
 
 

  

Abstract— Cable-based Parallel Manipulators (CPM) are 
light-weight manipulators that can reach high accelerations. 
The difference between the design of CPM and that of rigid-
link parallel manipulators is that cables can only perform while 
under tension. Redundant limbs, such as extra cables, springs, 
or cylinders, can be used for applying forces on the mobile 
platform to generate cable tensions resulting in a redundantly 
actuated manipulator. To operate this manipulator, the 
actuator-force distribution amongst the cables and the 
redundant limbs needs to be determined. Actuator-force 
optimization techniques developed for rigid-link manipulators 
are unsuitable for CPM. In this study, a numerical procedure 
based on convex analysis and optimization is presented to 
calculate the minimum-norm solution that minimizes the 2-
norm of actuator forces. The procedure is based on convex 
optimization that utilizes the Dykstra’s alternating projection 
algorithm to reach to the optimum solution. This numerical 
method is successfully applied to 3- and 6-degree-of-freedom 
(DOF) spatial CPMs to determine the optimum actuator forces 
for a given external load. This study addresses the static 
analysis in cable-based parallel manipulators in the language of 
convex analysis. 

I. INTRODUCTION 
arallel manipulators consist of a number of branches 
acting in-parallel on a mobile platform. In cable-based 

parallel manipulators (CPM), where branches consist of 
cables instead of rigid links, high accelerations can be 
achieved due to the reduced mass of the branches enabling 
CPM to perform ultra-high-speed operations. In CPM, 
cables should be in tension and that can be achieved by 
redundant actuation, in which extra loading is applied to the 
mobile platform. This loading can be obtained from a 
redundant cable [1],[2] or from another force-applying 
element such as a spring [3] or a pneumatic cylinder [4]. 
Since early 1990’s, a number of researchers showed interest 
in studying CPM and several designs were presented in the 
literature, such as NIST Robocrane [5], Falcon-7 [6], WARP 
[7], and WiRo [8]. Behzadipour and Khajepour [4] 
developed a 3-degree-of-freedom (3-DOF) translational 
cable-based manipulator, DeltaBot, in which cable tensions 
are maintained by a pneumatic cylinder applying a 
redundant force to the mobile platform. Russell [3] used a 
spring to keep the tension of the cables in a robot system 
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designed for small-scale grasping tasks in tension. Mroz and 
Notash [9] developed a prototype of a hybrid cable-based 
robot consisting of cables providing actuation and a rigid-
link arm providing the constraints required to generate the 
desired motion at the mobile platform. One of the main 
issues in the kinematics of CPM is achieving static 
equilibrium against external loading considering that cables 
cannot be under compression. Roberts et al. [10] used the 
null space of the Jacobian matrix to analyze the static 
equilibrium of CPM at certain configurations. Stump and 
Kumar [11] used tools from convex analysis and linear 
algebra to determine whether a CPM is fully constrained at a 
certain configuration and to calculate its workspace 
boundaries. Hassan and Khajepour [12] presented a 
methodology to determine the connection positions of the 
redundant limb in redundantly-actuated cable-based parallel 
manipulators.  

Because CPM are redundant systems that has more 
actuators than the task dimensions, infinitely many solutions 
for the distribution of cable tensions can be obtained for a 
given external load. One of the issues in the operation of 
CPM that has not yet received enough attention by 
researchers is resolving the actuation redundancy and 
determining the optimum cable forces distribution. Fang et 
al. [13] presented an analytical method to optimize cable 
tension distribution in CPM based on minimizing the sum in 
of cable tensions at every pose. Their method, however, is 
not applicable to CPM with more than one redundant cable. 
Determining the optimal cable tension distribution is 
essential for the efficient control and operation of CPM. This 
article presents a numerical approach based on convex 
analysis and optimization to determine the optimum the 
actuator-force distribution for a given external load based on 
minimizing the 2-norm of the actuator forces.  

II. BACKGROUND ON CONVEX ANALYSIS AND 
OPTIMIZATION 

To introduce the terms that will be used in this article, this 
section presents a brief background on convex analysis and 
optimization based on [14]. 

A set S  is convex if and only if for all points y, x  ∈ S , 
 

S∈−+ xy )1( µµ      ( 10 ≤≤ µ ) (1) 
 
Basically, this definition indicates that for any two points 

belonging to a convex set, all the points in the line segment 
that joins the two points also belong to that convex set. The 
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set formed by the intersection of any two convex sets is 
convex. An open convex set that has no boundaries is called 
an affine set, which is basically a subset that is a translation 
of a subspace. A subspace must include the Origin while this 
is not the case with an affine set. A set F  is affine if and 
only if for all points y, x ∈ F , 

 
F∈−+ xy )1( ρρ      ( )R∈ρ  (2) 

 
In other words, for any two distinct points in F , all the 
points in the line passing through these two points also 
belong to F . 

Another type of convex set that will often be used in this 
article is the orthant, which is a closed convex set that is the 
higher-dimensional generalization of a quadrant from the 
classical Cartesian partition of 2R (see Fig. 1). Common 

examples of orthants are non-negative and non-positive 
orthants, n

+R  and n
−R , respectively. Non-negative orthant 

n
+R  is expressed as: 
 

{ }ixnn ∀≥∈≡+ 0iRR x       (i = 1, …, n) (3) 

 
If a closed convex set S  belongs to a subspace M  in 
nR , (i.e., nR⊂⊂ MS ), for every nR∈x , there exists a 

unique projection of x  onto the convex set S , denoted here 
as ( )xSproj , such that the Euclidean distance between x  
and ( )xSproj  is minimized. The unique minimum-
Euclidean-distance projection of x  onto convex set S  can 
be determined by first projecting x  orthogonally onto 
subspace M  and then projecting the result onto convex set 
S , as seen in Fig. 2. This projection can be expressed as: 

 
( ) ( ))(xx MSS projprojproj =  (4) 

 
Due to the fact that orthants are self dual, the minimum-

Euclidean-distance projection of a point x  onto non-
negative orthant n

+R  can simply be obtained by zeroing all 
the negative entries of x  as: 

( ) { } ixproj in ∀=
+

0,maxxR    (i = 1, …, n) (5) 

 
where ( )xnproj

+R  is the minimum-Euclidean-distance 

projection of x  onto n
+R . 

III. BACKGROUND ON STATIC ANALYSIS OF CPM 
For a spatial CPM the relationship between the cable 

tensions and the external load applied on the end-effector 
can be written as (Fig. 3):  
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f and m  are the external force and moment applied to the 
end-effector, respectively; n is the number of cables; τ  is an 
n-dimensional vector of the cable tensions; iτ  is the tension 
in the ith cable; iu  is a unit vector in the direction of the 
force applied by the ith cable to the mobile platform; and ir  
is the position of the ith cable connection point on the 
mobile platform with respect to the end-effector. 

To achieve static equilibrium against arbitrary external 
loads, CPM operating in an m-dimensional task space must 
satisfy the following conditions: 
a) n ≥ m + 1, 

b) rank(A) = m, and 

c) 
( )

( ) ( ) 0
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Fig. 1.  Non-negative orthant 2

+R  (shaded and truncated).

 

 
 

Fig 2.  Projection onto a convex set in a subspace. 
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The above conditions are necessary for the existence of a 
solution for arbitrary external load w . Assuming that these 
conditions are satisfied, there are infinitely many solutions 
for τ  because the manipulator becomes in this case 
redundantly actuated. In this study, a numerical technique is 
presented to resolve the actuation redundancy in (6) and 
determine the minimum norm solution for τ . This solution 
minimizes the overall actuator forces and, hence, minimizes 
the overall power consumption. 

IV. MINIMIZING OVERALL ACTUATOR FORCES 
In this section, a technique based on convex analysis is 
presented to determine the actuator force distribution that 
minimizes the 2-norm of the actuator forces in CPM for a 
given end-effector force and moment.  

 If the number of columns in matrix A in (6) is greater 
than its rank, then matrix A has a non-empty null space 
indicating that there are infinitely many solutions for τ . The 
general solution for τ  in (6) can be written as: 

 
hwτ NA +−= +    : 0≥iτ   i∀  (7) 

 
where +A  is the Moore-Penrose inverse, also known as the 
pseudo inverse, of matrix A; N is a matrix whose columns 
form a basis for the null-space of matrix A ; and h is a vector 
of arbitrary real numbers.  

The solution in (7) consists of two parts: the first one is 
the term w+− A , which represents the minimum-norm 
solution that minimizes the 2-norm τ . The second part 

hN  is an arbitrary vector in the null-space of matrix A and, 
hence, affects the distribution of the actuator forces without 
affecting the force and moment at the end-effector. 
Assuming that the manipulator is in a non-singular 
configuration and that there are no maximum limits placed 
on the cable tensions, a necessary condition for the existence 
of a solution is the existence of a null vector hN  whose 
components are all positive [10]. The existence of this 
solution means that the cable-based parallel manipulator is 

fully constrained under any given end-effector force and 
moment, f and m . Methods by which one can determine 
whether or not a cable-based manipulator is fully 
constrained at a given configuration can be found in [10] and 
[11]. In this study, it is assumed that the cable-based 
manipulator is fully constrained and it is required to 
determine the minimum-norm solution of τ  denoted as 

ττmin . The condition that all components of τ  are non-

negative means that τ  must belong to non-negative orthant 
n
+R , i.e., n

+∈ Rτ , expressed as: 
 

{ }iτnn ∀≥∈=+ 0iRR τ  (8) 

 
By investigating (7), it is evident that the term 

hw NA +− +  is an affine set, whose dimension is the same 

as that of the null space of A, in nR . This affine set is 

formed by a subspace, whose basis is formed by the columns 
of matrix N, translated from the Origin ( τ = 0) by w+− A . 
This affine set denoted here as A  can be expressed as:  

 

{ }hwττ NA +−== +A  (9) 

 
This affine set is basically a translation of the null space 

of matrix A from the Origin ( 0=τ ) by w+− A . Matrix N is 
a basis matrix of that null space. Since A∈τ  and n

+R , τ  

belongs to the intersection of A  and n
+R , expressed as: 

 
AC C ∩n

+=∈ R:τ  (10)
 

The minimum-norm solution for τ  in (7), ττmin , is the 

unique minimum-Euclidean-distance projection of the 
Origin, 0τ = , onto convex set C  (see Fig. 4). Hence, the 
solution can be expressed as: 

 
( )0ττ τ ==  Cprojmin  (11)

 
where ( )0τ = Cproj  is the unique minimum-Euclidean-
distance projection of the Origin onto C .          

As explained in Fig. 2, because AC ⊆ , ( )0τ = Cproj  can 
be determined by projecting the Origin orthogonally onto A  
first and projecting the result onto C  as:  

 

( ) ( )( )0τ0ττ τ ====    ACC projprojprojmin  (12)

 
 

 

 
Fig. 3. Forces acting on mobile platform in CPM. 
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where ( )0τ = Aproj  is the minimum-Euclidean-distance 

projection of point 0τ =  onto A ; and 

( )( )0τ =  AC projproj  is the minimum-Euclidean-distance 

projection of ( )0τ = Aproj  onto C . Because 

( ) w0τ +−== Aproj  A , (12) can be written as: 
 

( ) ( )wτ0τ +−=== Aprojproj   CC  (13)
 
Substituting (13) in (11): 

( )wττ τ
+−== Aproj  Cmin  (14)

 
Since C  is an intersection of two convex sets, an 

analytical solution for ( )wτ +−= Aproj  C  cannot generally 
be determined. Instead, one can easily use the numerical 
alternating projection technique [14] to determine that 
solution. The alternating projection technique is an 
established iterative method that is based on projecting a 
point alternately on individual convex sets in order to reach 
to the minimum-Euclidean-distance projection of that point 
onto the intersection of those convex sets. Fig. 4 presents an 
illustration of the projection of a point onto the intersection 
of an orthant and an affine set. The Dykstra’s algorithm is a 
well-known alternating projection algorithm that was first 
presented by Dykstra [16] and reintroduced later by Han 
[17] who provided a proof of its convergence. This 
algorithm is used in this study to determine 

( )wτ +−= Aproj  C  in (14). 

 
 
The Dykstra’s algorithm 

To determine the minimum-Euclidean-distance projection 
of wτ += A onto the intersection set C  of non-negative 
orthant n

+R  and affine set A , let ik ,x  and ik ,y  belong to 
nR  where ik ,x  is the minimum-Euclidean-distance 

projection of nR∈t  onto convex set k at iteration i; and 
ik ,y = ( ik ,x − t).  The algorithm initializes at i = 0, where 

0,1x  = w+− A  is the initial point and 0,ky  =  0  for all k. 
 
for i = 1, 2, …, until convergence 
    1,2,1 −= ii xx  

    for k =1, 2  (where 1 and 2 are indices for n
+R  and A ) 

  t = ik ,1+x  − 1, −iky  

 ( )tx kik proj=,  

 ik ,y = ( ik ,x − t) 
     loop end 
loop end 
 
This algorithm makes successive projections on A and 
n
+R  until it converges at the minimum-Euclidean-distance 

point from wτ += A  to the intersection of A  and n
+R . 

Successive projections of t onto n
+R  and onto the affine set 

A  are denoted, respectively, as ( )tnproj
+R  and ( )tAproj . 

From (5), ( )tnproj
+R  is determined as: 

( ) { } itproj in ∀=
+

0,maxtR  (15)

 
Projection ( )tAproj  can be determined as: 

( ) ( ) ( ) wwtt +++ −+−= AAAAIprojA  (16)
 
This projection basically represents projecting t onto the 

null space of A and translating the result by w+− A . The 
final solution ττmin  is: 

ik ,min xτ τ =    : i = c (17)
 
where c is the iteration i at which the algorithm converges, 
i.e., at which 1,, −− ckck xx  + 1,, −− ckck yy ≤ ε.   

This solution minimizes the overall actuator forces, and, 
hence, minimizes the power consumption at a given end-
effector loading.  

V. EXAMPLES 
In the following, the procedure explained in this paper is 

applied to a 3-DOF and a 6-DOF spatial cable-based parallel 

 

 
Fig. 4.  An illustrative graph showing the projection of the Origin 
onto the intersection of an orthant with an affine set using 
alternating projections. 
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manipulators (CPM). 

A. 3-DOF Spatial CPM 
As shown in Fig. 5, the layout of this manipulator consists 

of three cables and two redundant limbs (cylinders) whose 
role is to keep the cables in tension. These two cylinders 
only apply forces in one direction and, therefore, can be 
modeled as redundant cables. They meet at point P, which is 
the end-effector point in a translation-only task space.  The 
three cables are connected to the fixed base on the top at 
points Ai (i = 1, 2, 3) that form an equilateral triangle, where 
subscript i is an index identifying each cable. The corners of 
the triangle lie on a circle with a 300 mm radius with its 
centre located at OA. The coordinate frame xA-yA-zA is 
attached to the fixed base at point OA with the xA-axis 
passing through point A1. Redundant limbs (cylinders) 1 and 
2 are connected to the base at [129.9 75.0 0] mm and 
[−129.9 75.0 0] mm, respectively. The position of P (end-
effector) is [0 0 300] mm from OA.  The external force 
applied to the end-effector is w = [−10 −7 −10]T  N. It is 
required here to determine the minimum-norm solution 

ττmin . At this configuration, matrix A  is calculated as: 
















−−

−

−−−
−

−−
−=

894.0894.0
224.0224.0

387.0387.0

707.0707.0707.0
612.0612.00
354.0354.0707.0

A       

The first three columns are the directions of the cables forces 
and the last two columns are the directions of the redundant-
limb forces. These redundant limbs are cylinders that apply 
compressive-only forces to the mobile platform. The term 

w+− A  in (7) is calculated as [3.51 −12.95 −0.24 −1.93  
5.45]T  N. The Dykstra’s alternating projection algorithm is 
applied to determine the minimum-Euclidean-distance 
projection of w+− A onto the intersection of non-negative 

orthant 5
+R  and affine set A  in (9), using the projection 

formulas in (15) and (16). Table I lists the projections onto 
5
+R  and A  until it converges to the minimum-norm 

solution, which is ττmin = [6.74 0.00 0.00 24.54 35.91]T N 

with ε ≤ 1−2. Each row of this table represents a cycle of 
projections which consists of two projections, one onto 5

+R  

and another onto A . The norm ττmin  = 44.02 is the 

minimum norm for τ  at the given external load w . The 
terms 1cτ ,…, 3cτ  are the forces along the three cables while 

1rτ  and 2rτ  are the forces of the two redundant limbs 
(cylinders). 

B. 6-DOF Spatial CPM 
As shown in Fig. 6, this manipulator consists of six cables 

and three redundant limbs (cylinders) connecting the base to 
the mobile platform. Similarly, these cylinders only apply 
forces in one direction and, therefore, can be modeled as 
redundant cables. Points Ai and Bi form an equilateral 
triangle in the mobile platform and lie on a 200-mm-radius 
circle whose centre is OB, where subscript i identifies each 
cable. The coordinate frames xA-yA-zA and xB-yB-zB are 
attached to the fixed base and mobile platform, respectively. 
The three redundant limbs are connected to the base at 
points located at [210.0 0.0 0.0] mm, [−105.0 −181.9 0.0] 
mm, and [−105.0 181.9 0.0] mm from OA. The connections 
of the three redundant limbs to the mobile platform are 
respectively [100.0 0.0 0.0] mm, [−50.0 −86.6 0.0] mm, and 
[−50.0 86.6 0.0] mm respectively, from OB. The mobile 
platform has a zero orientation relative to the base and point 
OB is located at [0.0 0.0 300.0] mm from OA.. The external 
force and moment applied to the end-effector is w = [ f T  mT 

]T  where  f = [−10 5 −10]T N applied to point OB and m = [8 
−5 3]T  Nm both expressed in xA-yA-zA coordinate frame. 
The inverse kinematics solution for this manipulator can be 
found in [18]. The term w+− A  in (7) is calculated as [0.73 
−4.63 1.66 −2.69 −6.15 3.59 −0.82 1.73 3.77]T  N, where the 
first six components correspond to the cables while the last 
three columns correspond to the three redundant limbs. 

 
Similarly, to determine the minimum-norm solution, the 

 
 
Fig. 5.  A schematic diagram of the 3-DOF example 
manipulator. 

 
TABLE I 

ALTERNATING-PROJECTION RESULTS FOR THE 3-DOF EXAMPLE 

Projections on 5
+R  Projections on A  I t e r -

ation
1cτ 2cτ 3cτ 1rτ 2rτ  1cτ  2cτ  3cτ 1rτ 2rτ

1 3.51 0.00 0.00 0.00 5.45 4.36 -11.66 2.45 -1.05 8.39
2 4.36 0.00 2.24 0.00 8.39 4.76 -10.57 4.60 -0.72 10.95
3 4.76 0.00 4.60 0.00 10.95 5.05 -9.53 6.59 -0.53 13.38
4 5.05 0.00 6.59 0.00 13.38 5.26 -8.59 8.37 -0.43 15.59
5 5.26 0.00 8.37 0.00 15.59 5.42 -7.75 9.97 -0.36 17.59
           

77 6.74 0.00 24.54 0.00 35.90 6.74 0.00 24.54 0.00 35.91
78 6.74 0.00 24.54 0.00 35.91 6.74 0.00 24.54 0.00 35.91
79 6.74 0.00 24.54 0.00 35.91 6.74 0.00 24.54 0.00 35.91
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Dykstra’s alternating projection algorithm is applied to find 
the minimum-Euclidean-distance projection of w+A onto 
the intersection of non-negative orthant 9

+R  and affine set 
A .  The results of the successive projections are listed in 
Table II and the final solution is ττmin = [3.70 0.00 7.23 

4.01 0.00 6.94 3.04 10.01 15.08]T N with ε ≤ 1−3.  The terms 
1cτ ,…, 6cτ  are the forces along the six cables while 1rτ  and 

3rτ  are the forces of the three redundant limbs (cylinders). 

VI. CONCLUSION 
It is seen that convex analysis provided an efficient way to 

formulate the static analysis of cable-based parallel 
manipulator addressing the constraints imposed on the cable 
forces. In this study, a numerical approach based on 
alternating projection was presented to find the minimum-
norm solution for the forces in the cables and the redundant 
limbs. The alternating projection algorithm was applied on 

two different example manipulators. The minimum-norm 
solution minimizes the overall actuator forces and, hence, 
minimizes the power consumption during the operation.   
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Fig. 6.  A schematic diagram of the 3-DOF example 
manipulator. 

 

 
 

TABLE II 
ALTERNATING-PROJECTION RESULTS FOR THE 6-DOF EXAMPLE 

Projections on 9
+R  Projections on A  Iter- 

ation 
1cτ  2cτ  3cτ  4cτ  5cτ  6cτ  1rτ 2rτ 3rτ  1cτ 2cτ 3cτ 4cτ 5cτ 6cτ  1rτ  2rτ  3rτ

1 0.74 0.00 1.66 0.00 0.00 3.59 0.00 1.73 3.77 1.45 -3.78 2.71 -1.17 -4.67 4.47 0.26 3.15 6.45 
2 1.45 0.00 2.71 0.00 0.00 4.47 0.00 3.15 6.45 1.74 -3.16 3.52 -0.13 -3.74 4.83 0.54 4.32 8.24 
3 1.74 0.00 3.52 0.00 0.00 4.83 0.00 4.32 8.24 1.88 -2.69 4.14 0.58 -3.14 5.00 0.58 5.26 9.42 
                   

42 3.70 0.00 7.22 4.01 0.00 6.94 3.04 10.01 15.08 3.70 0.00 7.23 4.01 0.00 6.94 3.04 10.01 15.08
43 3.70 0.00 7.23 4.01 0.00 6.94 3.04 10.01 15.08 3.70 0.00 7.23 4.01 0.00 6.94 3.04 10.01 15.08
44 3.70 0.00 7.23 4.01 0.00 6.94 3.04 10.01 15.08 3.70 0.00 7.23 4.01 0.00 6.94 3.04 10.01 15.08
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