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Abstract—We describe a clustering-based algorithm for 
tracking a dynamically varying number of targets observed by 
multiple sensors. The algorithm relies on discrete target 
detections (e.g., laser ``hits'') and a simple model of the targets 
to be tracked (e.g. a human is modeled in 2-D as a circle). The 
algorithm is evaluated in the context of a 4 versus 4 basketball 
game (8 targets) using 4 SICK LMS291 laser scanners as input.  
Our evaluations show that the sensor system correctly reports 
the number of targets roughly 99% of the time.  We also 
demonstrate use of the tracker with two video datasets of 
multiple changing numbers of ants and fish, respectively. 

I. INTRODUCTION 
RACKING humans, robots and animals is becoming 
increasingly important in order to analyze and 

understand behavior in domains ranging from biology to 
computer vision and robotics research.  Our focus is to 
automatically track the number and locations of multiple 
animals, objects or people (hereafter, “targets”) in a dynamic 
environment either indoors or outdoors in uncertain lighting 
conditions as they move rapidly through the environment 
over time. 

To address this task we focus on multiple laser range 
finders.  Laser range finders have been used in other 
research, for example in robot soccer to track a single ball 
[1].  Laser range finders are exceptionally reliable because 
they are not particularly susceptible to 'false positives' and 
'false negatives'.  In other words, a detected object (laser hit) 
almost certainly corresponds to an actual object in the world, 
and the lack of a hit reliably indicates that there is no 
corresponding object in the world.  Further, laser range 
finders have very high spatial accuracy; the laser hit 
corresponds to the object’s actual location, within 1.5 cm 
(according to the manufacturer). 

We use multiple sensors (lasers) placed at different 
viewpoints to address occlusion and to cover a large area at 
a greater density.  For example, a single laser placed at a 
location provides only one view.  Hence, it cannot detect 
hidden objects - objects that are behind another object when 

viewed from the viewpoint of the laser.  Multiple lasers 
overcome this problem by providing additional viewpoints 
that may discover these 'hidden' objects.  Another advantage 
is that multiple lasers provide more laser hits, consequently 
covering an area with a greater density.  Finally, supporting 
a number of lasers makes tracking more robust with respect 
to equipment failure.  
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In this paper we introduce an approach that accurately 
computes the tracks of a varying number of moving objects 
as they move through time.  Our approach uses multiple 
laser range finders that record objects’ positions.  It removes 
'uninteresting objects' and accounts for individual targets in 
close proximity.  The ultimate result is a series of snapshots 
of positions of objects as time unfolds.  Individual objects in 
these snapshots (or “detections”) are strung together, 
creating tracks of an individual object’s location over time.  

To illustrate our approach, we track players on a 
basketball court, and evaluate it’s performance across 
different metrics.  Although the focus is on laser-based data, 
we also test the approach with two video datasets. 

II. RELATED WORK 
Traditionally, tracking of humans has focused on using 

vision.  Machine vision is a well-studied problem, with a 
wide variety of approaches, such as particle filter based 
tracking 0 and color segmentation [2].  Research has also 
been done specific to tracking indoor team sports [3].  Some 
of these techniques have trouble dealing with situations in 
which the number of tracked targets is unknown or changing 
over time (for example, when a target temporarily leaves the 
field of view of the sensors).  Vision trackers are also 
typically very computationally intensive.  This limits their 
ability to function in real-time.  Finally, challenges for 
vision-based solutions also include the difficulty of dealing 
with changing lighting conditions and distinguishing 
foreground from background. 

Alternatively, lasers provide accurate information about 
the environment, requiring less computation than computer 
vision.  Laser data is more accurate than other range sensors, 
such as ultrasound and infrared.  One example of earlier 
research on laser-based tracking [4] uses occupancy grids 
and linear extrapolation of occupancy maps to estimate 
trajectories.  Another system [5] uses multiple lasers in the 
environment and advanced trajectory estimation algorithms 
to perform real-time tracking. 

The objective of many of these tracking systems is to be 
able to achieve the ultimate goal of identifying people or
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Fig. 1.  Overview of our system. 

other targets and their activities.  One system [6] built upon 
their earlier work [5] to detect anomalous interactions 
between people.  Likewise, our system will play a part in the 
ultimate goal of uniquely identifying tracks of individuals. 

III. APPROACH 
Our system accurately tracks a variable number of targets 

using multiple sensors. To track targets efficiently we have 
developed a clustering algorithm that exploits previously 
estimated positions while clustering detection-based data.  
We process the data in several phases, namely – data 
collection, registering, background subtraction and tracking. 

Fig. 1 provides an overview, illustrating the flow of data 
from one phase to the next.  First in the data collection 
phase, we use four SICK LMS-291 laser range finders to 
record the targets in the area of interest. In the registering 
phase the data is passed to several modules, which register 
the data in space and time to create a single global ‘picture’ 
of all laser data.  The data is then run through the 
background subtraction module to remove extraneous data 
points not related to the targets.  Finally, in the tracking 
phase the processed and formatted data is passed to the 
tracker, which computes tracks representing the location of 
each target using our clustering algorithm. 

As a detection-based tracker, video data can also be used.  
For such data, each pixel is determined to be either a 
detection or not, using an algorithm such as adaptive 
background subtraction or color segmentation.  This data 
can then be tracked, as described above. 

The goal of the tracker is twofold.  First, it must 
determine which clusters of data points in a given frame 
correspond to one of the target to be tracked.  Here, a cluster 
refers to a grouping of data points in one frame, which 
together represent a target to be tracked; the target is 
considered to be located at the cluster’s geometric center.  
Second, it must recognize these clusters from frame to frame 
in order to build tracks representing the same agent over 
time.  Our tracker accomplishes these goals in parallel, using 
the information about the clusters found in one frame to help 
find the corresponding cluster in the next. 

The tracker has three main elements.  The first uses the 
location of the clusters in previous frame(s) and iterates on a 
given frame to find all of the clusters in the current frame.  
The second builds up tracks across multiple frames, also 
eliminating clusters that are no longer present in the data.  
Finally, the third outputs the track information, filtering 
tracks which do not meet minimum requires of being a track. 

To test this tracking system’s accuracy, we began with a 
data set consisting of one basketball game about 20 minutes 
in length with 8 people (4 players per team).  Accuracy was 
measured in two ways; the number of tracks found in each 

frame and the correct handling of multi-track collisions.  
Also, the system’s ability to perform on two video datasets, 
multiple fish in an aquarium and ants in a potential nest, is 
examined.  Quantitative results are presented for the ant set. 

IV. RESULTS 
With the laser-based basketball data, the best accuracy the 

tracker achieves when detecting the correct number of tracks 
is 99.17%. 

We observed favorable results regarding our collision 
experiment as well.  The human observer detected 37 
instances of collisions in which the tracker should have split 
the tracks.  With the appropriate parameter setting, the 
tracker achieved 100% accuracy.  It should be noted that 
higher accuracy results for collision detection does reduce 
the average length of tracks. 

On the ant data, the track detection accuracy was 96.75%.  
This result compares favorably to other vision-based 
tracking.  For example, [7] achieved an 89% accuracy 
examining the same metric with a different vision-based 
tracker applied to a similar ant dataset.  Again, a split 
accuracy of 100% could be achieved, at the cost of shorter 
average track length. 
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