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Abstract— This paper describes a hands-off therapist robot
that monitors, assists, encourages, and socially interacts with
post-stroke users in the process of rehabilitation exercises. We
developed a behavior adaptation system that takes advantage
of the users introversion-extroversion personality trait and the
number of exercises performed in order to adjust its social
interaction parameters (e.g., interaction distances/proxemics,
speed, and vocal content) toward a customized post-stroke
rehabilitation therapy. The experimental results demonstrate
the robot’s autonomous behavior adaptation to the user’s
personality and the resulting user improvements of the exercise
task performance.

Index Terms— Rehabilitation Robotics, Socially Assistive
Robotics, Social Human-Robot Interaction, Learning and
Adaptive Systems

I. INTRODUCTION

THE recent trend toward developing a new generation

of robots that are capable of moving and acting in

human-centered environments, interacting with people, and

participating and helping us in our daily lives has introduced

the need for building robotic systems able to learn how to

use their bodies to communicate and react to their users in

a social and engaging way. Social robots that interact with

humans have thus become an important focus of robotics

research.

Nevertheless, Human-Robot Interaction (HRI) for socially

assistive applications is still in its infancy. Socially assistive

robotics, which focuses on the social interaction, rather than

the physical interaction between the robot and the human

user has the potential to enhance the quality of life for large

populations of users, such as the elderly [30], people with

physical impairments and in rehabilitation therapy (e.g., post-

stroke patients) [7], [28], people with cognitive disabilities

and social and developmental disorders (e.g., children with

autism, children with attention deficit/hyperactivity disorder

(AD/HD)) [23], [24], [25].

In our work, the target user population is post-stroke

patients. Stroke is the leading cause of serious, long-term
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disability among American adults, with over 750,000 people

suffering a new stroke each year [19]. Stroke patients are

unable to perform movements with the affected limb, even

though the limb is not completely paralyzed. This loss of

function, termed learned disuse, can improve with rehabil-

itation therapy during the critical post-stroke period. The

best strategy of any post-stroke rehabilitation program is

the repetitive practice of exercises, which can be passive

and active. In the passive exercises (also knows as hands-

on rehabilitation), the patient is helped by the human (or

robot) therapist to move the affected limb, while in the active

exercises, the patient performs the exercises with no physical

hands-on assistance. The vast majority of existing work into

rehabilitation robotics focuses on hands-on robotic systems

(e.g., [4], [5], [22]). However, recent results from physical

therapy research show that such therapy may not be the most

effective means of recovery from stroke, and is certainly not

the only necessary type of much-needed treatment [7].

Our work focuses on hands-off therapist robots that as-

sist, encourage, and socially interact with patients during

their active exercises. We previously demonstrated [7], [11],

[12], [27], [28], through real-world experiments with stroke

patients, that the physical embodiment (including shared

physical context and physical movement of the robot),

encouragement, and monitoring play key roles in patient

compliance with rehabilitation exercises. Recently, we also

investigated the role of the robot’s personality in the hands-

off therapy process, by focusing on the relationship between

the level of extroversion/introversion (as defined in Eysenck

Model of personality [10]) of the robot and the user [28].

Building robotic systems capable of adapting their behav-

ior to user personality, user preferences, and user profile

so as to provide an engaging and motivating customized

protocol is a very difficult task, especially when working with

vulnerable users. Different learning systems for human-robot

interaction have been proposed in the literature [3], [20], but

none of them includes the human profile, preferences, and/or

personality in the model. To the best of our knowledge, no

work has yet tackled the issue of robot behavior adaptation

as a function of user personality in the assistive human-robot

interaction context. In our work, we address this issue and

propose a behavior adaptation system based on reinforcement

learning. The robot incrementally adapts its behavior as

a function of the users introversion-extroversion level and

of the amount of exercises he/she has performed, aiming

toward a more individualized and appropriately challeng-

ing/nurturing therapy style that will help to improve user task

performance. Our robot behavior adaptation system monitors
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Fig. 1. HRI information processing using the personality model of the user

the number of exercises performed by the human/patient,

which indicates the level of progress, and changes the robots

behavior in order to maximize this level.

The rest of the paper is structured as follows. Section II

presents a brief overview of our interaction design. In Section

III the proposed behavior adaptation system is described.

Section IV is dedicated to the description of the experimental

test-bed and the experimental setup. Experimental results are

presented in Section V. Finally, in Section VI, we conclude

the paper and discuss future work.

II. INTERACTION DESIGN

To date, none of the existing robotic systems for socially

assistive applications integrate the personality dimension in

their behavioral model. Inspired by Bandura’s model of

reciprocal influences on behavior [2], we believe that it is

helpful to incorporate the personality dimension in order

to improve human-robot interaction (HRI) and behavior

selection. Figure 1 depicts our general behavior control

architecture, which integrates the Eysenck model [10].

The extraversion-introversion dimension is based on the

observed inter-correlations between traits such as sociabil-

ity, activity, impulsiveness, liveliness and excitability, all of

which strongly influence behavior (see Figure 2).

In our interaction design, we chose to use two of those

traits: sociability and activity, which can be most readily

emulated in robot behavior. We chose to express these two

personality traits through three main parameters that define

the therapist robot behavior: interaction design / proxemics,

speed, and verbal and para-verbal communication. These are

described in more detail below.

A. Sociability

Sociability is the trait that most clearly expresses a per-

son’s level of extroversion-introversion. A large body of

research in social psychology has shown that individual

Fig. 2. Hierarchical level of Eysenck’s extraversion-introversion personality

behavioral differences are most apparent in social situations

[6], [8], [16]. In [14], Harkins, Becker and Stonner empiri-

cally illustrated that both the presence of others and their

social activities are typically more enjoyed by extraverts

than by introverts. In [9], Eysenck described the extravert

as sociable, friendly, talkative and outgoing. In contrast, the

introvert is quiet, introspective, and prefers small groups of

intimate friends. We posit that these are directly related to

verbal and non-verbal communication patterns. Hence, we

identified proxemics and vocal features (i.e., content, volume,

and speech rate) as relevant aspects to be embodied in the

robots behavior. Each is described below.

1) Proxemics: The interpersonal space in human inter-

actions has been widely studied in social psychology. Hall

[13], pioneer of the field of proxemics, identified four general

interaction spaces: Intimate (up to 0.3m; involves physical

contact), Personal (between 0.3-1.3m; typically used for

family and friend interaction); Social (about 1.3-3m; used

in business meetings and in public spaces); Public (beyond

4m, e.g., the distance between an audience and a speaker)

(see Figure 3).

In this work, we focus only on personal and social

interaction spaces. Neither the intimate space, nor the public

space is appropriate for our application; the former implies

contact and the latter involves no interaction. In [13], Hall

analyzed and found a strong link between human sense of
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Fig. 3. Interaction zones / proxemics: intimate, personal, social, and public

space and human behavior and personality type. We posit

that extraverted individuals, who like social interactions, may

prefer to have the robot physically closer than introverted

individuals, who may perceive the robot as invading their

space. Therefore, proxemics can be encoded as function of

the individual extraversion-introversion level.

2) Verbal and Para-Verbal Communication: Both vocal

content and paralinguistic cues, such as volume and speech

rate, play important roles in human interactions, and express

personality and emotion [1], [21], [29]. The similarity-

attraction principle, which assumes that individuals are more

attracted to other people manifesting the same personality

as theirs, has been studied in HCI (e.g., [18]). The inter-

action scripts that we designed displayed extroverted and

introverted personality types through the choice of words

and paralinguistic cues. More details about the different

interaction scripts are given in the Experimental Design

section (Section IV).

B. Activity

In addition to sociability, we also considered the activity

trait. Eysenck, in [9], [10], linked the human introversion-

extroversion personality trait with the activity level and

showed that people with high activity scores are generally

energetic and favor physical activity, while individuals with

low scores tend to be physically inactive. Therefore, high

activity is an extravert characteristic, while low activity tends

to characterize introversion. In our system, the activity of

the robot is correlated/matched to the users movement and

sociability, and its represented through robots movement

speed. Some of the movements that the robot performs are:

turning around itself, moving around the participant, and

moving toward and away so as to vary the proxemics. These

movements are performed at different speeds as a function

of the introversion/extroversion of the participant.

III. THE BEHAVIOR ADAPTATION SYSTEM

The main goal of our robot behavior adaptation system

consists of optimizing the three main parameters (interaction

distance/proxemics, speed and vocal content) that define the

therapist robot behavior, so as to adapt to the users per-

sonality and improve his/her task performance. The system

monitors the users task performance and the time spent

between exercises, and changes the robot’s behavior in order

to maximize the patients level of progress.

We formulated the problem as policy gradient reinforce-

ment learning (PGRL) and developed a learning algorithm.

The functioning of PGRL algorithm is the following: (a)

parameterization of the behavior; (b) approximation of the

gradient of the reward function in the parameter space;

and (c) moving towards a local optimum. More details

about the algorithm can be found in [15], [26]. Other

reinforcement learning techniques, such as Q-Learning, learn

an action-value function. Nevertheless, Q-learning, designed

for Markov decision processes, cannot directly be applied to

our problem since there is no obvious notion of state.

Figure 4 shows the pseudo-code of the policy gradient re-

inforcement learning (PGRL) algorithm. Our n-dimensional

policy gradient algorithm implemented for this work starts

from an initial set of parameters π = {π1, π2, ..., πn}
(where n = 3 in our case) and generates p random poli-

cies in the vicinity of π. The perturbations πPert =
{π1

p, π2
p, . . . , πn

p} are calculated by randomly adding ei-

ther +ǫi, 0, or −ǫi to the initial policy. Each ǫi is individually

chosen for each parameter and is small relative to πi. The

new perturbed parameter set is tested with a user and the

reward function is evaluated. Next, the partial derivative in

each of the n-dimensions is estimated. This is realized by

grouping each πi
p into one of three sets for each dimension

n, as shown in Figure 4 (steps (14), (15), and (16)). The

average rewards (i.e., Avg+ǫ,j , Avg+0,j , and Avg−ǫ,j) for

each parameter for the three cases (i.e., +ǫi, 0, or −ǫi)

are calculated. These three averages give an estimate of the

benefit of altering the i parameter by +ǫi, 0, or −ǫi.

The gradient in dimension i, Ai, is considered to be 0 if

the average reward for the unperturbed parameter is greater

than the other two average rewards, and is considered to be

the difference between the average rewards for the perturbed

parameters otherwise. The gradient A is normalized and

multiplied by the system step size η, so that the adjustment

will remain a fixed size for each iteration. Finally, the

parameter set π is adjusted by adding A.

The reward function that we used to evaluate the behavior

of the robot was one of the major challenges in implementing

the adaptive algorithm. The main issues with computing

the reward function and running an adaptive algorithm in

our case were the following: (1) the events that mark the

interaction between the robot and the participant are discrete,

thus computing the reward function can only occur at discrete

moments in time; (2) the evaluation of the reward function

has to take into consideration both: (a) the fact that as the

participant performs the exercises it will incur fatigue, which

will slow him/her down, regardless of the personality of the

robot or other parameters that we considered, and (b) the fact

that the robot is adapting and acting differently can distract

the patient, slowing down his/her response.

With these factors in mind, we designed the reward

function as follows: (1) we counted the number of exercises

performed by the patient during a given period of time, and
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1: π = {π1, π2, . . . , πn} ← Initial policy composed of the

initial set of n parameters

2: πPert = {{π1
p, π2

p, . . . , πn
p} | p ∈ {1..k}} ← Per-

turbed parameter sets derived from π

3: ǫ = {ǫ1, ǫ2, . . . , ǫn} ← Parameter step size vector

4: η ← System step size

5: while (not done) do

6: for p = 1 to k

7: for i = 1 to n

8: r ∈ {−1, 0, 1} ← Randomly chosen

9: πi
p = πi + ǫi ∗ r

10: end for

11: end for

12: Evaluate the reward by running the system

using the parameter set πPert

13: for i = 1 to n

14: Avg+ǫ,i ← average reward for all πp

with positive perturbation (for

which r was 1) in dimension i
15: Avg0,i ← average reward for all πp

with no perturbation (for which

r was 0) in dimension i
16: Avg−ǫ,i ← average reward for all πp

with negative perturbation (for

which r was -1) in dimension i
17: if (Avg0,i > Avg+ǫ,i and Avg0,i > Avg−ǫ,i

18: Ai ← 0

19: else

20: Ai ← (Avg+ǫ,i − Avg−ǫ,i)
21: end if

22: end for

23: A ← A
|A| ∗ η

24: for i = 1 to n

25: Ai = Ai ∗ ǫi

26: end for

27: π = π + A

28: end while

Fig. 4. Pseudo-code for the Policy Gradient Reinforcement Learning
(PGRL) Algorithm

(2) we adjusted the threshold value to reduce the effects of

fatigue and distraction caused by the adaptation procedure.

Similar applications of the adaptive algorithm deal with

either more consistent environments, or can evaluate the

reward function on a continuous basis, making adaptation

seem more real-time. For applications like the one described

in [15], the reward function is clearly determined as the

speed of the robot. Furthermore, in that case the same robot

was used in the same environment for the entire set of tests,

reducing the number of uncontrolled perturbations that can

affect the computation of the reward function.

Fig. 5. Robot Test-bed

IV. EXPERIMENTAL SETUP

A. Robot Test-bed

Our experimental test-bed, shown in Figure 5, consists of

an ActivMedia Pioneer 2-DX mobile robot base, equipped

with a SICK LMS200 laser rangefinder used to track and

identify people in the environment by detecting reflective

fiducials worn by the users.

An OHAUS SCOUT Pro Scale, a simple electronic scale

measuring weight, connected to a RS232 interface, was used

to compute the number of exercises performed by the user.

B. Experimental Design

Two experiments were designed to test the adaptability

of the robot’s behavior to the participant’s personality and

preferences. Our experimental design attempted to adapt

and match robot’s behavior and interaction style to different

user’s personality traits.

In each experiment, the human participant stood or sat

and faced the robot. The experimental task was intended as

a functional exercise similar to those used during standard

stroke rehabilitation and consisted of moving pencils from

one bin on the left side of the participant to another bin on

his/her right side. The bin on the right was on a scale, in

order to measure task performance.

The participants were asked to perform the task for 15

minutes, but they could stop the experiment at any time. At

the end of each experiment, the experimenter presented a

short debriefing. The adaptation algorithm was running for

the entire duration of the experiment, but it was automatically

activated only when the participant was performing below the

set threshold. The adaptation window was set to five minutes.

So far, our system has been validated with only healthy

participants. In order to be able to obtain more relevant

results, the healthy volunteers used their non-dominant limb

(their weaker side) while doing the specified tasks. They

were also encouraged to establish a social relationship with

the robot based on its personality and act as they would

normally do when interacting with a person with the same

characteristics.

Before starting the experiments, the participants were

asked to fill two questionnaires: (1) a general introductory

questionnaire in which personal details such as gender, age,

occupation, and educational background were determined
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TABLE I

INITIAL PARAMETERS FOR THE BEHAVIOR ADAPTATION ALGORITHM

Robot Behavior Parameters Initial Values Step Size ǫ

Therapy Style and Robot’s Personality
as expressed through vocal content
and para-verbal cues

Id=1 1

Interaction distance / Extroverted 0.7m 0.5m
proxemics Introverted 1.2m 0.5m

Speed Extroverted 0.1m/s 0.1m/s
Introverted 0.1m/s 0.05m/s

and (2) a personality questionnaire based on the Eysenck

Personality Inventory (EPI) [9] for establishing the user’s

personality traits.

Our learning algorithm was initialized with parameter

values that were in the vicinity of what was thought to be

acceptable for both extroverted and introverted individuals,

based on our previous study [28]. These values are described

in Table I.

On the post-experiment survey, the participants were asked

to provide their preferences related to the therapy styles,

interaction distances, robot’s speed, and robot’s vocal cues

(i.e., gender and accent). The participants were also asked to

rate their impressions on the robots personality on a 7-point

Likert scale (i.e., from strongly agree to strongly disagree).

1) Experiment 1: The goal of the first experiment was

to test the adaptability of the robot behavior to the user

personality-based therapy style preference. Four different

scenarios were designed for both extroverted and introverted

personality types. These therapy styles ranged from coach-

like therapy to encouragement-based therapy for extroverted

personality types and from supportive therapy to nurturing

therapy for introverted personality types (see Table II). The

words and phrases for each of these scenarios were chosen

carefully and in concordance with encouragement language

used by human therapists. The coach-like therapy script

was composed of very strong and aggressive language (e.g.,

“Move! Move!”, “You can do more than that!”). Higher

volume and faster speech rate were used in the pre-recorded

transcript voice, based on the evidence that those cues are

associated with high extroversion [17]. The aggressiveness of

words, the volume, and speech rate diminished along with the

robot’s movement towards the nurturing therapy style of the

interaction spectrum. Therefore, the nurturing therapy script

contained only empathetic, gentle, and comforting language

(e.g., “I’m glad you are working so well.”, “I’m here for

you.”, “Please continue just like that”, “I hope its not too

hard”). The voice used had lower volume and pitch.

A set of 3 interaction distances and speeds were chosen

for each introverted and extroverted personality types. These

are detailed in Table III.

2) Experiment 2: To construct an engaging and motivat-

ing customized protocol, in the second experiment we wanted

to ensure the robot was able to adapt to user preferences.

People are more influenced by certain voices and accents

than others. Two main scenarios were designed, one for

extroverted individuals and one for introverted, respectively.

TABLE II

THE CHOICE OF THERAPY STYLES AS A FUNCTION OF THE

USER-PERSONALITY

Parameter Extroverted

Id=1 Id=2 Id=3 Id=4
Therapy Coach-like Very

Challenging
Stimulating Encouragement-

based
Style Introverted

Id=1 Id=2 Id=3 Id=4
Supportive Educative Comforting Nurturing

TABLE III

THE CHOICE OF INTERACTION DISTANCES/PROXEMICS AND ROBOT’S

SPEED PARAMETERS AS A FUNCTION OF THE USER-PERSONALITY

Parameter Extroverted Introverted

Interaction Distance/ Id=1 Id=2 Id=3 Id=1 Id=2 Id=3
Proxemics (m) 0.7 1.2 1.7 1.2 1.7 2.2

Speed (m/s) 0.1 0.2 0.3 0.1 0.15 0.2

The scenario for the extroverted group was challenge-based

while the scenario for the introverted individuals was more

nurturing, in conformity with our previous study [17]. We

pre-recorded the same scenario with 2 males (one with accent

- French native speaker, and one without accent American

native speaker) and 2 females (one with accent - Romanian

native speaker, and one without accent American native

speaker) (see Table IV).

The choice of interaction distances/proxemics and robot

movement speeds was the same as in the first experiment

(see Table III).

V. EXPERIMENTAL RESULTS

The pilot experimental group consisted of 11 participants

(6 male and 5 female). The participants ranged in age

between 19 and 35, 27% were from a non-technological field,

and 73% worked in robotics or other technological field.

A. Experiment 1

The results obtained in the first experiment are mainly

shown in Figure 6. Figure 6 shows, for each participant, the

percentage of time spent interacting with each of the four

therapy styles of the robot. Bars represent the percentages

with respect to the total time spent doing the exercises.

Crosses represent the preference of the participant, as spec-

ified in a post-experiment survey. As illustrated in Figure 6,

the robot adapted to match the preference of the participant

in almost every case. The only exception was the interaction

TABLE IV

THE CHOICE OF THERAPIST ROBOT’S PERSONALITY AS EXPRESSED

THROUGH ENGLISH ACCENT AND VOICE GENDER AS A FUNCTION OF

THE USER-PREFERENCES

Parameter Id=1 Id=2 Id=3 Id=4

Therapist Robot’s
Personality as

Expressed through
English Accent and

Voice Gender

Female
with

accent

Male
with

accent

Male
without
accent

Female
without
accent
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Fig. 6. The percentage of time that the 11 participants interacted with
each of the four therapy styles of the robot (for extroverted and introverted
participants, as described in Table II). Crosses represent the participants’
interaction distances preferences.

Fig. 7. The percentage of time that the 11 participants interacted with
the robot at a certain distance (for extroverted and introverted participants,
as described in Table III). Crosses represent the participants’ interaction
distance preferences.

with participant number 8. Despite the fact that time spent

in the preferred training style of the participant was shorter

than time spent in other training styles, the robot converged

to it at the end of the exercise period. The reason for this

slight inconsistency was caused by the fact that the initial

state of the robot was in a training style that was furthest

from the preference of the participant. The fact that we

only allowed perturbations to neighboring training styles,

combined with the relatively short duration of the exercise,

jointly contributed to this result.

The results show that the robot could adapt its behavior

to both introverted and extroverted participant therapy style

preferences.

The adaptability of the robot matched the preferences of

the participant even in the case of the preferred distance

for interaction, as shown in the Figure 7. Both the extrovert

and introvert personalities chose a distance that matched the

personal state rather than the social space for their interaction

with the robot.

Fig. 8. The percentage of time that the 11 participants interacted with
each of the four therapist robot’s personality as expressed through accent
and voice gender (gender and English accent, as described in Table IV).
Crosses represent the participant’s preferences.

The robot also succeeded in adapting its speed to user

preferences. Introverted users preferred the lower speeds of

the robot and extroverted participants preferred the higher

speeds of the robot’s movement.

B. Experiment 2

In the second experiment, the results were again consistent

with our hypothesis that the robot is able to adapt and match

the participant’s preferences. Nevertheless, we encountered

two special cases, which we discuss next. First, participant

number 5 was not particularly influenced by the variations in

voice and accents and, as part of the post-experiment survey,

mentioned the fact that his second preference was in fact the

one in which the robot spent most of the time out of the

four choices. Second, participant number 7 had a preference

for a male therapist robot but did not care whether it spoke

with an accent or not. This is in fact consistent with choices

2 and 3 in which the robot spent 90% of the total time of

the exercise (see Figure 8).

For this case the distance between the robot and the partic-

ipant (see Figure 9) did not match perfectly the preference

of the participant. We believe that this was caused by the

fact that the number of adaptation steps was rather small

compared to the size of the state space of the parameters and

that this parameter had a smaller impact on the participant

reaching his/her goal.

In this second experiment, we obtained similar results for

the speeds as the ones in the first experiment.

VI. CONCLUSIONS AND FUTURE WORKS

This paper demonstrated the on-line adaptation of the

robot’s behavior (i.e., interaction therapy styles, interac-

tion distance/proxemics, and speed) to user personality and

preferences. Our experiments show that, with our proposed

model, the robot can adapt to user personality and prefer-

ences and can help users to improve their task performance,

by changing its own behavior. Future work includes exercises

over longer periods of time which will allow the robot to
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Fig. 9. The percentage of time that the 11 participants interacted with
the robot at a certain distance (for extroverted and introverted participants,
as described in Table III). Crosses represent the participants’ interaction
distance preferences.

better adapt as well as investigating various reward functions

that would enable us to understand the impact of each

parameter over the success rate of the adaptation process.

Even if socially assistive robotic technology is still in

its early stages of development, the next decade promises

assistive robotic platforms and systems that will be used in

hospitals, schools, and homes in therapeutic programs that

monitor, encourage, and assist their users. It is therefore

important that potential users, well beyond the technical

community, become familiar with this growing technology

and help shape its development toward its intended positive

impact on numerous lives.
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[12] R. Gockley and M. J. Matarić. Encouraging physical therapy compli-

ance with a hands-off mobile robot. In Proc. of the First International

Conference on Human-Robot Interaction (HRI’06), pages 150–155,
Salt Lake City, USA, March 2006.

[13] E. T. Hall. Hidden Dimension. Doubleday, Gordon City, NY, USA,
1966.

[14] S. Harkins, L. A. Becker, and D. Stonner. Extraversion-introversion
and the effects of favorability and set size on impression formation.
Bulletin of the Psychonomic Society, 5:300–302, 1975.

[15] N. Kohl and P. Stone. Policy gradient reinforcement learning for
fast quadrupedal locomotion. In Proc. IEEE International Conference

on Robotics and Automation (ICRA’04), volume 3, pages 2619–2624,
New Orleans, USA, May 2004.

[16] L. W. Morris. Extraversion and Introversion: An Interactional Per-

spective. Hemisphere Pub Corp., 1979.
[17] H. Nakajima, Y. Morishima, R. Yamada, S. Brave, H. Maldonado,

C. Nass, and S. Kawaji. Social intelligence in a human-machine
collaboration system: Social responses to agents with mind model and
personality. Journal of the Japanese Society for Artificial Intelligence,
19(3):184–196, 2004.

[18] C. Nass and M. K. Lee. Does computer-synthesized speech manifest
personality? experimental tests of recognition, similarity-attraction,
and consistency-attraction. Journal of Experimental Psychology:

Applied, 7(3):171–181, 2001.
[19] National Institute of Neurological Disorders and Stroke. Post-Stroke

Rehabilitation Fact Sheet, January 2006.
[20] Monica Nicolescu and Maja J. Matarić. Learning and interacting
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