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Abstract— Various forms of animal locomotion have been
studied in the biological literature. Neuroscience research
suggests the existence of central pattern generators (CPGs),
neural networks that generate periodic signals for locomotion.
We study simplified modular architectures based on CPGs for
robotic applications, and show their global exponential stability
using partial contraction analysis. The proposed architectures
can reproduce periodic CPG signals for swimming or walking
motion of various animals. They can be combined towards
increasingly complex behaviors while preserving stability.

I. INTRODUCTION

Animals walk, run, swim, and creep. Central to these

motions are networks of neurons called central pattern gen-

erators (CPGs). Recently, robotics has been expanding to

many new areas and various means of locomotion have been

developed. Examples are snake robots [1], fish robots [2],

eel robots [3], and so on. To control these various types of

robotic locomotion, a plausible approach is to mimic or get

inspired from animal CPGs, leading to modular designs.

In this paper, we provide CPG models for swimming

and/or walking. Several studies influenced the models we

shall describe. The CPGs of the lamprey are studied in [4].

The unification of walking and swimming is studied in [5],

[6]. Application of CPG to robotics is actively pursued in

e.g. [6], [7]. The mathematical study of CPGs involves tools

on symmetry, graphs, bifurcation, and nonlinear dynamics

[8], [9]. In addition, mathematical interpretation of neuronal

activity plays an important role [10], [11].

Changing a few parameters in our models allows the CPGs

to switch among various patterns representing different gaits

of locomotion. A gait pattern in CPG is stable if the CPG

exhibits it after transients regardless of initial conditions. Us-

ing partial contraction analysis [12], [13], [14], we can find

conditions on the CPG parameters for global synchronization

along stable desired patterns. The modularity of the model

is exploited using a combined model resembling the CPGs

of amphibians, whose stability is analyzed with hierarchical

approach. Synchronization of two coupled oscillators with

different frequencies/amplitudes is also studied for potential

accommodation of feedback from external elements.

The paper is organized as follows. Section 2 describes a

single-chain CPG model, and its synchronization to desired
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patterns. In Section 3, a double-chain model and its behav-

iors of in-phase/anti-phase and phase-shift synchronization

are discussed, with a simulation showing various gaits. In

Section 4, the double-chain CPGs are combined to construct

a CPG capable of swimming and walking as amphibians.

Its stability is discussed using a hierarchical argument. In

Section 5, the phase-locking behaviour of two oscillators

with different frequencies is discussed in terms of partial con-

traction and synchronization. Section 6 provides concluding

remarks and a discussion about robotic applications.

II. THE SINGLE-CHAIN MODEL

We start with a single-chain model, where series of limit-

cycle oscillators form a chain. The model can generate a

traveling wave pattern, for which all the oscillators should

synchronize with specific phase differences, called phase-

shift synchronization. For example, the traveling wave pattern

can be used as motion primitives for snake-like robots [15],

[16], [3].

A. Oscillators in CPG

In general, CPG neurons and motoneurons exhibit com-

plicated dynamics such as spikes and bursts, which can be

modelled using several ODEs with the membrane potentials

and ion channel currents as state variables. In our study

of CPG, however, the network architecture plays more im-

portant role than the dynamics of individual cells. Hence,

only the periodic behavior of neuron is essential, which is

captured in phase-reduced models, e.g., [17].

Throughout the paper, the following limit-cycle oscillator

represents each cell in CPG;

ẋ = fρ(x) =


 −v −

(
u2+v2

ρ2 − 1
)

u

u −
(

u2+v2

ρ2 − 1
)

v


 , (1)

where x =
(

u v
)T

and ρ > 0 is the radius of the limit

cycle. It may be regarded as phase-reduced oscillators like

θ′ = f(θ) lifted up to R2 space. Besides the trajectories

converging to the limit cycle, its properties are

1) circular symmetry in the sense that fρ(Φx) = Φfρ(x)

for a φ planar rotation Φ =

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)

and

2) scalability in the sense that fρ(kx) = kfρ/k(x) for

k > 0.

Lifting a phase oscillator to R2 increased the dimension by

one, which may be exploited by using parameter ρ to control

the amplitudes of signals.
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Fig. 1. The CPG models: green arrows represent diffusive couplings;
red arrows represent non-diffusive couplings: (a) single-chain model (b)
double-chain model (c) limb and trunk model: oscillators LF, RF, LH and
RH are assigned to the left fore, right fore, left hind and right hind limbs,
respectively.

B. Model Description

The mechanism for phase-shift has been studied in bio-

logical context since 1978, when Stent et al [18] identified

neural circuits that induce intersegmental phase-shifts of

motoneurons by observing the swimming motion of leech.

In our single-chain model, illustrated in Fig. 1(a), phase-

shift is induced by diffusive couplings. When a coupling

is diffusive, it only depends on the difference of the two

oscillators — when the two oscillators are in the same state,

the effect of the coupling vanishes. Modifying a parameter

in the diffusive coupling could easily induce phase-shift

between oscillators to be shown shortly.

In general, the phase-shifts induced by one connection

and its reverse connection may be different. For example,

suppose cell 1 and cell 2 are mutually connected with phase-

shifts of φ1 and φ2, in each direction. If the two cells

have similar intrinsic dynamics and periodicity, then the

contradiction on phase-shifts may eventually get resolved

through adaptation so that φ1 and φ2 sum up to the period.

Accordingly, we model the ipsilateral couplings so that

φ1 + φ2 = 2π or, equivalently, φ2 = −φ1.

For a single-chain model of n oscillators, we have

ẋi =





fi(xi) − γbi(xi − T−1
i xi+1), for i = 1,

fi(xi) − γai−1(xi − Ti−1xi−1), for i = n,
fi(xi) − γ{ai−1(xi − Ti−1xi−1)

+ bi(xi − T−1
i xi+1)}, otherwise,

(2)

where fi denotes fρi
in (1) with limit-cycle radius ρi; ai > 0

and bi > 0 are coupling strengths for the caudal and rostral

directions; and γ is the overall coupling gain. In the caudal

coupling (xi to xi+1), Ti is defined as
ρi+1

ρi
Φi, where

Φi =

(
cos(φi) − sin(φi)
sin(φi) cos(φi)

)
, inducing phase-shift φi;

ρi+1

ρi
compensates the amplitude differences. In the rostral

coupling (xi+1 to xi), T−1
i induces phase-shift −φi.

C. Global Synchronization to the Pattern

A subspace is flow-invariant if system trajectories starting

there remain there for all future time. For the single-chain

model (2), using the circular symmetry and the scalability

of the oscillator verifies that ∆ps = {Tixi = xi+1, i =
1, . . . n − 1} is the flow-invariant subspace representing the

phase-shift synchronization.

Having identified flow-invariant subspace ∆ps correspond-

ing to the desired pattern, let us prove its stability using

partial contraction [12], which basically states that the

system exponentially converges to ∆ if its projection to ∆⊥

is contracting. Pham and Slotine [13] has also shown that

increasing overall coupling gain to the system will achieve

its global synchronization if the network is balanced and dif-

fusive, when the connectivity matrix is positive semidefinite.

The result can be applied to our model once we render the

coupling matrix to be symmetric and positive semidefinite

through coordinate transformation.

By defining x =
(

xT
1 · · · xT

n

)T
and f(x) =(

f1(x1)
T · · · fn(xn)T

)T
, the single-chain system (2)

is written as

ẋ = f(x) − γLx, (3)

where the coupling matrix L is

L =




b1I −b1T
−1
1 0

−a1T1 a1I 0

0 0 0


 + . . .

+




0 0 0

0 bn−1I −bn−1T
−1
n−1

0 −an−1Tn−1 an−1I


 .

Because ai’s and bi’s can be different and so are the limit-

cycle radii, the coupling matrix L is not balanced. To balance

the network, we define a new variable yps = Θpsx, where

Θps =




I 0 0 · · ·
0 ρ1

ρ2

√
b1
a1

I 0 · · ·

0 0 ρ1

ρ3

√
b1b2
a1a2

I
. . .

...
...

. . .
. . .




. (4)

We then have

ẏps = Θpsf(Θ
−1
ps yps) − γΘpsLΘ−1

ps yps, (5)

and the coupling matrix ΘpsLΘ−1
ps is positive semidefinite.

In the new coordinate system, ∆ps becomes

∆ps
y = {

√
biΦiy

ps
i =

√
aiy

ps
i+1,∀i 6= n}.

From the constraints of ∆ps
y , we construct a matrix

Ṽps =




√
b1Φ1 −√

a1I 0 0

0
. . .

. . . 0

0 0
√

bn−1Φn−1 −√
an−1I


 ,

whose rows form a basis for ∆ps⊥
y , and then obtain Vps

through orthogonalization of Ṽps. Following [13], ∆ps
y is

globally exponentially stable if the symmetric part of the

projected Jacobian is uniformly negative definite, i.e.,

Vps

(
ΘpsJfΘ

−1
ps

)
s
VT

ps < γVpsΘpsLΘ−1
ps VT

ps, (6)
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whose sufficient condition is given as

sup
x

λmax (Jf )s < γλmin

(
VpsΘpsLΘ−1

ps VT
ps

)
, (7)

where (A)s denotes its symmetric part, 1
2 (A + AT),

and Jf denotes the Jacobian matrix of f . Because

VpsΘpsLΘ−1
ps VT

ps is positive definite, (7) is satisfied for

large enough γ. Hence, yps converges globally to ∆ps
y ,

implying that x also converges globally to ∆ps.

III. THE DOUBLE-CHAIN MODEL

Double-chain models are pervasive in CPG literature since

biological observations [19], [20], [6] suggested that muscles

on each lateral side are controlled by distinct sets of neurons

connected to the particular side. Double-chain models can

also describe CPGs for legged locomotion [21].

A. Model Description

In our double-chain model, illustrated in Fig. 1(b), the

contralateral coupling is non-diffusive and one-to-one, con-

necting only the contralateral pairs, unlike our previous

study [22], where the connection was diffusive and all-to-

all between the chains.

Vectors xL = [xT
L1 · · · xT

Ln]T and xR = [xT
R1 · · · xT

Rn]T

represent the states of the oscillators on the left and

right chains, respectively. By extending the single-chain

model in (2) through contralateral coupling h(x) =
[h1(x1)

T · · · hn(xn)T]T, we obtain the following double-

chain model

ẋL1 = f1(xL1) − γb1(xL1 − T−1
1 xL2) − h1(xR1)

ẋLi = fi(xLi) − γai−1(xLi − Ti−1xL,i−1)
−γbi(xLi − T−1

i xL,i+1) − hi(xRi)
ẋLn = fn(xLn) − γan−1(xLn − Tn−1xL,n−1)

−hn(xRn),
(8)

where i = 2, . . . , n− 1 and hi(x) = −hi(−x) for all i. The

right side equations were omitted, since they are obvious due

to (L R) symmetry.

B. Concurrent Synchronization

The traveling wave pattern in the double-chain model can

be considered in the context of concurrent synchronization

[13], which is defined as a state where synchronized groups

coexist without being synchronized to other groups. From

the topology of our model, we consider two types of con-

current synchronization: the phase-shift synchronization of

each single-chain and anti-phase synchronization of each

contralateral pair. Let us refer to them as ipsilateral syn-

chronization and contralateral synchronization, respectively.

In the ipsilateral synchronization, the contralateral relation

remains undefined, and vice versa. It can be easily veri-

fied that the ipsilateral synchronization is flow-invariant if

all the contralateral couplings are identical, and that the

contralateral synchronization is also flow-invariant if the

ipsilateral couplings on the parallel chains are identical.

Using the concept of input-equivalence [13] or balanced

coloring [9] also verifies it. The stability of each concurrent

synchronization is studied using partial contraction below.

C. Ipsilateral Synchronization

If we define xi = [xT
Li xT

Ri]
T, then each contralateral

pair of oscillators are regarded as a lumped element with the

following internal dynamics

ẋi = Fi(xi) =

(
fi(xLi) − hi(xRi)
fi(xRi) − hi(xLi)

)
. (9)

The total system of x̂ = [xT
1 · · ·xT

n ]T is then written as

˙̂x = F̂(x̂) − γL̂x̂ (10)

similar to the single-chain model in (3), and the flow-

invariant subspace is identified as

∆ps,double = {
(

Ti 0

0 Ti

)
xi = xi+1, ∀i 6= n}. (11)

Using the partial contraction theorem yields a sufficient

stability condition similar to (7), the stability condition for

single-chain. In fact, ∆ps,double is stable if

sup
xi

max
i

λmax (JFi
)s < γλmin

(
VpsΘpsLΘ−1

ps VT
ps

)
,

(12)

where JFi
=

(
Jfi −Jhi

−Jhi
Jfi

)
. Hence, the ipsilateral

synchronization is achieved by increasing γ > 0 sufficiently.

In case Jhi
= kI, we have λ (JFi

)s = λ(Jfi)s ± k and thus

the synchronization is achieved for γ > 1 + |k|.
D. Contralateral Synchronization

Independent of the ipsilateral synchronization, the con-

tralateral synchronization can be achieved. The double-chain

model (8) can be written as

ẋL = f(xL) − γLxL − h(xR)
ẋR = f(xR) − γLxR − h(xL).

(13)

Defining x̄ = [xT
L xT

R]T yields

˙̄x = f̄γL(x̄) − H(x̄), (14)

where f̄γL(x̄) =

(
f(xL) − γLxL

f(xR) − γLxR

)
and H(x̄) =

(
h(xR)T h(xL)T

)T
. For contralateral synchronization,

there are two flow-invariant subspaces: ∆ap = {xR = −xL}
for anti-phase synchronization, and ∆ip = {xR = xL} for

in-phase synchronization. Let us apply the partial contrac-

tion theorem to find sufficient conditions for the system to

converge either to ∆ap or ∆ip.

1) Anti-phase synchronization: Constructing an orthonor-

mal basis Vap = 1√
2

(
I I

)
for ∆ap⊥, projected variable

zap = Vapx̄ converges exponentially to 0 if there exists a

coordinate transformation Θap defined in ∆ap⊥ such that
(
ΘapVap

(
Jf − γL −Jh

−Jh Jf − γL

)
VT

apΘ
−1
ap

)

s

< 0

⇔
(
Θap (Jf − γL − Jh)Θ−1

ap

)
s

< 0. (15)

In fact, if we choose Θps, defined in (4), for Θap, then (15)

becomes
(
Θps (Jf − Jh)Θ−1

ps

)
s

< γΘpsLΘ−1
ps , (16)
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Fig. 2. The double-chain hexapodal CPG patterns (bottom to top: L1, L2,
L3, R1, R2, and R3; solid lines: ui, dashed lines: vi)

and, since ΘpsLΘ−1
ps is positive semidefinite, it can be

further simplified to a sufficient condition

(Jf )s < (Jh)s , (17)

regardless of γ. In case hi(xi) = kxi, (17) becomes (Jf )s <
kI, which is satisfied for k > 1.

2) In-phase Synchronization: Similarly, using Vip =
1√
2

(
I −I

)
instead of Vap verifies that the in-phase con-

tralateral synchronization is achieved for (Jf + Jh)s < 0.

Assuming hi(xi) = kxi further simplifies it to (Jf )s < −kI,
which is satisfied for k < −1.

E. The Traveling Wave Pattern

If the system is in ∆ps,double and also in ∆ap, then it is

in the following subspace ∆∗ = {TixLi = xL,i+1,xL =
−xR; ∀i 6= n}, which is also flow-invariant. If both

∆ps,double and ∆ap are globally exponentially stable, then

so is ∆∗. Hence, the stability of the traveling wave pattern

is achieved by satisfying both (12) and (17). When the

contralateral coupling is given as h(x) = kI, it is simply

achieved for γ > 1 + k and k > 1.

The traveling wave pattern is not used only for snake

or fish robots, but can also be used for legged locomo-

tion. For example, setting n = 3 yields a hexapod CPG

model similar to [10]. Our simulation shows that, simply by

modifying coupling parameters, the model synchronizes to

various hexapodal gaits (Fig. 2). The synchronization along

each pattern can be quantitatively monitored using projected

variables as in Fig. 3.

IV. CPG FOR AMPHIBIAN WALKING

Conceivably a robot can both swim and walk as amphib-

ians do. Without limbs, there exist snake-like amphibious

robots such as Amphibot II [16] or ACM-R5 [15], which

crawl not walk. There are also many preceding works to

identify the CPG structure of a newt [5] and to propose a

biomechanical model of a salamander [6]. When amphibians
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Fig. 3. From the top, z
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= Vipx̄, z
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L
= VpsxL, and z

PS
R

= VpsxR

are plotted during the synchronization to a pronk gait.

walk, the trunk generates standing waves not traveling waves

and the limbs trot, moving in diagonal pairs.

Inspired by the hypothetical model of a newt CPG in [5],

we construct a simple CPG model for amphibian locomotion

and study its stability from the framework of partial contrac-

tion. The model is constructed by combining a 4-cell limb

CPG with a double-chain trunk CPG.

A. Hierarchical Combination of CPGs

According to [5], one-way coupling is likely to be dom-

inant in the newt CPG: rostral coupling is dominant in the

rostral part, and caudal coupling in the caudal part; and,

while walking, the signal propagates from limbs to trunk.

Hence, our model has one-way couplings in the trunk CPG,

and the coupling of limb and trunk is feed-forward from

limb to trunk as illustrated in Fig. 1(c). In such a network,

concurrent synchronization and hierarchical combination are

particularly helpful for analysis.

The idea of hierarchical combination of virtual systems

has been used in our previous work [22] to prove global

synchronization to a traveling wave in a double-chain CPG,

which is generalized here as

Proposition 1: Given a dynamical system ẋ = f(x) for

x ∈ V , a stable f -invariant subspace A, and a subspace B ⊂
A, let us define fA(x) = f(x) − g(VAx), where g(0) ∈ B
and VA is a matrix whose rows form a basis of A⊥. If B
is flow-invariant and stable for ẋ = fA(x), then it is flow-

invariant and stable for ẋ = f(x), too.

(Proof) For x ∈ A, ẋ = f(x) = fA(x)+g(0). For x(0) ∈ B,

x(t) =
∫ t

0
f +x(0) =

∫ t

0
fA+g(0)t+x(0);

∫ t

0
fA+x(0) ∈ B

for B is fA-invariant; g(0) ∈ B. Hence, x(t) ∈ B, and thus B
is f -invariant. For the augmented system of (zA, zB), where

zA = VAx and zB = VBx, the generalized Jacobian

(
I 0

0 ǫI

)(
VAJfV

T
A 0

VBJg VBJfAVT
B

) (
I 0

0 ǫ−1I

)

is negative definite for small enough ǫ > 0. ⋄
For example, consider a unilateral double-chain model

ẋLi = f(xLi) − γ(xLi − ΦxLi−1) − k(xLi + xRi)

ẋRi = f(xRi) − γ(xRi − ΦxRi−1) − k(xRi + xLi)

WeA9.5
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for i = 2, 3, ..., n; and

ẋL1 = f(xL1) − k(xL1 + xR1)

ẋR1 = f(xR1) − k(xR1 + xL1),

where f(·) is the limit-cycle oscillator (1) with ρ = 1.

1) Anti-Phase Synchronization: Without ipsilateral con-

nections, i.e., γ = 0, the anti-phase synchronization of all the

(xLi, xRi) pairs are achieved for k > 0.5 since the projected

Jacobian is (Jf )s − 2kI. Any feed-forward connection from

one pair to the other would not perturb the concurrent

synchronization if it preserves input-equivalence[13]. Hence,

∆ap = {xLi = −xRi,∀i} is not disturbed by the ipsilateral

couplings.

2) Phase-Shift Ipsilateral Synchronization: Proposition 1

allows us to discuss the global ipsilateral synchronization

under the constraints of ∆ap because ∆ap is globally stable.

In ∆ap, all the diffusive contralateral couplings vanish and

the model can be decoupled into the left and right chains.

Mathematical induction can show that xLi’s converge to

∆ps,n = {xLi = ΦxLi−1, i = 2, ..., n}. By partial con-

traction theorem, xL1 and xL2 converge to ∆ps,2 = {xL2 =
ΦxL1} for γ > 1. Applying the constraint of ∆ps,j , the

diffusive ipsilateral coupling in xLj vanishes, and xLj+1 and

xLj converges to ∆ps,j+1 for γ > 1. Hence, ∆ps,n is stable

under ∆ps,n−1. The domain can be extended recursively

from ∆ps,n−1 to the global subspace using Proposition 1.

For k > 1/2 and γ > 1, ∆ap
⋂

∆ps,n is globally stable.

B. Limb CPG and Trunk CPG

The limb CPG, shown in Fig. 1(c), is represented by the

following network

l̇LF = f(lLF ) − c(lLF + lRF ) − c(lLF + lLH)

l̇RF = f(lRF ) − c(lRF + lLF ) − c(lRF + lRH)

l̇LH = f(lLH) − c(lLH + lRH) − c(lLH + lLF )

l̇RH = f(lRH) − c(lRH + lLH) − c(lRH + lRF ),

where all the couplings are diffusive with coupling gain

c. From the partial contraction theorem, the limb CPG

synchronizes globally and exponentially to ∆trot = {lLF =
−lRF = −lLH = lRH} for c > 1

2 , generating a stable trot

gait.

The trunk CPG in Fig. 1(c) is modelled as

ẋL1 = f(xL1) − γ(xL1 − Φ−1xL2) − k(xL1 + xR1)

ẋL2 = f(xL2) − γ(xL2 − Φ−1xL3) − k(xL2 + xR2)

−l(xL2 − lLF )

ẋL3 = f(xL3) − γ(xL3 − Φ−1xL4) − k(xL3 + xR3)

ẋL4 = f(xL4) − l(xL4 − lRH) − k(xL4 + xR4)

ẋL5 = f(xL5) − l(xL5 − lLH) − k(xL5 + xR5)

ẋL6 = f(xL6) − γ(xL6 − ΦxL5) − k(xL6 + xR6)

ẋL7 = f(xL7) − γ(xL7 − ΦxL6) − k(xL7 + xR7)

ẋL8 = f(xL8) − γ(xL8 − ΦxL7) − k(xL8 + xR8),

where k, l, and γ are coupling gains. The right side equations

were omitted, since they are obvious due to (L R) symmetry.

The model consists of 3 parts: the limbs, the rostral part

(segments 1 through 4) and the caudal part (segments 5

through 8). The ipsilateral coupling is one-way in the trunk:

rostral in the rostral part and caudal in the caudal part. The

fore limb oscillators are linked to segment 2; Hind limb

oscillators drive the rostral and caudal parts from segments

4 and 5;

When amphibians walk, to generate the standing wave of

trunk, the muscle contraction should be in-phase along each

lateral side of trunk; and it should be anti-phase between the

rostral and caudal parts. The contralateral chains are also

anti-phase. In our model, the connection from hind limbs to

the fourth segment occurs across the median, which forces

the rostral and caudal parts anti-phase. For the in-phase

ipsilateral synchrony, Φ = I is selected. To summarize, the

amphibian walking motion, i.e, the standing wave motion of

trunk with the trot of limbs, is generated when the CPG is

in subspace ∆sw = {xL = −xR}
⋂{lLF = xL1 = · · · =

xL4 = −xL5 = · · · = −xL8}
⋂

∆trot.

The stability of ∆sw is verified similarly to Section IV-

A. In ∆trot, ∆ap,4 = {xL4 = −xR4} is flow-invariant

and stable for l + 2k > 1. In ∆ap,4
⋂

∆trot, the diffusive

contralateral couplings in segment 4 vanish, and thus {xL4 =
lRH} is stable for l > 1. We can apply the partial contraction

theorem and Proposition 1 recursively to conclude that the

limb and trunk CPG globally synchronizes to ∆sw for c >
1/2, l > 1, γ > 1, and k > 1

2 (1 − min(l, γ)).

For the amphibian swimming motion, the model can

generate a traveling wave, whose length equals the body

length, by setting φ = 2π/(n − 1) in Φ and by suppressing

the limb oscillators and its connections to trunk CPGs.

V. PHASE-LOCKING FOR DIFFERENT FREQUENCIES

For possible use in linking the CPG with external os-

cillators, e.g., the entrainment of oscillators to mechanical

parts [23], we discuss the synchronization of two coupled

limit-cycle oscillators, with different frequencies of 2π/τ1

and 2π/τ2,

τ1ẋ1 = fρ1
(x1) − w12(c1x1 − (r1/r2)x2) (18)

τ2ẋ2 = fρ2
(x2) − w21(c2x2 − (r2/r1)x1), (19)

where, ri = |xi|, wij is the coupling gain from j to i, and

ci defines the diffusiveness; ci = 0 implies non-diffusive

coupling.

Using coordinate transformation of (ui, vi) =
ri(cos θi, sin θi), the dynamics is expressed as

ξ̇ = g(ξ) =




τ−1
1 r1[1 − r2

1

ρ2
1

− w12c1 + w12 cos ∆θ]

τ−1
2 r2[1 − r2

2

ρ2
2

− w21c2 + w21 cos ∆θ]

τ−1
1 [1 − w12 sin∆θ]

τ−1
2 [1 + w21 sin∆θ]




,

(20)

for ξ = (r1, r2, θ1, θ2)
T. Let us define ∆θ = θ1 − θ2.

To find the equilibrium of frequency/phase-locking θ̇1 =
θ̇2, solving for ∆θ yields ∆θ = ∆θ∗, where ∆θ∗ = η or

WeA9.5

285



π − η, and η ∈ [−π/2, π/2] equals sin−1 (τ2−τ1)
w21τ1+w12τ2

. ∆θ∗

only exists for −1 ≤ (τ2−τ1)
w21τ1+w12τ2

≤ 1.

The invariant subspace for phase-locking is M = {θ1 −
θ2 = ∆θ∗}, which is affine. To manage the affin-

ity, let us follow [12]. For a linear subspace Ml =
span{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 1)} and vector c =
(0, 0, ∆θ∗, 0), since Ml is g(· + c)-invariant, the system

contracts to Ml + c if V(Jg)sV
T is negative definite.

For the orthogonal basis 1√
2
V = (0, 0, 1,−1) of M⊥

l , the

generalized Jacobian is V(Jg)sV
T = −p cos ∆θ, where

p = w12

τ1
+ w21

τ2
. Conclusively, phase difference ∆θ locks

to η for p > 0 and to π − η for p < 0.

VI. DISCUSSION

This paper proposes models of coupled nonlinear oscil-

lators, which generate oscillating patterns similar to those

observed in the central pattern generators of animals. For

the various structures of single-chain, double-chain, and

combination of double-chains, global exponential stability of

the patterns is established using partial contraction analysis.

Under input-equivalence conditions, it is shown that the

networks can be extended by combining concurrently syn-

chronized structures, and that the stability of the oscillating

pattern on the combined networks can be analyzed hierarchi-

cally. Coupling of two oscillators with different frequencies

is also discussed, to allow potential links with mechanical

parts modelled as oscillators.

The proposed CPGs can be used in various robotic lo-

comotion applications. The single-chain model is suitable

for fish [2], eel [3], or snake [1] robots, where one actuator

drives one segment. In case each joint has different load,

our models allow different amplitudes among oscillators.

Application of the double-chain model is found in legged

locomotion, e.g., [24], [25]. If a snake or salamander robot is

designed using biomimetic actuators, e.g., artificial muscles

[26], the actuators should be located laterally on the sides of

the body, and a double-chain CPG should be applied instead

of single-chain. The double-chain can be used for snake-like

robots [15] with 2-DOF joints.

To increase the reliability of CPG-based control, sensory

feedback and adaptation to unknown environments are nec-

essary in many applications. To allow adaptation of CPG to

mechanical body or environments, e.g., [23], we are currently

working on global synchronization of CPGs connected to

mechanical parts of different intrinsic frequencies.
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[19] S. Grillner, Ö. Ekeberg, A. El Manira, A. Lansner, D. Parker, J. Tegnér,
and P. Wallén, “Intrinsic function of a neuronal network — a vertebrate
central pattern generator,” Brain Research Reviews, vol. 26, pp. 184–
197, 1998.
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