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Abstract— Today most robots interact with the surround-
ings only with their end-effectors. However there are many
benefits to utilizing contact along the entire length of robot
body and links especially for human-like robots. Existing
control strategies for link contact require knowledge of the
contact point. In an uncertain environment, locating link
contact point is difficult for most robots as they do not possess
skin capable of sensing. We propose a probabilistic approach
to link contact estimation based on geometric considerations
and compliant motions. Since for many robots, link geometry
is also uncertain, we broaden our approach to simultaneously
estimate link shape and environment contact. Our experimen-
tal results demonstrate that efficiency of control is significantly
improved by link contact estimation.

Index Terms— contact estimation, probabilistic estimation,
link contact, multiple contact, force control

I. INTRODUCTION

Today robots prefer to avoid contact with the environ-
ment along body or links. They strive to interact with
the surroundings only by their end effectors. In contrast
humans are able to do a great deal by using contact along
their limbs and torso. For example, we brace against a desk
while handwriting. When stumbling in the dark, we stretch
our arms forward to feel the environment. We support
ourselves with our knees and forearms while climbing into
a tight space.

By learning to utilize contact along manipulator links,
robots gain the same advantages as humans (see Figure
1 for illustration). For example, it has been shown in [1]
that bracing increases manipulator precision, and thus it
is desirable to brace for fine manipulation tasks. During
exploration it is much easier to bump into objects if we
utilize the entire robot surface as opposed to just the end
effector tip. Just like humans, human-like robots also need
to be able to support themselves with arms and knees when
climbing.

Recently approaches to control for whole body contact
have been proposed in the literature [2]–[4] (see Section
II-B for a brief overview). However absence of contact
perception is a major obstacle holding robots back from
using link contacts. To our knowledge, there has been
no work on estimating contact points along manipulator

(a) (b)

(c)

Fig. 1. Applications of link contact: (a) Humans use bracing to increase
precision during fine manipulation tasks such as handwriting. (b) PUMA
manipulator in a similar bracing configuration. It has been shown that
bracing improves manipulator precision as well. (c) Human-like robots
utilize multiple link contacts for bracing and support.
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Fig. 2. A block diagram of the contact control framework for a manipulator, where the Active Observer (AOB) design is implemented for force
control. The observer in the AOB design includes a state for input disturbance and the estimate of this state will be directly compensated for in addition
to the full state feedback.

links, yet this information is clearly required for control
algorithms.

Estimation of link contact points is more difficult for
robots than for humans, because most robots today do not
possess skin capable of sensing. Human skin is a complex
sensor and creation of comparable robotic skin is currently
an area of active research (see for example [5]). Even once
robotic skin is widely available, its complexity and cost
may be prohibitive for many applications. In this paper we
propose an active sensing strategy that robots can use to
estimate link contacts even without skin.

Since probabilistic techniques have been hugely success-
ful in other areas of robotics (e.g. see a recent book on
mobile robotics [6]), we focus on a probabilistic approach
to contact point estimation. Our approach results in an
efficient online technique that we utilize during our ex-
periments. As exact robot geometry is often unknown, we
also provide an offline algorithm for estimating geometric
parameters of robot links simultaneously with contact point
estimation. Our experimental results demonstrate that esti-
mation of contact point is crucial for control performance.

II. BACKGROUND

A. Related work in perception

To be able to operate in environments built for hu-
mans, robots need to estimate environment parameters
from sensory information. One popular sensor used for
manipulation perception tasks is vision (see [7] for a recent
survey). However, due to high precision of manipulators,
perception via contact offers very high precision that is
difficult to attain with other sensors. High precision is
often required for fine manipulation tasks and for balance
control tasks. Traditionally manipulation approaches do
not have probabilistic basis, e.g. [8], [9]. Recently, several
groups explored probabilistic techniques. For example, in
[10] a variant of Kalman filter has been used to estimate
environment parameters for cube-in-corner assembly tasks.

In [11], a particle filter variant was used to localize objects
by probing them with end-effector.

B. Related work in control

Research in motion and force control strategy has begun
with contact at the end-effector of the manipulator [12]–
[14] by using compliant frame selection matrices [15] [16]
to describe the decomposition of the end-effector space in
the contact frame. Later more general kinematic contact
models are presented by [17]–[21] for non-orthogonal
decomposition of motion and force directions.

Control strategies for multiple contact over multiple links
are presented by [2]–[4]. Liu et al. [2] present an adaptive
control approach for multiple geometric constraints using
joint-space orthogonalization and Schutter et al. [4] propose
a constraint-based approach dealing with multiple contact.

C. Overview of control approach

The control framework in this paper uses the approach
in [3], [22], which is to define the operational space
coordinates using contact force space, which spans all
contacts over the links. The dynamics of the contact forces
are then composed by projecting the robot dynamics into
the operational space and using an environment model.
Control torques are chosen to compensate for the dynam-
ics, resulting in linearized second order systems for each
contact force [16], [23]. This framework allows for the use
of any linear controller at the decoupled level of control.
The Active Observer (AOB) method [24] is then used to
deal with unknown disturbances, unmodeled friction, and
parameter errors in the environment model. Motion control
is then composed in the null-space using task consistent
dynamics [25], resulting in dynamically decoupled motion
and force control structure (Figure 2).

III. CONTACT ESTIMATION

A. Active sensing strategy for data collection

To collect data for link contact estimation, we perform
compliant motions of the link (see Fig. 3 for an illustration).
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Fig. 3. Active sensing strategy used to collect data for link contact
estimation. Force control is applied towards the environment object to
maintain contact. Motion control is applied in perpendicular direction.

The goal is to maintain contact with the environment
throughout the sensing procedure. This way geometric
shape of the robot allows us to estimate the environment.
To ensure that contact is always maintained, we pick an
arbitrary point on the link and initiate force control towards
the environment object. We then perform motion control in
direction perpendicular to the force control direction.

B. Model and notation

Our measurements consist of joint angles q of the manip-
ulator. We will denote by qt the set of all measurements col-
lected from time 1 to time t, i.e. qt = {q1, q2, ..., qt}. Since
we want to estimate contact along surface of manipulator
links, we need a representation of robot’s geometric shape.
3D shapes are usually represented by either polygonal
meshes or parametric surfaces (e.g. super-quadrics). Since
our PUMA manipulator has polygonal shape, we chose
the mesh representation. We denote the set of parameters
encoding robot’s shape by r. We denote by s the set of
parameters encoding shape of the environment object and
its relative position in robot’s coordinate system.

C. Probabilistic inference with known robot geometry

Let us first consider the simpler problem of estimating
environment parameters s when robot geometric parame-
ters r are known. In probabilistic terms it means finding
values of environment parameters s that maximize the
following probability:

Bel = p(s|qt, r) (1)

Using Bayes rule, we can re-write the above equation as

Bel = p(s|qt, r) = p(qt|r, s) p(s|r)
p(qt|r) (2)

Here p(s|r) and p(qt|r) are prior beliefs about object
shape and robot configuration given robot shape. Since
s does not appear in p(qt|r), this prior is constant with

respect to s. The object shape prior, p(s|r), encodes many
factors, for example that it is not possible for the object
to overlap with non-movable parts of the robot or that
symmetric objects are more likely than asymmetric in
human-made environments. Since it is difficult to obtain
an exact representation of this prior, it is convenient to
let the robot be unaware of these effects and assume the
prior to be uniform. Under this assumption, Bel becomes
proportionate to p(qt|r, s). It is also common to assume
separate measurements to be independent of each other,
which allows us to factor the belief as follows:

Bel ∝ p(qt|r, s) =
t∏

i=1

p(qi|r, s) (3)

Here p(qi|r, s) is the probability of ith measurement given
state parameters, which is also called measurement likeli-
hood. We model this probability as a Gaussian distribution
of the distance dist(r, s, q) between the robot and the
environment with variance σ2. We define the distance as
follows. If the robot and the environment object do not
overlap, it is the minimum Euclidean distance between
the surface of the robot in configuration q and the surface
of the object. If the robot and the object overlap, then it
is the minimum distance the object has to be moved in
order to not overlap with the robot. Then the measurement
likelihood can be written as:

p(qi|r, s) =
1√

2πσ2
exp{−dist(r, s, qi)2

2σ2
} (4)

Intuitively this makes sense because our active sensing
strategy specifically collects data when the robot is in
contact with the object. Thus configurations in which the
distance between the robot and the object is very small are
likely, while configurations for which the distance is large
are very unlikely.

Using this distribution for measurement likelihood al-
lows us to transform the belief estimation into a least
squares problem. By taking log of the belief we obtain:

log Bel = log
t∏

i=1

p(qi|r, s) + c1

=
t∑

i=1

log p(qi|r, s) + c1

=
t∑

i=1

log(
1√

2πσ2
exp{−dist(r, s, qi)2

2σ2
}) + c1

= − 1
2σ2

t∑

i=1

dist(r, s, qi)2 + c2 (5)

Here c1 is a constant resulting from taking log of the
proportionality relationship in 3. In the last line we collect
all constant terms (including c1) into a new constant c2.
Thus maximizing Bel with respect to s is equivalent to
minimizing

∑t
i=1 dist(r, s, qi)2, which is a least squares
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Fig. 4. We used this 6 DOF PUMA robotic manipulator in our link
contact estimation experiments. The manipulator is equipped with (a)
6D JR3 force/torque sensor at the wrist, and (b) a robotic finger with
a spherical end. For evaluation purposes only, we placed a force/torque
sensor in the environment (c). This sensor is not required for operation
of our method. We use it solely to evaluate performance.

problem. In general this problem is non-linear in the
unknowns. Non-linear optimization search techniques can
be applied to obtain a solution.

D. Simultaneous estimation of robot geometry and contact

In the most general case both robot’s shape parameters
and object parameters can be uncertain. Thus we need
to estimate both r and s (collectively state parameters)
based on the collected data qt. In probabilistic terms it
means finding values of state parameters that maximize
the following probability:

Belgeom = p(r, s|qt) (6)

Repeating similar derivations for Belgeom we again reduce
it to least squares form:

log Belgeom = − 1
2σ2

t∑

i=1

dist(r, s, qi)2 + c (7)

The only difference from Bel is that here the robot’s shape
r is unknown. Greater number of unknown parameters
requires longer computation times. Luckily, robot shape
parameters only need to be estimated once, as the robot’s
geometry does not change from one experiment to another.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

For our experiments we used a PUMA robotic manipu-
lator equipped with a JR3 force and torque sensor at the
wrist (Fig. 4). No additional sensors were placed at the
manipulator joints or links. To evaluate performance of
control strategies, we placed a second JR3 sensor in the
environment. It is important to note that this sensor is not
required for operation of our method. Its readings are not
used within control or estimation algorithms.

Fig. 5. Plot of all positions of PUMA’s third link edge during active
sensing step. The estimated contact point is shown as a red circle.

B. Experiments on contact estimation

In our experiments the third link of PUMA robot comes
in contact with an edge of an arm rest (Fig. 3). Due to shape
of the robot, this creates a single point contact against one
of the edges of the third link.

Once the robot comes in contact with the environ-
ment, active sensing strategy described in section III-A
is initiated. The manipulator motion during this strategy
is constrained within one plane. Therefore, the contact
point in the environment remains the same throughout the
procedure while the contact point on the link moves.

Since the contact is a single stationary point within the
environment, we can reduce our environment representation
s to single point coordinates in the global frame. Thus for
our experimental setup, the distance between the robot and
the environment is simply the distance between a point
and a line. Moreover, when robot geometry is known,
the squared distance is a second degree polynomial in
the unknown parameters. Thus the least squares problem
(derived in 5) is linear in this case and can be solved
in constant time using the eigenvalue method. Figure 5
plots motion of the third link during active sensing and the
resulting estimated contact point.

Our initial estimates of the robot’s geometry came from
measuring the robot with a ruler. However, it turned out
that the shape of the link is unobviously asymmetric and
thus our initial estimates were several centimeters off. For
comparison, we measured the environment contact point
with the end-effector of the PUMA manipulator. The error
resulting from our estimation algorithm was 3.4cm. This
is in part due to incorrect geometry of the link and in part
to imprecise measurement of the contact point with the
spherical end of the end-effector.

To obtain better estimates, we solve the full estimation
problem that simultaneously considers the robot’s shape r
and the environment contact point s. In this case the dis-
tance between the robot and the environment is non-linear
in the unknown parameters. This problem can be solved
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using a variety of non-linear optimization techniques. We
made use of Matlab’s implementation based on the method
described in [26].

As it is widely known, optimization search for non-linear
least squares is prone to getting stuck in local minima. To
overcome this problem we first obtain initial estimate of the
contact point with the ruler-measured geometry of the robot
using linear least squares as described above (known robot
geometry case). Then we use the obtained contact point
estimate together with the ruler-measured robot geometry
as a starting point for non-linear optimization search to
estimate r and s. Obtaining robot geometric parameters in
this fashion improved contact point estimation precision
from 3.4cm to 0.4cm.

C. Control using estimated parameters
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Fig. 6. Comparison of response to step force command with and
without link contact estimation. For the experiments without estimation
the assumed contact point was offset from actual position by 20 cm. In
the experiment shown a 20N step command was commanded to the robot.
The target response is denoted by the solid red line.

Intuitively, accurately estimated contact parameters
should be important for control performance. To verify the
significance in practice, we performed a series of compari-
son experiments. In these experiments we performed open
loop force control with and without link contact estimation.
As before, the robot maintained a point contact between
the third link and the arm rest. For the experiments without
estimation, the assumed contact point was displaced 20 cm
along the link edge from the actual contact point. We per-
formed a series of experiments with force step commands
ranging from 20 to 50 N . Figure 6 shows comparison plot
of force response in one of the step command experiments
with and without link contact estimation. To measure these
results we placed a JR3 force sensor under the arm rest.
This sensor is not needed for the estimation and control
algorithms, only for evaluation of the results. Overall, in
our experiments with contact estimation the error was less
than 20% and without contact estimation it was over 50%.

CONTACT

CONTACT

FORCEMOTION

Fig. 7. Performance of multi-contact control using the estimated
environment contact point. Two point contacts are maintained during these
experiments: third link contact with the arm rest and end-effector contact
with the desk. The robot maintains both contact forces and moves at the
same time.

D. Multi-contact with estimated link contact

We also conducted multi-contact environment interaction
experiments to demonstrate capabilities similar to human
handwriting behavior. These experiments are illustrated in
Figure 7. During these experiments the robot moves and
makes contact with the third link against the arm rest.
It then initiates active sensing procedure to estimate the
contact point. Once the point is estimated it moves to make
contact with its end-effector against the desk, while still
maintaining contact of the third link with the arm rest.
In this multi-contact configuration it performs the task of
force control and motion control simultaneously. For force
control, we command the normal direction forces at the
third link contact and the end-effector contact. The normal
contact force at the end-effector is feedback controlled
using the measured force information from wrist mounted
force sensor. However, the contact force on the third link
is controlled in an open loop and there is no feedback from
a force sensor.

Using the remaining degrees of freedom of the robot, the
third link was controlled to move in a tangential direction,
which created a motion toward and away from the robot
in a sinusoidal form. Note that even though we chose
to estimate link contact point prior to making a second
contact with the end-effector, the motion of the robot after
the second contact is made could be used to estimate link
contact. Thus the experiment demonstrates the possibility
of estimating link contacts using this procedure while
maintaining a multi-contact configuration.

Videos of our experiments are available at the website

http://cs.stanford.edu/∼anya/manips.html

V. DISCUSSION AND CONCLUSIONS

Perception of link contact enables a wide range of
applications including bracing to improve manipulation
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precision, exploration of environment and support during
climbing. For robots that do not have skin, we proposed a
probabilistic approach to approximating link contact based
on an active sensing strategy. Since robot shape is often
known only approximately, we have also proposed an
approach for simultaneously estimating robot shape and
contact point. Our experiments clearly demonstrate the
impact of contact estimation on control accuracy.

It is worth noting that estimation of link contact is
only possible when the robot has sufficient degrees of
freedom to carry out motion around the contact point.
For example, estimation via motion is theoretically not
possible for second link of the PUMA manipulator. In these
cases, artificial skin or other type of sensor is necessary to
estimate the contact. However, when degrees of freedom
are sufficient, the proposed active sensing strategy provides
estimates with good accuracy.

Although the described approach considers one contact
at a time, it applies even if the robot maintains multiple
contacts with the environment. Moreover the approach
can be easily extended to estimation of multiple contacts
simultaneously, provided the robot has the freedom to carry
out simultaneous exploratory motions around all of the
contacts. On the other hand estimation of multiple contact
points on the same link is unlikely to be possible using this
method, because the link will be unable to move around
each contact point independently.

There is ample room for future work on link contact esti-
mation. In our experiments we considered relatively simple
robot and environment geometries. For more complex
geometries (including complex polymesh and curved repre-
sentations), more sophisticated active exploration strategies
will likely be needed. While the derivations of this algo-
rithm apply to arbitrarily complex geometries, in practice
these geometries will entail significantly higher numbers
of parameters and lead to non-linear estimation problems.
Hence better search algorithms will be required. In addition
distance computation is more difficult for complex objects
and in fact the notion of distance may need to be redefined
depending on the representation.
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