
Latency Analysis of Coalescence for Robot Groups

Sameera Poduri and Gaurav S. Sukhatme

Abstract— Coalescence is the problem of isolated mobile
robots independently searching for peers with the goal of
forming a single connected network. This is important be-
cause communication is a necessary requirement for several
collaborative robot tasks. In this paper, we consider a scenario
where the robots do not have any information about the
environment or positions of other robots and perform a random
walk search. We show through probabilistic analysis that
as the number of isolated robots N increases, the expected

Coalescence Time decreases as 1/
√

N . Simulations results are
presented to validate this analysis.

I. INTRODUCTION

Mobile robots rely on wireless communication for col-

laborative tasks such as formations, collective exploration

and coverage, behaviors like construction and box pushing,

etc. In some applications, the robots start in a disconnected

state and attaining connectivity with each other is the first

step to begin a task. Robots could lose connectivity with the

network due to irregularities in wireless communication. We

can also imagine scenarios where the cost of maintaining

connectivity is very high and so the robots split into smaller

groups for some part of the task and rejoin later. Algorithms

to establish network connectivity are therefore very impor-

tant.

This paper focuses on a scenario where disconnected

robots either individually or in small groups search for their

peers and form large connected components. This is similar

to the phenomenon of coalescence in fluids - small fluid

drops merge together to from larger drops. We refer to

this problem of network formation as coalescence. While

coalescence can be considered a variation of the rendezvous

problem, we use the term coalescence to emphasize that the

connected component spreads as more robots join it. This

spread plays an important role in determining latency. The

basic idea is that robots need not be collocated to remain

connected. If they remain spread out, the disconnected robots

will have a better chance of discovering them. We are

interested in understanding the nature of the Coalescence

Time and in particular its variation with the number of

isolated robots. Our analysis uses an approximate model for

the communication spread of the connected component and

shows that the Coalescence Time decays as 1√
N

with the

number of robots N . On the other hand, if we ignore the
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communication spread and assume that the robots collocate

when they form a connected component then the Coalescence

Time grows as ln(n).
The robots’ search is modeled as a simple (memoryless)

random walk. The robots do not have any knowledge about

the environment or locations of other robots. We assume that

there is a single, stationary base station whose identity (but

not location) is known to all robots. The robots terminate

their search when they are connected to the base station either

directly or via other robots. This is illustrated in figure 1. It

is possible to develop coalescence strategies without using a

base station. For example, the robots could perform a random

walk and coalesce every time they meet any other robot

until all robots form a single component. However, such a

strategy is extremely hard to analyze. The simplified strategy

with the base station allows us to understand the nature of

Coalescence Time and the insights gained can be used to

design more sophisticated coalescence algorithms.

The remainder of this paper is organized as follows. Sec-

tion II discusses the related research, section III formulates

the problem, analysis of hitting times is presented in section

IV and section V verifies these models in simulation. We

conclude with a discussion of our contributions in section

VI.

II. RELATED WORK

Rendezvous is the problem of multiple mobile robots

meeting at a point in an unknown environment. Several

distributed algorithms have been proposed. Some of these

assume connectivity [1], [2]. If the communication graph

is an RNG then rendezvous algorithms have been proposed

that can deal with partial communication loss over some of

the links [3]. In the absence of connectivity, the robots can

explore the environment building a map of the landmarks [4]

where other robots are likely to visit. This is similar in

spirit to the Coalescence problem where the base station is a

landmark whose location is unknown. However, our focus is

on forming a connected component while allowing the robots

to remain “spread out” so that the time for coalescence is

reduced.

Several algorithms have been proposed to maintain con-

nectivity of a wireless network [5], [6] given that the initial

network is connected. Coalescence algorithms complement

these by providing a way to regain connectivity in the event

of node-failure, etc. . In [7], the variation in connectivity of

a network of robots performing random walks on a lattice

has been analyzed.

Recently, the role of mobility in increasing sensing cov-

erage of a network has been analyzed [8]. In particular, it
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(a) t = 0 (b) t = HT 4
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Fig. 1. Illustration of Coalescence for N = 4. The blue cone represents the base station, dark red circles represent robots and the yellow discs around
them are their communication regions. The arrows show the random walk steps with the faded discs being the robot positions at the previous time instant.
As robots join the base station’s network, the area of the connected component grows and the robots that are still searching have a better chance of hitting
it.

has been shown that the time taken to detect an intruder

decreases. In our problem, the robots have to detect the base

station. However, there are two key differences. First, in [8],

each robot chooses a random direction initially always moves

along that direction (with a varying speed) whereas in our

case, the robots change the direction of motion after every

fixed step length (while keeping the speed constant). Second,

in [8], the robots continue to move after a detection event

whereas in our case, when the robots hit the connected com-

ponent, they stop moving and join the connected component.

In random walks literature, a coalescing random walk

refers to a system of particles that coalesce when they hit

other particles while performing a random walk [9]. Several

asymptotic properties such as the time for convergence

have been analyzed. Here, a group of coalesced particles is

equivalent to one particle and this analysis does not capture

the increase in communication spread.

III. DEFINITIONS AND PROBLEM FORMULATION

A robot can communicate directly with any robot that is

within its communication range R. Two robots are connected

if they can communicate directly or via other robots. Coales-

cence is defined as initially isolated robots coming together

to form a single connected component. In this work, we

address the following problem.

Given a bounded domain D ⊂ ℜ2 and N isolated robots

that start at unknown locations and have no knowledge about

the structure of D, how long will it take for them to coalesce

into a single connected component?

Definition: The Coalescence Time (CT (n)) is the time

taken for n isolated robots to coalesce. Clearly, the Coa-

lescence Time will be a function of size of domain (D),

number of robots (n), communication range (R), and the

robots’ motion strategy.

A base station is assumed to be randomly placed in the

domain. Initially, the connected component consists only of

the base station. Robots are distributed independently and

uniformly, i.e. according to the Poisson point process. They

start independent random walks in search of the connected

component. When a robot comes into the communication

range of any robot in the connected component, it stops. Then

it is also part of the connected component. This is illustrated

in figure 1. The idea is that robots need not be collocated to

stay connected. By forming a connected component while

allowing robots to remain “spread out”, the Coalescence

Time is reduced.

Motion Model: Each robot moves independently of the

others. It chooses a direction θi uniformly distributed in

[0, 2π) and moves for a distance ℓ in that direction after

which it chooses another direction. When it gains connectiv-

ity with the base station, or any robots that are connected to

it, it stops moving.
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(a) t = 0 (b) t = 1 (c) t = 7 (d) HT 1
1 = t = 11

Fig. 2. Illustration of random walk model for N = 1. The blue cone and dark red circle are the base station and the isolated robot respectively along
with their communication discs. The light yellow region is the area that the robot has “covered” in its search for the base station.

Each robot is assumed to be a point so that it does not

obstruct any other robot. We do not assume any localization

or information about the environment.

IV. ANALYSIS OF COALESCENCE TIME

Let HTN
1 ≤ HTN

2 ≤ · · · ≤ HTN
N

be the

1st, 2nd, · · · , N th hitting times for a group of size N . These

are the times at which the 1st, 2nd, · · · , N th robots “hit”

or join the connected component of the base station. The

Coalescence Time, CT (n = N) = HTN
N

.

The hitting times HTN
m will depend on the communication

spread of the connected component - greater the communica-

tion spread, smaller the hitting times. Let S(m) represent the

shape of the connected component after m robots have joined

the base station. This is the union of the communication

discs of the base station and the m robots in the connected

component at t = HTN
m . At this time instant, the remaining

N − m isolated robots will be Poisson distributed over

the domain because of the initial Poisson distribution and

independent random motion model. Let Wi
m(t) represent the

walk traced by an isolated robot i, t time units after HTN
m .

Note that random walk traced by this robot before HTN
m can

be ignored because the random walk model is memoryless.

Our first step is to consider the case when there is only

one robot in the domain i.e. (N = 1) and estimate its hitting

time, HT 1
1 .

A. Hitting time for N = 1, HT 1
1

At t = 0, the connected component consists of the base

station alone. Therefore, S(m = 0) is the communication

disc of the base station with area πR2. At t = HT 1
1 , the

robot’s walk W1
0 (t) intersects S(m = 0). This is illustrated

in figure 2. It is easier to solve for HT 1
1 by considering the

robot’s perspective. The hitting time will be unchanged if

the robot remains stationary and the base station performs a

random walk, i.e. if S(m = 0) traces W1
0 (t).

Let S(m = 0) ⊕ W1
0 (t) represent the shape obtained by

moving S(m = 0) along W1
0 (t). The hitting time, HT 1

1 can

be estimated by finding the probability of the robot lying in

this shape. Since the robots are uniformly distributed, this is

given by

P(HT 1
1 ≤ t) =

A[S(m = 0) ⊕W1
0 (t)]

W(D)
(1)

where A[X ] is the area of a shape X .

For m = 0, S(m = 0) is the communication disc of the

base station and A[S(m = 0)] = πR2. Estimating A[S(m)⊕
W1

0 (t)] for general m is quite complex and hence we look

for an approximation.

Let α(t) =
A[S(m=0)⊕W1

0
(t)]

A[D]

We compute α(t) approximately by assuming that the

shape S(m = 0) ⊕ W1
0 (t) is uniformly distributed over

D. Strictly speaking, this assumption is not correct but

simulations presented in the next section indicate that it is

a reasonably good approximation. The uniform distribution

of S(m = 0) ⊕ W1
0 (t)) implies that with each new step,

the addition to the area α(t) is proportional to “open” area

in the domain i.e. the area that is not covered by S(m =
0) ⊕W1

0 (t). We can express this as the following recursive

equation.

α(t + 1) − α(t) ≈ (1 − α(t))
2Rℓ

A[D]

⇒ α(t) ≈ 1 −
(

1 − 2Rℓ

A[D]

)t

(2)

Since P(HT 1
1 ≤ t) = α(t), the hitting time has an

exponential distribution with mean

E[HT 1
1 ] =

A[D]

2Rℓ
(3)

For N = 1, this is also the Coalescence Time.

E[CT (n = 1)] = E[HT 1
1 ] =

A[D]

2Rℓ
(4)

B. First hitting time for N robots, HTN
1

Each of the N isolated robots performs a random walk

with a hitting time Ti, i = 1, 2, · · · , N . Any of these N
robots could be the first to hit the base station and therefore

the first hitting time, HTN
1 will be the minimum of all the

hitting times.

HTN

1 = min {T1, T2, ..., TN} (5)

T1, T2, · · · , TN have identical exponential distributions

with expected hitting time of E[Ti] = A[D]
2Rℓ

(from Eqn.

3). Moreover, the N walks are independent of each other.

FrA5.5

3297



The first hitting time being their minimum will also have an

exponential distribution with

E[HTN

1 ] =
1

N
· A[D]

2Rℓ
(6)

Therefore, larger the number of robots, smaller the first

hitting time which matches intuition.

C. mth(m > 1) hitting time for N robots, HTN
m

Consider the scenario when m− 1 robots have joined the

base station network. The remaining N − m + 1 robots are

uniformly distributed over D and perform independent ran-

dom walks Wi
m(t) to hit the connected component that has

a shape S(m− 1). Since the random walks are memoryless,

we can ignore the random walk steps prior to t = HTN
m−1.

This scenario is equivalent to that in the previous subsection

with a more complex shape of the connected component,

S(m−1). We expect that the time for the next hit, ∆HTN
m =

HTN
m − HTN

m−1 will have an exponential distribution with

an expected value of the form (similar to E[HTN
1 ])

E[∆HTN

m ] =
1

(N − m + 1)

A[D]

2 · Rm−1 · l
(7)

where Rm−1 is the effective radius of S(m−1) such that

if S(m − 1) were replaced by a disk of radius Rm−1 and

moved along the random walk path of an isolated robot, i,
then the area A[S(m − 1) ⊕Wi

m−1(t)] remains unchanged.

If we can estimate Rm−1, we can easily find HTN
m and

our analysis will be complete. Unfortunately, this is very

complex because Rm−1 depends not only on the area of the

connected component but also its shape. We will consider

two models for Rm−1.

1) Case 1: Assume that the connected robots collocate so

that Rm−1 = R. Then we have

E[∆HTN

m ] ≈ 1

(N − m + 1)

A[D]

2Rℓ
(8)

The hitting time HTN
m will have an exponential distri-

bution with

E[HTN

m ] = E[HTN

1 ] +
m

∑

i=2

E[∆HTN

i ]

≈ E[HTN

1 ] +

m
∑

i=2

1

(N − i + 1)

A[D]

2Rℓ

=
A[D]

2Rℓ

m
∑

i=1

1

(N − i + 1)
(9)

The Coalescence Time, CT (n = N) = HTN
N

can be

estimated as

E[CT (n = N)] = E[HTN

N ] ≈ A[D]

2Rℓ

N
∑

i=1

1

(N − i + 1)

= E[CT (n = 1)]

N
∑

i=1

1

(N − i + 1)

= Θ(lnN)
(10)

2) Case 2: Assume that Rm−1 ≈ (m) · R. By repeating

the above steps, we get

E[∆HTN

m ] ≈ 1

(N − m + 1)

1

m

A[D]

2Rℓ
(11)

E[HTN

m ] = E[HTN

1 ] +
m

∑

i=2

E[∆HTN

i ]

≈ E[HTN

1 ] +

m
∑

i=2

1

(N − i + 1)

1

i

A[D]

2Rℓ

=
A[D]

2Rℓ

m
∑

i=1

1

(N − i + 1)

1

i
(12)

Finally, the Coalescence Time, CT (n = N) = HTN
N

can be estimated as

E[CT (n = N)] = E[HTN

N ] ≈ A[D]

2Rℓ

N
∑

i=1

1

(N − i + 1)

1

i

= E[CT (n = 1)]

N
∑

i=1

1

(N − i + 1)

1

i

= Θ
( 1√

N

)

(13)

In case 1, the Coalescence Time increases as lnN whereas

in case 2, it decreases as 1√
N

. The difference illustrates the

effect of the increase in the communication spread of the

connected component.

V. SIMULATIONS

Simulations were conducted in MATLAB to verify the

analysis. The domain used is a 2D torus. The parameters

to the program are number of robots N , step size ℓ, com-

munication rage R and torus side T . The robots and the

base station start at random positions uniformly distributed

over the torus. Every robot picks a random direction and

moves with a uniform speed of 1 unit per time step. At

each time step, the robot checks if it is within a distance

R of connected component, in which case, it terminates its

random walk. After ℓ time steps, all the isolated robots pick

a new direction. The simulation stops when all the robots

are connected.

We first conducted experiments with a single robot to

verify our model for α(t) ≈ 1 −
(

1 − 2Rℓ

A(D)

)t

(Eqn 2). To

measure the area covered by the robot’s random walk, we
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(a) (b)

Fig. 3. Verification of the exponential model derived for α(t). Plots show α(t) vs. time averaged over 100 runs for varying (a) Step sizes and (b) Domain
sizes

(a) (b)

Fig. 4. The mean Coalescence Time decreases as 1/
√

N . The graph shows the result of 100 runs with l = 100 and R = 20 on a torus of side (a) 500
and (b) 1000

discretized the domain into a fine grid and flagged all the

grid cells that were within R of the robot’s random walk.

Note that the grid was only used to enable area computation

and the random walk model was not modified. Figure 3a

plots α(t) vs t for a range of values for the step length, ℓ.

The experiments show that the expression in Eqn. 2 is an

upper bound for α(t). α(t) varies with step length. It is low

for small step lengths (ℓ = R) but quickly approaches the

bound (ℓ = 10 ·R). Figure 3b shows that the expression for

α(t) holds for varying sizes of the domain.

Our next set of experiments simulated Coalescence and

measured Coalescence Time as a function of N . Figure 4

compares the mean Coalescence Time to the analytical

expression derived above
E[CT (n=1)]√

N
. Surprisingly, even

though the analysis was approximate, there is a very good

match with the simulation results.

Lastly, we study the effect of varying the step length ℓ on

the Coalescence Time. Figure 5 plots the Coalescence Time

for a fixed domain size (T = 500) and number of robots

(N = 100) with the step length varying from a very small

value (ℓ = R = 10) to the torus side (ℓ = T = 500). The

Coalescence Time does not vary significantly with the step

length. This was expected because according to Figure 3a for

ℓ ≈ 10 · R, α(t) converges to the exponential distribution.

However a step length that is much larger than the torus size

will not be efficient because it will lead to the robot’s path

overlapping itself and the Coalescence Time will increase.

VI. DISCUSSION AND CONCLUSIONS

We consider the problem of coalescence, i.e. isolated

robots independently searching for peers and forming a

single connected component. Coalescence strategies can
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Fig. 5. Variation Coalescence Time (CT) with step length for T = 500,
R = 10 and N = 100 averaged over 100 runs

complement algorithms for robot collaboration that require

a connected network. In the absence of localization or any

information about the environment, the robots can perform a

simple random walk search till they are within the commu-

nication range of other robots. We show using probabilistic

analysis that for such a strategy, Coalescence Time decays

as 1/
√

N with the number of robots, N . Even though the

analysis is approximate, there is a surprisingly good match

with the simulation results.

There are a number open problems and extensions to this

work. In the absence of a base station, what strategy will

guarantee the formation of a single connected component? Is

it possible to achieve this without the knowledge of the total

number of robots? If the robots form intermediate “blobs”

that perform the random walk and later merge to form

the connected component, would the time for coalescence

decrease?
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