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Abstract— We consider the problem of modeling a robotic
marionette. Marionettes are highly under-actuated systems that
can only be controlled remotely by moving strings. We present a
mixed dynamic-kinematic modeling technique that removes the
controller dynamics from the marionette, resulting in a clean
abstraction that represents the dynamics of the marionette in a
natural way. As an example, a model is derived for a single arm
moving in a plane. A model for a three-dimensional marionettes
is also shown. Finally, an expansive-space tree (EST) motion
planner is used to find a path from an input configuration to
a goal for a puppet arm with seven degrees of freedom.

I. INTRODUCTION

Marionettes are puppets that are supported and controlled

by manipulating strings tied to points on the marionette.

Marionettes have been used for entertainment for centuries.

These under-actuated, non-linear, and highly coupled sys-

tems can become expressive characters capable of extremely

precise and refined movements in the hands of an experi-

enced artist.

In light of this capability, there is interest in developing

robotic marionettes. Such systems can be used as research

platforms in various areas. There are open research questions

in controllers and motion planners for systems that are

indirectly actuated. Such problems have been considered for

controlling an object hanging from a crane. Additionally,

modes of human physical rehabilitation can use pulling on

wires to adjust motion of injured people.

There is also ongoing effort to study interaction between

humans and robots so that systems can communicate more

effectively using expressive body language while restricted

by less articulated motor ability. Mapping expressive gestures

to marionettes with limited mobility while preserving their

expressiveness has been extensively studied by professional

puppeteers. A robotic marionette is a useful platform for

studying such mapping techniques and generalizing them to

more robotics systems.

A prototype puppet stand and its planned successor are

shown in Fig. 1. The prototype stand uses six stepper motors

to control strings attached to the arms, legs, and head.

The length of the strings can be varied, but the strings do

not move. Lateral motions for the hands are achieved by

attaching two strings to each hand. The stand is controlled

using a National Instruments FPGA board with a LabVIEW

VI.

An accurate and fast model is an important part of a

controller or motion planner for a robotic marionette. In

this paper, we present a useful model for the dynamics of

a marionette. However, the marionette differs from typical

mechanical system in important ways that make modeling

the system non-trivial.

Fig. 1. A model of a robotic marionette stand and a photograph of the
experimental marionette stand under development.

Mechanical systems are often modeled in two ways. In

a dynamic model, all of the forces and inertial bodies of

the system are included and used to determine the system’s

motion within a static environment. A subset of these can

be reduced to kinematic models in which the actuators are

assumed to be strong enough to track any desired configu-

ration path or that the system intrinsically follows kinematic

paths [2].

Neither of these approaches are appropriate for a mari-

onette. A dynamic model must include the both the mari-

onette and the driving mechanisms (so long as the end of

the string actuating the marionette is not inertially fixed).

The model is therefore tightly coupled to the particular

implementation it was derived from. However, there are

certainly characteristics of a marionette’s dynamics that are

independent of the method used to pull its strings. A kine-

matic model that captures the full range of motion cannot be

derived for an under-actuated system such as the marionette.

A better approach is to consider the marionette as two

distinct systems. The marionette is considered an unactu-

ated, dynamic system. The string-driving mechanism is a

fully actuated system that can be reduced to a kinematic
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model with velocity inputs. The systems are coupled by the

strings, which are introduced to the model as non-holonomic

constraints.

Such an arrangement allows us to the study the intrinsic

dynamics of the marionette rather than new dynamics in-

troduced by the actuator mechanism. If the dynamics of a

particular implementation wish to be studied, the kinematic

reduction can easily be replaced with a full dynamic model.

After presenting this method, we discuss simulation re-

sults for a full three-dimensional marionette and a three-

dimensional marionette arm. An expansive-space tree (EST)

motion planner is used to create a motion plan for the arm.

II. PREVIOUS WORK

Physics-based simulation techniques are used extensively

in computer graphics and electronic entertainment. A number

of fast methods for large physical simulations have been

developed [16], [1]. These model systems as sets of rigid

bodies joined by constraints. Over time, errors due to nu-

meric integration violate the constraints so spring forces are

introduced to restore them. The simulations are realistic, but

may not be accurate enough for optimal control applications.

Xing and Chen [17], [6] have developed a robotic mar-

ionette that synthesizes motion from a library of behavior

primitives. The primitives are designed manually and re-

fined experimentally. A controller combines the primitives

to create the requested motions. Very expressive motions are

possible, but the primitive library and implementation are

specific to the form of the marionette.

Yamane et al [18] present a control system to use motion

capture data to drive an automated marionette. This technique

uses an inverse kinematic model to determine the appropriate

string inputs. The string dynamics are modeled as decoupled

swinging dynamics.

The inverse-kinematic method maps motion capture data

to the puppet very well, but the controller is limited by

the simplified dynamic model. A marionette performance

will typically exploit the unique dynamic properties of the

system to effectively communicate with the audience. For

instance, acrobatic marionettes typically use specialized han-

dles designed to excite particular dynamic modes [8]. If an

automated marionette is to be comparable to a traditional

performer, the control system will need a model that includes

many of the unusual aspects of the system dynamics such as

the global coupling and swinging dynamics.

III. TWO DIMENSIONAL MARIONETTE ARM

DYNAMICAL MODEL

To illustrate the primary modeling issues associated with

a marionette, we initially consider the two-dimensional mar-

ionette arm shown in Fig. 2. The arm consists of two

rigid links with known masses and moments of inertia. The

shoulder is fixed in place and the arm can rotate at the

shoulder and elbow. The arm is controlled using a massless

string connected to the tip of the arm. The length of the

string (L) can be varied and the position of the string (x)

Fig. 2. The 2D Marionette Arm

can be moved horizontally. The configuration of the system

is q = [θ1 θ2 x L]
T

.

The arm is modeled using well-known Euler-Lagrange

methods for articulated mechanical systems [15]. The system

is similar to a closed-chain of rigid bodies, but differs in two

important ways. First, one of the linkages has no mass–one

therefore cannot consider applying a force to the link or use

the inertia of the link. Including the parameters that define

the string link (L and x) in the configuration will results in

a globally degenerate inertia matrix and, correspondingly,

degenerate equations of motion. Associating a mass with

the string parameters to avoid this difficulty introduces other

problems–a small mass yields stiff differential equations for

the motion while a large mass will unrealistically affect the

dynamics of the system.

The second difference is that the string represents a pris-

matic joint because the length of the string can change. This

essentially couples the marionette model to the mechanism

used to articulate the marionette. To preserve abstraction and

simplify the modeling, we desire to separate the marionette

dynamics from the actuator dynamics and controller perfor-

mance.

The solution is to treat the string as a constraint that

indirectly applies the system inputs. In this approach, we

model the marionette as a dynamical system with a set

of non-holonomic string constraints. The system inputs are

the velocities of the string lengths and positions and are

introduced to the system through Pfaffian constraints. (Note

that generally these constraints do not need to always be

satisfied. If the z component of the force enforcing the

constraint is greater than the force due to gravity, then the

constraint will be broken and the string will go slack.) We

refer to this approach as the mixed dynamic-kinematic model

of the marionette.

A. Euler-Lagrange Model

To derive the equations of motion, the (inertial) base

coordinate frame for the system is chosen to be at base of

the shoulder. The center of mass for each link is located at
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the geometric midpoint of the link. For each link, we define

an inertia matrix Ii ∈ R3×3

Ii =





mi 0 0
0 mi 0
0 0 Ii



 (1)

where mi and Ii are the mass and rotational inertia of the

i-th link, respectively.

The system’s Lagrangian can be fully described using θ1

and θ2. We define the dynamic configuration, qD = [θ1 θ2] ∈
QD to distinguish it from the full system configuration.

Let gi : QD → SE(2) (we use matrix homogeneous

representations of SE(n)) define the coordinate frame for

the center of mass of link i at a given configuration relative

to the base frame. For the arm,

g1 (qD) = R (θ1) Tx

(

L1

2

)

(2)

g2 (qD) = R (θ1) Tx (L1) R (θ2) Tx

(

L2

2

)

(3)

where R(θ) ∈ SE(2) performs a rotation by angle θ and

Tx(d) ∈ SE(2) translates by distance d along the x-axis.

The body velocity V b
i : TQD → R3×3 of each frame is

calculated as:

V b
i (qD, q̇D) = g−1

i

dgi

dqD

q̇D (4)

The kinetic and potential energies for each link can now

be defined1

Ti (qD, q̇D) =
1

2
V̌ b

T

i IiV̌ b
i (5)

Vi (qD) = [0 mi 0] ǧi (6)

The Lagrangian for the system is the sum of the kinetic

energy minus the potential energy over all the masses.

L (qD, q̇D) =
2

∑

i=1

(Ti(qD, q̇D) − Vi(qD)) (7)

The equations of motions are easily derived from the

Lagrangian using the Euler-Lagrange equations:

d

dt

(

∂L

∂q̇

)

−
∂L

∂q̇
= u

which are standard equations for modeling mechanical sys-

tems [15], [7]. They are expressed in standard form as:

M(qD)q̈D + C(qD, q̇D)q̇D + g(qD) = u (8)

where u represents generalized forces on the system, M(qD)
is the inertia matrix, C(qD, q̇D) is the Coriolis matrix, and

g(qD) contains gravitational terms. Note that u is not related

to the arm’s inputs. It can be used to introduce other forces on

the arm such as damping. The string forces will be introduced

in the following sections.

1We use the operator ”unhat” such that for x =

2

4

0 −ω x

ω 0 y

0 0 1

3

5,

x̌ = [x y ω]T

B. Wire Constraint

The dynamic puppet is coupled to the kinematic controller

through the string. The string is considered massless and

modeled as a constraint. The constraint is analogous to a

marble in a bowl where the marble cannot penetrate the

bowl, but is free to leave the surface. Initially, we derive the

constraint as a rigid wire that strictly controls the distance

between two points.

If the wire is not changing length and the point S is not

moving (i.e., x and L are not changing), the wire defines

a holonomic constraint on the distance between the ends of

the wire, PA and PS :

h(q) = ||PA(θ1, θ2) − PS(x)|| − L = 0

That is, it restricts the allowable configurations of the

system. When x and L may vary, then we simply rewrite

the equation as a Pfaffian constraint

A(q)q̇ =
∂h

∂q
q̇ = 0

to be used with the Euler-Lagrange model, where ẋ and

L̇ will become the control inputs to the system.

Finally, the constraint must be rearranged to accommodate

the two types of configuration variable. In the previous

section, the dynamic configuration qD was introduced. It is

complemented by the kinematic configuration which includes

the variables that will be treated kinematically: qK = [x L].
Including this distinction is simply a matter of rewriting the

constraint as:

A(q)q̇ = [AD(q) AK(q)]

[

q̇D

q̇K

]

= 0 (9)

where AD(q) = ∂h
∂qD

and AK(q) = ∂h
∂qK

.

C. Mixed Dynamic-Kinematic Model

The constraints are included in the dynamic model us-

ing Lagrange multipliers, λ, associated with the Lagrange-

d’Alhembert principle for constrained mechanical motion:

M(qD)q̈D + C(qD, q̇D)q̇D + g(qD) = u + AT
D(qD)λ. (10)

Equation 10 includes the new term, AT (qD)λ, which is the

force applied on the system by the constraints. Equation 9

is differentiated to provide a second equation:

AD q̈D + ȦD q̇D + AK q̈K + ȦK q̇K = 0. (11)

Finally, the inputs to the system are the kinematic config-

uration variables qK :

q̈K = uL (12)

Equations 10, 11, and 12 provide a complete set of

equations for modeling the marionette for a given set of

inputs. We require that the velocity inputs are uniformly

continuous so that its derivative is well defined, and that the

initial configuration and velocity satisfy the constraint. To

integrate the model, Equations 10 and 11 are used to solve
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for λ and q̈D. Once q̇D and q̈D are found, the equations can

be integrated using any ODE numeric integrator.

The mixed model does not depend on the dynamics of the

string actuators in any way, thus providing a clean abstraction

between two distinctly different parts of the system. In the

case that the inputs are fixed to be constant, the mixed model

reduces to the same dynamics that are found using a standard

Euler-Lagrange approach.

IV. STRING CONSTRAINTS

The wire constraints can be modified to behave like

strings, which only enforce a maximum distance between

two points, by placing two restrictions on the constraint

force. The force must be positive and the can only be applied

when the distance between the string endpoints equals the

length of the string. We encode these restrictions using δ1

and δ2 and calculate the string forces, λS , from the original

wire forces, λW .

δ1 =

{

1 λW ≥ 0
0 λW < 0

δ2 =

{

1 ||PA − PS || ≥ L

0 ||PA − PS || < L

λS = δ1δ2λW

When the constraint violates either restriction, the con-

straint force is coerced to zero and the system reduces to

Equ. 8. Transitions back to the enabled state require special

treatment.

The Pfaffian constraint assumes that initial system velocity

does not violate the constraint and applies the necessary force

to prevent the constraint from being violated.

The velocity is no longer restricted once the string is

disabled. When the constraint is reintroduced to the system,

the system velocity must instanteously change to satisfy the

constraint. The instantaneously change is accomplished by

modeling the transition as a collision involving an impulse.

We set the change in the generalized momentum [13] equal

to the collision impulse

∆p = M(q̇f − q̇0) = ~K (13)

where ~K is the impulse and q̇0 and q̇f are the system

velocities immediately before and after the collision, respec-

tively. The impulse will be in the same direction as a force

applied by a string, so we use the same strategy used with

Lagrange multipliers to separate the impulse

K = AT
Dλ

into known and unknown parts.

q̇f = M−1AT
Dλ + q̇0 (14)

The collision is considered completely inelastic so that the

final velocity immediately satisfies the constraint equation

AD q̇f + AK q̇K = AD(M−1AT
Dλ + q̇0) + AK q̇K = 0

rather than bounce upward. We solve for the impulse mag-

nitude

λ = −(ADM−1AT
D)−1(AD q̇0 + AK q̇K) (15)

and use Equ. 14 to determine q̇f . Note that this is equivalent

to projecting the velocity using the inertia tensor as the

metric–see [7].

When the transition is detected, the integrator is stopped.

The appropriate impulse is applied to the arm, the constraint

is enabled, and the integrator is restarted.

V. FULL THREE DIMENSIONAL MARIONETTE

DYNAMIC MODEL

Extending this model to more interesting puppets is

straightforward and suitable for automation. In our imple-

mentation, a configuration file defines a puppet as a tree of

coordinate frames. Masses and strings are attached to differ-

ent frames. The configuration is used by a Mathematica

script to symbolically solve for M(qD), C(qD, q̇D), g(qD),
and the constraint matrices. These are exported to a simulator

implemented in C.

Fig. 3 shows a complete three dimensional model of a

marionette. The dynamic puppet has 25 degrees of freedom

(DOF). There are seven strings which can be moved in a

plane and wound in and out which introduce 21 kinematic

DOF. Though computationally intensive, the model exhibits

the rich dynamical behavior of a marionette. Simulation

videos of the full three dimensional puppet and other models

may be seen at http://puppeteer.colorado.edu/.

Fig. 3. Three Dimensional Marionette

VI. VALIDITY OF MIXED KINEMATIC-DYNAMIC

MODELING

It is worth noting that the validity of the partial kinematic

reduction just used in the mixed dynamic-kinematic model

can be verified as follows. In all that follows, we assume
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that the mechanical system controlling the puppet is fully-

actuated (i.e., there is an input for every degree of freedom

of the system). The mechanical system including both the

puppet and the mechanism controlling the puppet can be

described using the constrained Euler-Lagrange equations

with q = [qD, qK , qM ], where qD is the configuration of

the puppet and qM is the configuration of the mechanism

controlling the puppet. Equivalently, the equations of motion

can be written as:

∇̃q̇ q̇ = uiY
i

where ∇̃ is the constrained affine connection ui are the m

inputs, and Yi are the associated input vector fields. (See

[2] for a complete description of this formalism) In this

context, a system is kinematically reducible [3], [2], [4], [5],

[14]2 (i.e, all paths on the configuration manifold Q corre-

spond to trajectories on TQ and vice-versa) if 〈Yi, Yj〉 ∈
span{Yk|1 ≤ k ≤ m} where 〈X, Y 〉 = ∇̃XY + ∇̃Y X .

Now, because the strings are massless, the inertia tensor is

block diagonal in [qD, qK ]. That is, the kinetic energy KE

satisfies

KE =
1

2

d

dt
([qD, qK ])

[

MD 0
0 MK

]

d

dt

([

qD

qK

])

.

This allows us to address the constraints independently so

that

∇̃q̇M
q̇M = uiY

i

∇̃q̇D
q̇D = 0.

Because the mechanism controlling the puppet is assumed

to be fully actuated, the first equation for the mecha-

nism dynamics trivially satisfies the condition 〈Yi, Yj〉 ∈
span{Yk|1 ≤ k ≤ m} for kinematic reducibility (again,

see [2] for details of this construction). Hence, separating

the kinematic reduction of the mechanism controlling the

puppet from the (not kinematically reducible) dynamics of

the puppet is a mechanically valid description of the system.

However, we should emphasize that this is only true when

the strings are assumed to be massless.

VII. MOTION PLANNING

As an example application of the model, we have devel-

oped a primitive motion planner for three dimensional puppet

arm in Fig. 4 based on the Expansive-Space Tree (EST)

algorithm [7]. The arm has four dynamic DOF and three

kinematic inputs.

The algorithm consists of a collection of configurations,

Q, and a desired final configuration, qf . Q is initialized with

a starting configuration. The motion planner selects a random

configuration qi ∈ Q and generates a random input for the

system. The model is integrated forward from qi for a short

time using the random input. The final state of the simulation

is added to Q.

2We do not go into the details of this analysis as it would take us far
afield from the basic subject matter. However, the covariant derivative is a
fundamental tool in establishing kinematic reducibility, so we introduce it
here and point the interested reader to references for further information.

This process is repeated for a large number of iterations.

This builds a tree of reachable configurations and the in-

puts required to move between connected configurations.

Eventually, the algorithm generates a configuration near qf ,

providing a path from q0 to qf .

Including obstacles in the motion planner is straightfor-

ward. After each integration step, the new configuration

is checked for collisions. If a collision is detected, the

integrator is stopped and the motion planner discards the

new configuration instead of adding it to Q.

The performance of the motion planner is drastically

improved by biasing the random selection of configurations

to favor those closer to the desired configuration. The video

attachment for this paper demonstrates a plan generated by

this algorithm to move between two configurations while

avoiding obstacles.

The algorithm is slow and inefficient, but it provides a

brute-force way to do motion planning and obstacle avoid-

ance for an under-actuated system like the marionette.

Fig. 4. An expansive-space tree is used to determine a path between two
configurations. The black dots show nodes in the search tree and the plot
out the path taken to traverse the tree.

VIII. CONCLUSIONS AND FUTURE WORKS

The mixed dynamic-kinematic model is a useful tool

for modeling marionette dynamics. Using generalized co-

ordinates and Lagrange’s equation preserves the mechanical

structure of the system and provides a concise expression

of the dynamics. The abstraction between the actuator and

marionette simplifies the model while maintaining the full

behavior of the system.

The purpose of this work is to develop a model suit-

able for optimal control and motion planning. The current

implementation is too slow to do either for a full three-

dimensional marionette. The full dynamics must be reduced

to a more computationally feasible model. The kinematic-

dynamic abstraction is a successful step in this direction.
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The string constraint model further simplifies the model.

Marionette models developed for computer graphics appli-

cations [9] often treat the strings as a chain of small masses

joined by stiff springs. These extra components are unneces-

sary with the string constraint, reducing the number of bodies

to simulate and avoiding the numerically undesirable features

of stiff springs.

The Euler-Lagrange structure will also allow the model

to use variational integrators to improve performance. Varia-

tional integrators can allow large simulation time steps while

guaranteeing energy conservation during the integration[12],

[11], [10].

We wish to develop an automated marionette to explore

choreography as an abstract controls concept. In the context

of a marionette performance, choreography is essentially an

abstract way of defining a trajectory for the system. In this

framework, a user can write a play by defining when and

where events should occur which would then be compiled

by the controller into a complete set of collision-free trajec-

tories for each puppet. Before these concepts can be fully

explored, however, several more components of the system

will need be developed including a motion planner and model

that includes interactions between multiple puppets and the

environment.
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