visual systems can categorize blurry objects very quickly

[1]. This means that low spatial frequency information is

important to the visual categorization. Second, we utilize

the information theory for the codebook selection. Entropy

of a hypothesized codebook among training instances should

be high for surface marking reduction, and entropy among

different categories should be low for discrimination.

II. OBJECT REPRESENTATION BY BAG OF VISUAL WORDS

The term visual words originated from linguistics [5]. A

paragraph consists of a set of words. From the distribution of

words, we can determine a topic of the paragraph. Likewise,

we can think of a scene or an object as composition of

visual words, as shown in Fig. 2. Recently, the bag of visual

words approach has shown very promising results on visual

categorization problems [3], [4], [15], [19]. Although it is

a very simple representation, it can handle large geometric

variations because it discards geometric relationships among

features or parts. So this approach is not suitable to the

detection but suitable to the labeling of novel objects. The

basic steps for the bag of visual words approach are visual

word (codebook) generation, histogram building, and clas-

sifier learning. The critical issue of the visual word-based

classification is how to learn the optimal set of visual words,

or codebook. Csurka et al. and other researchers selected

the optimal set of visual words by the well-known k-means

clustering [3]. The size of k is empirically selected by cross

validation of the training set. Winn et al. proposed a pair-wise

feature clustering method that maximizes inter-class variation

and minimizes intra-class variation [19]. Previous approaches

do not consider surface marking problems explicitly for the

optimal codebook generation.

III. ENTROPY-BASED ROBUST OBJECT CATEGORIZATION

A. Overview of the proposed categorization method

The visual categorization system is composed of feature

extraction, codebook generation, and classification, as shown

Fig. 3: Composition of visual categorization system robust to
surface marking of man-made objects.

in Fig. 3 illustrated with rectangle, triangle, and circle

examples. First, we extract dense features after intermediate

blurring. Then an intra-class codebook is learned using the

proposed model selection method of entropy-guided MDL

(minimum description length). These intra-class codebooks

are further learned in a discriminative way using entropy-

guided codebook selection. Then each training instance is

represented by a histogram using the optimal set of codebook

learning. Finally, classification is conducted using either

NNC (nearest neighbor classifier) or SVM (support vector

machine) by varying distance metrics. The most important

blocks for surface marking reduction are intermediate blur-

ring and entropy-guided codebook selection. Details of the

system are explained in the following sub-sections.

B. Step 1: Feature detection by intermediate blurring and

scale invariant dense feature

The first issue in the bag of visual words ap-

proach is how to extract local features. Direct appli-

cation of sparse scale invariant features such as SIFT

[14] and G-RIF [7] to Caltech-101 DB (available at

http://www.vision.caltech.edu/htmlfiles/archive.html) shows

very disappointing results: a 26.8% correct classification

rate using 15 images for training and 15 images for testing

(using Berg’s evaluation method [2]). So, we need to find an

optimal set of feature parameters, such as the level of blur,

and location of sampling points. As a baseline method, we

use the k-means clustering (k=650) and NNC classifier with

Euclidean distance. We select optimal feature parameters

that show best categorization performance with the baseline

method. We choose 10 categories such as airplane, car side,

cup, helicopter, motorbikes, binocular, camera, cell phone,

umbrella, and watch from Caltech-101 DB. Note that those

objects have strong surface markings. Randomly selected 15

images per category are used for training and rest 15 images

per category are used for testing.

First, we evaluate the effect of blurring by changing the

smoothing level in the original G-RIF. Fig. 4 shows the
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Fig. 4: Evaluation of blurring level in terms of categorization rate.

Fig. 5: Evaluation (confusion matrix) of sampling type: (left) edge
sampling, (middle) grid sampling, (right) edge-grid sampling. Edge-
grid sampling shows better performance.

evaluation results with the corresponding blurred objects.

According to the maximum value, we set the blurring level

as σ = 3.

Finally, we also evaluated the edge sample and dense

grid sampling types with the selected blurring level. The

evaluation was conducted using the same framework. The

edge-grid sampling shows upgraded performance as shown

in Fig. 5. So, we used edge-grid sampling with the selected

feature parameters. Additionally, random samples instead of

grid samples show similar performance.

C. Step 2: Intra-class codebook generation with MDL (gen-

erative)

In Step 2, we have to minimize intra-class variations. The

main cause of large intra-class variation is surface markings,

which have various patterns for object instances. As shown

in Fig. 6, the surface markings can be removed by finding

repeatable parts or high-entropy parts.

Based on this relation of entropy and surface markings,

we can conduct model selection using MDL more efficiently.

The MDL criteria can provide an optimal codebook in terms

of fitting distortion and model complexity, as shown by the

following equation [17]. The key point for surface marking

reduction is to remove codebook candidates that have low

entropy as shown in Fig. 7. An initial codebook is generated

using two steps of agglomerative clustering (bottom-up) and

k-means clustering (top-down) [8]. The detailed algorithm

for intra-class codebook selection is shown in Algorithm 1.

Λ̂(X, θ) = arg min

{

− log L(X, θ) +
K(V + 1)

2
log N

}

���������	
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Fig. 6: Observation for repeatable parts (high entropy) and surface
marking parts (low entropy).

Algorithm 1 Class-specific codebook generation

Given: category-specific local features

Goal: make codebook

Step 1. Extract edge-grid features for each

category.

Step 2. Make initial codebook using

appearance-based clustering [8].

Step 3. Starting from this initial codebook.

Evaluate MDL (Eq. 1)

If MDL is minimum, stop.

Else

Remove one codebook that has lowest

entropy. Go to 1.

where L is likelihood of data fitting, X is training features,

θ is parameters (mean and variance for codebook), K is

the number of codebook, V is the number of parameters per

codebook, and N is the number of features. Fig. 8 shows the

MDL model selection curve and the properties of the selected

codebook. Note that our codebook can find semantically

meaningful parts for the training instances regardless of

various surface markings.

D. Step 3: Inter-class codebook generation (discriminative)

Given the category-specific codebooks learned in Step 1

and 2, we have to select a discriminative universal codebook

for bag of visual words-based classification. We can obtain a

discriminative codebook (Fopt) by maximizing the posterior

of class labels given training examples and a hypothesized

universal codebook. The key point in this approach is to

select a removable codebook using the inter-category entropy

of a codebook that has large entropy (ambiguous codebook).

If we define {F} as a hypothesized universal codebook, Ic
i

as the i-th object instance belonging to category c, and l as

the category label, then the posterior can be formulated as
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Fig. 7: The mechanism of surface marking removal in entropy
guided codebook compared to the conventional k-means clustering.

(a) MDL graph for airplane category (b) examples of selected optimal
codebook

K-means CB (no.:650) Entropy CB (no.:650)

(c) Codebook (CB) label: k-means vs. proposed

Fig. 8: Entropy-guided MDL graph and its example parts corre-
sponding to selected codebook. Note that similar parts are selected
regardless of surface markings.

Fopt = arg max
F

{
∏

c

∏

i∈c

p(l|Ic
i , {F}}

= arg max
F

{log(
∏

c

∏

i∈c

p(l|Ic
i , {F})}

since

p(l|Ic
i ) =

p(Ic
i |c, {F})p(c, {F})

∑

c′ p(Ic
i |c

′, {F})p(c′, {F})
,

assume uniform p(c, {F})

Fopt = arg max
F

{
∑

c

∑

i∈c

(log p(Ic
i |c, {F})−

log
∑

c′

p(Ic
i |c

′, {F}))}

where p(Ic
i |c, {F}) = p(Hc

i |H
c
M ) ∝ exp (−KL(Hc

i ,Hc
M ))

and KL(Hc
i ,Hc

M ) =

|F |
∑

j=1

(Hc
i (j) − Hc

M (j)) log
Hc

i (j)

Hc
M (j)

)

The posterior criterion in the 4th line of the equation is

used to select the optimal set for a discriminative codebook.

The distance measure (KL) can be anything introduced in

the following sub-section. Fig. 9 shows the codebook search

…

Codebook candidates

Select a removable codebook

Check the posterior criteria

Drop?

RemoveHold

( | )H C F

Y

N

…

Codebook candidates

Select a removable codebook

Check the posterior criteria

Drop?

RemoveHold

( | )H C F

Y

N

(a) optimization procedure (b) discriminative learning graph

Fig. 9: Inter-category entropy-guided universal codebook selection
method.

Fig. 10: Confusion matrix using non-discriminative codebook
and discriminative codebook. (left) Before discriminative learning,
(right) after discriminative learning.

algorithm and its learning graph. First, we sort candidate

codebooks based on the inter-category entropy. Candidate

codebooks are just the collection of intra-class codebooks.

Second, a high entropy codebook is removed from the

candidate codebooks. Then we check the posterior using

the hypothesized codebooks. If the posterior is dropped, the

removable codebook is hold, otherwise it is removed. Such

iteration continues until the posterior is converged. Fig. 10

shows the test results using only a set of the intra-class

codebook (|F | = 1062) and the discriminatively learned

universal codebook (|F | = 926) for 10 object categories.

Note the upgraded categorization performance.

E. Step 5: Distance metrics and classification

After histogram building from the discriminative codebook

for all the training instances, we have to learn classifiers with

certain distance metrics. We can summarize these as follows.

Distance metrics:D(Ht, Hm)
- Euclidean dist.: D(Ht,Hm) =

∑

i (Ht(i) − Hm(i))
2

- KL-divergence:

D(Ht, Hm) =
∑

i (Ht(i) − Hm(i)) · log (Ht(i)/Hm(i))
- Intersection:D(Ht,Hm) =

∑

i min (Ht(i),Hm(i))

- χ2 distance:D(Ht,Hm) =
∑

i

(Ht(i)−Hm(i))2

Ht(i)+Hm(i)
Classification

- NNC is the simplest classifier because it requires no

specific learning method. Each training histogram is regarded

as a single prototype. So, for an unknown test histogram, a

category label is assigned with the nearest prototype in the

model database.

FrB9.4

3796



���������������� ����������������

Fig. 11: Comparison of G-RIF and SIFT for 10 Caltech DB.

- Support vector machine (SVM) [18] can learn classi-

fication boundaries from training samples. It has been the

most powerful classifier until now. Recently, a kernel-based

SVM was introduced that can learn non-linear classification

boundaries for complex data. We use the OvR (one vs. Rest)

method for the multi class SVM.

In the extended Gaussian kernel, we can use the distance

metrics described above. In the experiment section, we will

compare these classification methods using codebooks that

are robust to surface markings and discriminative.

IV. PERFORMANCE EVALUATION

We evaluated our categorization system using a Caltech-

101 DB. It consists of 48 man-made objects and 53 animals

and plants. As an initial experiments, we selected 10 cate-

gories such as airplanes, cameras, cars, cell phones, cups, he-

licopters, motorbikes, scissors, umbrellas, and watch which

have large intra-class variations due to surface markings. We

randomly selected 15 examples for each category and tested

15 unlearned cluttered examples.

G-RIF vs. SIFT: As a starting point to multi-scale feature

selection, first we compare our G-RIF to SIFT for the 10

category classification problem. For fair comparison, we

make codebook using the conventional k-means clustering

with k=650. We use NNC classifier with χ2 distance. 15

images per category are used for training, rest 15 images

are used to test. Fig. 11 shows the confusion matrices. The

average categorization rate of SIFT is 74% and that of G-

RIF is 81.3%. Since G-RIF is generalized version of SIFT in

terms of information quantity, bag of visual words using G-

RIF shows better performance than the same method using

SIFT.

Entropy-guided codebook vs. k-means clustering: Next,

we check the effect of codebook selection (our entropy-

guided codebook, k-means clustering) to the categorization

performance. We use the same G-RIF feature, number of

codebook, and classifier except different codebook genera-

tion method. As shown in Fig. 12, bag of visual words using

entropy-guided codebook shows better performance the the

same method using k-means clustering. This fact means that

our codebook can handle surface markings more robustly.

Optimal distance measure and classifier: Until now, we

select G-RIF and entropy-guided codebook. Then what is op-

timal distance and classifier for the codebook histogram? We

compared 4 distance measures of Euclidean, KL-divergence,

�������������������� ��������������������

Fig. 12: Comparison of our entropy-guided codebook and k-means
clustering.

Fig. 13: Comparison of distance measures and classifiers.

histogram intersection, and χ2 distance. As classifiers, we

compare the well-known NNC and SVM especially OvR

(one versus rest) for multi-category classification. Fig. 13

shows the confusion matrices for the combinations of dis-

tances and classifiers. Table I summarizes the overall perfor-

mance. Note that the histogram intersection or χ2 distance

with SVM is the optimal choice for bag of visual words

method.

Sparse sampling vs dense sampling in multi-scale: We

have determined the optimal codebook selection method and

classifier for bag of visual words-based categorization. In

previous section, we uses dense sampling with fixed scale.

Now, we compare the sparse sampling and dense sampling

in multi-scale space. We set all the related parameters to

the same value except sampling method in scale space. As

shown in Fig. 14, the dense sampling in scale-space shows

much better performance (87.3%).

Based on this finding, we extended the experiment to

the whole database. We selected the SVM classifier with

χ2 distance. The DC (discriminative codebook) was learned

from each category-specific GC (generative codebook). The

average classification of our system was 48.58% for a

cluttered test set. The current state-of-the-art for the same

database using the conventional bag of visual words (single

level, L=0, 15 training) shows 41.2% [10]. Most incorrect

classifications are for animals and plants which have large

TABLE I: Categorization rate [%] according to the combi-

nations of distance measures and classifiers

dist. measure Euclidean dist. KL-div. hist. inters. χ
2

NNC 51.3 68.6 68.0 70.0

SVM 80.0 81.3 86.0 86.0
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Fig. 14: Comparison of dense sampling and sparse sampling.

K-means CB (no.:650) Entropy CB (no.:650)
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Fig. 15: Impact of the proposed codebook selection method to the
object categorization and segmentation problem.

intra-class variations due to different shape.

V. IMPACT TO THE CATEGORIZATION AND

SEGMENTATION

The surface marking reduction strategy using the inter-

mediate blurring and entropy-guided codebook is effective

to the categorization of man-made objects. Furthermore, the

codebook selection mechanism is useful to the simultane-

ous categorization and segmentation problem of man-made

objects in cluttered environment. Our on-going research

is to utilize the part-whole relation for that problem. As

shown in Fig. 15, the entropy-guided codebook (CB) is

useful to estimate the part-whole relation. Contrary to the

k-means codebook, our entropy-based codebook shows more

robust clustering of object center, more clean figure-ground

segregation in cluttered environment.

VI. CONCLUSION

In this paper, we presented an object categorization

method focusing on surface markings in the bag of visual

words framework. We can minimize the effect of surface

markings based on the entropy of the codebooks. High

entropy in the intra-class codebook can remove surface

marking parts (low entropy) in stage 1 learning. Addition-

ally, a discriminative codebook is also selected from the

category-specific codebook guided by the entropy of the

inter-class codebook. The high entropy codebook is removed

first because it gives ambiguous class labels. Finally, we

evaluated those codebooks using NNC and SVM classifiers

with different distance metrics. With the optimal set of

features, codebooks, and classifiers, we can get upgraded

performance in the bag of visual words framework. This

work for codebook selection and classification can be applied

to other complex categorization and segmentation problems.
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