
Automatic Deployment and Formation Control of Decentralized

Multi-Agent Networks

Brian S. Smith, Magnus Egerstedt, and Ayanna Howard

Abstract— Novel tools are needed to deploy multi-agent
networks in applications that require a high degree of accuracy
in the achievement and maintenance of geometric formations.
This is the case when deploying distributed sensing devices
across large spatial domains. Through so-called Embedded
Graph Grammars (EGGs), this paper develops a method for
automatically generating control programs that ensure that
a multi-robot network is deployed according to the desired
configuration. This paper presents a communication protocol
needed for implementing and executing the control programs
in an accurate and deadlock-free manner.

I. INTRODUCTION

Formations, i.e. multi-robot configurations that satisfy

certain geometric properties (e.g. [1], [2], [3]), can be repre-

sented through weighted graphs. In these graphs, the vertices

represent the agents, while the weighted edges specify the

corresponding inter-agent distances of the formation (e.g. [4],

[5], [6]). In this paper, we use directed graph-encodings of

the target formations. We assume that the graph contains the

minimal number of edges to maintain the geometrical shape

of the desired formation. For each edge in the formation,

the responsibility of maintaining the distance is delegated to

a single agent, denoted by the edge’s direction. Thus, this

directed graph represents a minimally persistent formation

[7].

In this paper, we take these minimally persistent forma-

tions as inputs to an algorithm that automatically generates

the appropriate control program for ensuring that the actual

robots achieve and maintain the target formation. We achieve

this by defining and executing Embedded Graph Grammars

(EGGs) [8]. EGGs support the specifications of different

control laws and the local network characteristics under

which the control laws are applicable. We describe a method

for defining an EGG that produces a persistent formation

given a sequence of purely combinatorial graph operations

that produce the formation. We also present a communication

scheme called prioritized lock negotiation for implementing

the resulting EGG on a distributed network of agents.

II. PRELIMINARIES

Here, we review basic assumptions and terminology. We

assume that the multi-agent team consists of n planar mobile

robots, with xi(t) ∈ ℜ2 being the position of agent i at

time t, i ∈ N = {i, . . . , n}. We moreover assume that the

dynamics of each robot is given by a single integrator, i.e.

ẋi(t) = ui(t), i ∈ N . We also assume there is a defined

The authors are with the School of Electrical and Computer Engineer-
ing, Georgia Institute of Technology, Atlanta, GA 30332, USA. Email:
{brian,magnus,ayanna.howard}@ece.gatech.edu

proximity range ∆ ∈ ℜ. A robot can identify and sense the

relative position of other robots if and only if those robots

are within proximity range. We moreover assume a user

graphically inputs the desired relative positions pi ∈ ℜ2, i ∈
N of the planar robots to specify the target formation. As the

robots are assumed to be homogeneous, it does not matter

what robot is assigned to what position. We also assume that

the formation is translationally and rotationally invariant.

A. Minimally Persistent Target Specifications

We let G be a minimally persistent graph that, along with

the relative positions, defines the set of inter-agent distances

to be kept and the geometry of the desired formation. In

fact, G is a weighted, directed graph defined by the triple

(V, E, δ), where V = {V1, . . . , Vn} is the vertex set, E ⊂
V×V is the edges set, and δ : E → ℜ gives the edge weights

as δ(Vi, Vj) = ‖pi − pj‖. As G is minimally persistent, it

has been shown how to build up such a graph by a sequence

of subgraphs [9]. This sequence starts with a graph with

only two vertices, G2. We refer to this graph as the leader-

follower seed graph. Here, one of the vertices is the leader

and the other is the follower.

We assume that the next graph G3 in the sequence contains

three vertices, obtained through a so-called directed vertex

addition, where Vk is added, along with edges (Vk, Vi) and

(Vk, Vj). Adding vertices in this systematic fashion results

in a so-called Henneberg sequence [10] of nested subgraphs

G2, G3, . . . , Gn, with Gn = G. We use the shorthand

V(Gp) and E(Gp) to denote the vertex and edge sets of

Gp respectively. The sequence itself can be automatically

generated from G [9]. This paper assumes that the sequence

G2, . . . , Gn = G is given, and produces automatically

generated control laws that ensure that the actual robots

achieve the target formation. The generation of these control

laws is the main topic of the next section.

B. Robot Networks as Vertex-Labeled Graphs

An Embedded Graph Grammar (EGG) [8] is a formalism

that encodes dynamic, geometric, and network properties of

a multi-agent system in a unified manner. In this paper, we

discuss how to construct an appropriate EGG for building

up the desired target formation G through an assembly

process based on the Henneberg sequence G2, . . . , Gn from

the previous sections. At the core of an EGG is the notion of

a graph-grammar that takes as inputs vertex-labeled graphs

and produces other vertex labeled graphs according to a given

rule set. Through the application of the rules in the rule set,

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 134

edges may be removed or added to the graph, and the vertex

labels may change.

For the development in this paper, the graph that we are

interested in is one that keeps track of what actual robots

have been assigned to what target positions in the formation,

as well as what robots are in charge of maintaining what

inter-robot distances. We denote this vertex-labeled graph by

G(t) = (V, E(t), l), where V = {V1, . . . , Vn} is the vertex

set, E(t) is the edge set (at time t), and l assigns a label

to each vertex. As a result, this graph is time dependent in

that the vertex labels are dynamic and edges may be added

as time progresses. Here, G(t) corresponds to a graphical

encoding of what the robots are actually doing at time t,
while G encodes the target formation.

The vertex label function l assigns to each vertex in G(t)
either a vertex in V(G) or the unassigned label w /∈ V(G).
It also associates a Boolean value to each vertex Vi ∈
V depending on whether or not the corresponding agent

i has reached its target destination. We use the notation

l(Vi).assign ∈ V ∪ {w} to denote the desired position in

the target formation that agent i has been assigned to, and

l(Vi).f inal ∈ {true, false} as a flag that indicates whether

or not agent i has converged sufficiently close to its target

destination. If l(Vi).assign = w, we say that agent i is

a wanderer. Otherwise, we say that agent i is an assigned

agent.

In the development of the EGG for assembling G sequen-

tially, we need to define the initial condition for G(t). We let

G(0) = (V, E(0), l0), with E(0) = ∅, l0(Vi).assign = w,

and l0(Vi).f inal = false ∀i ∈ N . This graph serves as the

initial condition to a trajectory over G(t) as the minimally

persistent graph G is assembled, which is the topic of the

next section.

III. EMBEDDED GRAPH GRAMMARS FOR SEQUENTIAL

TARGET FORMATION ASSEMBLY

A. Rules, Guards, and Control Laws

As the robots move around and establish links with

neighboring robots, corresponding to distances that are to

be maintained in order to produce the target formation G,

the network topology changes. In order to characterize this

mechanism, we define graph-transition rules. Each rule con-

sists of a vertex-labeled left graph L (the input to the rule),

a vertex-labeled right graph R (the output to the rule), and

a guard that defines the geometric conditions under which

the rule is applicable. In order for rule r to be applicable

to the robot network, some subset of G(t) must ”look” like

L ∈ r. For this, we follow the notation in [8] and we define

a witness h : VL 7→ V as a label-preserving isomorphism

between the vertices VL of the left graph L and the vertices

of G(t). Witnesses formalize the notion of when two graphs

”look” the same (including vertex labels and adjacencies). It

is not enough that the left graph in the rule and a subgraph

of G(t) are isomorphic. We also require certain geometric

conditions to be satisfied. These are encoded through a guard

function g : H × (ℜ2 × · · · × ℜ2) 7→ {true, false}, where

H is the set of all witnesses for a specific rule. When a

witness for a rule exists and the guard evaluates to true,

we say that the guard is satisfied and the rule is applicable.

If a rule is applicable, the subgraph of G(t) isomorphic to

VL (denoted by h(VL)) can be replaced in G(t) by the right

graph R in the rule. A guarded rule is represented by the

triple r = (L ⇀ R, g). As a final building block, each

assignment in the vertex labels (i.e. l(i).assign) corresponds

to a particular control mode. In the remainder of this section,

we define the specific rules and appropriate control modes

that ensure that the target formation G is achieved.

B. Leader-Follower Rules

In Section II, we saw that the first subgraph in the

Henneberg sequence was the leader-follower seed graph G2,

with V(G2) = {Vi1 , Vi2}, and E(G2) = {(Vi2 , Vi1)}. Due

to the direction of the edge, Vi2 is in charge of ensuring that

the proper distance is maintained between the vertices, and

for that reason we call Vi1 the leader and Vi2 the follower.

Leader-Follower Position Rule

Through the leader-follower seed graph we can define a

leader-follower position rule as rp
lf = (Lp

lf ⇀ Rp
lf , gp

lf),
where the left graph is given by the initial condition Lp

lf =
G(0) = (V, ∅, l0) and the right graph is given by Rp

lf =
(V p

Rlf
, Ep

Rlf
, lpRlf

), with

V p
Rlf

= V

Ep
Rlf

= {(V2, V1)}

lpRlf
(Vi) =







(Vi1 , true) if Vi = V1

(Vi2 , false) if Vi = V2

(w, false) o.w.

Given a witness h for this rule, the guard gp
lf evaluates to

true if and only if corresponding robot h(V1) can detect and

communicate with each robot in the network, i.e. ‖xh(V1) −
xh(Vj)‖ < ∆ ∀Vj ∈ V . Since the left graph is the initial

graph G(0), this implies that, initially, any robot within

proximity range of all other robots can potentially be a leader,

and any robot within proximity range to a potential leader is

a potential follower.

As lpRlf
(V1).f inal = true, i.e the leader agent has already

achieved the desired position, the corresponding control law

is simply ẋh(V1)(t) = 0. We let the follower move according

to

ẋh(V2)(t) = x⋆
h(V2) − xh(V2)(t),

where x⋆
h(V2) is the static target position given by

x⋆
h(V2) = xh(V1)+

δ(Vi1 , Vi2)

‖xh(V2)(t) − xh(V1)‖
(xh(V2)(t)−xh(V1)).

Leader-Follower Final Rule

As the follower is approaching the target position asymp-

totically, we also have a condition under which we consider

the maneuver to be completed. For this we define the leader-

follower final rule, rf
lf = (Lf

lf ⇀ Rf
lf , gf

lf), whose only

effect is that the label at vertex V2 is changed from false to

true when ‖x⋆
h(V2)

− xh(V2)(t)‖ < ǫ, for a given threshold

value ǫ > 0.

135

C. Vertex Addition Rules

In Section II, we describe how vertex additions gener-

ate subsequent subgraphs G3, . . . , Gn = G of the Hen-

neberg sequence. Assume that, for subgraph Gp, there exists

{Vj1 , Vj2} ∈ V(Gp) and a vertex addition operation adds

vertex Vj3 to V(Gp) and edges {(Vj3 , Vj1), (Vj3 , Vj2)} to

E(Gp) to produce subgraph Gp+1. Due to the directions

of these edges, Vj3 is in charge of ensuring the proper

distance is maintained to vertices Vj1 and Vj2 . This vertex

addition operation defines a vertex addition position rule as

rp
va = (Lp

va ⇀ Rp
va, gp

va), where the left graph is given by

Lp
va = (V p

Lva
, Ep

Lva
, lpLva

), with

V p
Lva

= {V1, V2, V3}

Ep
Lva

=







{(V1, V2)} if ∃(Vj1 , Vj2) ∈ E(G)
{(V2, V1)} if ∃(Vj2 , Vj1) ∈ E(G)

∅ o.w.

lpLva
(Vj) =







(Vj1 , true) if Vj = V1

(Vj2 , true) if Vj = V2

(w, false) if Vj = V3

and the right graph is given by Rp
lf = (V p

Rva
, Ep

Rva
, lpRva

),
with

V p
Rva

= {V1, V2, V3}
Ep

Rva
= {(V3, V1), (V3, V2)} ∪ Ep

Lva

lpRva
(Vj) =







(Vj1 , true) if Vj = V1

(Vj2 , true) if Vj = V2

(Vj3 , false) if Vj = V3

Given a witness h for this rule, the guard gp
va evaluates to

true if an only if the corresponding robot h(V3) is close

enough to h(V1) and h(V2) to be able to detect them, i.e.

‖xh(V3) − xh(V1)‖ < ∆ and ‖xh(V3) − xh(V2)‖ < ∆.

Since this rule assigns edges only to h(V3), we must

define a control law for ẋh(V3)(t) based on xh(V1)(t) and

xh(V2)(t). Note that these three vertices h(V1), h(V2), and

h(V3) have been assigned to vertices Vj1 , Vj2 , and Vj3 in

V(G), respectively. Therefore, positions {pj1 , pj2 , pj3} from

Section II define the relative geometry that is desired for the

corresponding robots. Robot h(V3) can determine its target

position by x⋆
h(V3)(t) = f(xh(V1)(t), xh(V2)(t), pj1 , pj2 , pj3)

where f performs the corresponding translation and rotation.

We let this robot move according to

ẋh(V3)(t) = x⋆
h(V3)(t) − xh(V3)(t).

If we assume that Vj1 and Vj2 are the leader and follower,

then the leader-follower rule implies that they converge to

the appropriate distance, which implies that agent h(V3)
converges to the desired geometric relationship to h(V1) and

h(V2). By induction, this implies that all robots added by a

vertex addition rule converge to their appropriate geometric

relationship with robots h(V1) and h(V2) in their respective

witnesses.

Vertex Addition Final Rule

As robot h(V3) is approaching the target position asymp-

totically, we also have a condition under which we consider

the maneuver to be completed. For this we define the vertex

addition final rule rf
va = (Lf

va ⇀ Rf
va, gf

va), whose only

effect is that the label at vertex V3 is changed from false to

true when ‖x⋆
h(V3)(t)−xh(V3)(t)‖ < ǫ, for a given threshold

value ǫ > 0.

D. Wander Mode

The previous rules allow robots to achieve desired ge-

ometric relationships. However, the guards for these rules

depend on robots labeled w satisfying geometric conditions

with robots in the rule witnesses. Therefore, we require a

mode that ensures that robots labeled w eventually satisfy

these constraints. We call this mode wander mode.

To implement wander mode, each assigned robot with

a label Vi ∈ V(G) is given a hop-counter λ, which it

communicates to all assigned robots within proximity range.

We set to zero the hop-counters of all assigned robots whose

labels allow them to participate in vertex addition position

rules that have not been applied. This implies that their labels

occur in the left graph of position rules that have not yet

been applied (This also requires robots to ”keep track” of

what rules have and have not been applied, an issue that

is discussed in the following section). Assume that robot

i is an assigned robot that cannot participate in a vertex

addition position rule. Assume that Λi is the set of all the

hop-counters of all robots within proximity range of i. Then

we define robot i’s hop-counter by

λi =

{

min(Λi) + 1 if min(Λi) < n
n o.w.

(1)

Since all robots with hop-counters equal to zero have been

assigned positions in G, this implies that there always exists

a ”path” of assigned robots with decreasing hop-counters

that leads to a hop-counter of zero, if such a robot exists.

Therefore, wander mode is defined so that wanderers perform

circular motion around the robot with the lowest hop-counter

in proximity range. When a robot with a lower hop-counter

comes into its perception, it switches to perform circular

motion around this robot. This process repeats until the

wanderer finds an assigned robot with a hop-counter equal

to zero. The circular motion is performed with a radius equal

to the largest weight of the edges in E(G). This guarantees

that the wanderer finds the next robot in the path, since the

weight of all edges in E(G) < ∆ and the next robot in the

path must be within ∆ of the current robot the wander is

circling.

Once a wanderer encounters an robot whose hop counter

equals zero, it enters an exclusive partnering relationship

with that robot. The assigned partner i changes its hop-

counter from zero to min(Λi)+1. The assigned partner also

refuses any more partnerships with other wanderers. Since all

edges E(G) < ∆, as a wanderer circles its partner at a radius

equal to the largest weight in E(G) it satisfies the guards of

any potentially applicable rule. As each rule is applied, the

robots involved in the rule application reevaluate their hop-

counters as defined in (1).

Note that each vertex addition rule has two vertices with

labels that assign a hop-counter of zero to assigned robots.

136

This implies that two wanderers can potentially be partnered

with different robots, but for the same rule. Therefore, if

the hop-counter changes from zero to another value, this

signals any partnered wanderers to abandon the partnership

and to follow a path to another robot with a zero hop-

counter. Since this situation only occurs when all robots

required for a vertex addition rule are present, then this

implies that the redundant partnered wanderer is always

freed, and can proceed towards another vertex addition rule

opportunity. The definition of hop-counters also implies that,

when all robots that can participate in vertex additions have

partners, there may be intervals of time where there is no

hop-counter equal to zero. However, this situation guarantees

that a vertex addition rule is applied, since all assigned robots

that can participate in vertex additions have a partnered

wanderer. Eventually, vertex addition rules assign positions

to wanderers.

IV. RULE EVALUATION AND COMMUNICATION

This section discusses the implementation of this EGG

on a network of robots, in terms of rule evaluation and

communication. We assume that the label and adjacency

information is distributed across the network such that each

robot has immediate access only to its own label and

adjacency information. The label and adjacency information

corresponding to other robots can only be obtained through

communication. The robots in the network must change

modes and execute control laws in a manner defined by the

EGG’s guarded rules, labels, and the corresponding control

law for each label. For the EGG we have defined, this also

requires the network to guarantee that no rule is applied

more than once to prevent redundant position assignments,

and that robots keep track of what rules have not been

applied to effectively update their hop-counters. Since this

is a decentralized network, this implies that robots must

negotiate rule applications in a manner consistent with the

EGG.

A. Primaries and Rule Evaluation

For each rule r = (L ⇀ R, g), there is an assigned vertex

Vi ∈ VL of the left graph L such that the guard function

requires that ‖xh(Vi)(t) − xh(Vj)(t)‖ < ∆ ∀Vj ∈ VL. We

define Vi as the primary vertex of the rule. For leader-

follower position rules, this is the vertex corresponding to

the leader robot. For vertex addition position rules, this is

the vertex corresponding to the wanderer in the left graph.

For final rules, this is the vertex with the false final label.

When a witness exists that maps a rule’s primary vertex

to a robot’s vertex in G(t), we say that the robot is a

primary robot. Since the primary robots are within proximity

range of each robot corresponding to the witness of an

applicable rule, then these robots can obtain all the local

graph information necessary to apply a rule to a subgraph of

the embedded graph and, thereby, modify that information

in a manner defined by the applicable rule. Because all the

primary vertices of each rule correspond to robots in wander

mode, we insist that only wanderers attempt to apply rules,

and only with witnesses that map them to the primaries of

the rules. Each wander robot determines whether or not it

is a primary by requesting the local graph information of its

neighbors and comparing it to the left graphs of the rules to

see if one is applicable. If so, then the primary robots attempt

to apply the rules to the embedded graph by modifying the

local graph information of its neighbors. This process is

called rule evaluation.

B. Prioritized Lock Negotiation

It is necessary that each primary robot has exclusive

control of all robots necessary to apply a rule; if not, then it

is possible for multiple primary robots to modify the graph

information in a manner inconsistent with the rules, or apply

a rule more than once, producing graph inconsistencies.

Graph inconsistencies occur when there exists subgraphs of

G(t) that are not intended to exist by the EGG design.

To prevent graph inconsistencies, we define a prioritized

lock negotiation communication scheme. This scheme gives

primaries exclusive control of other robots’ EGG information

through a series of lock negotiations. When a primary robot

wants to apply a rule involving another robot, it performs a

lock request for that robot. If the robot being requested for

a lock is unlocked, it accepts the lock of the primary and

records the primary’s index. The locked robot refuses any

lock requests while locked. Once locked, the locked robot

allows the owner of its lock to modify the locked robot’s

EGG information.

Once a primary has locked the entire set of robots neces-

sary for the rule application, it verifies that the rule is still

applicable, i.e. the graph information is still consistent with

the rule, and the rule has not been applied. Since each robot

has its own copy of the rule set, we exploit the locality of

the guarded rules to prevent any rule from being applied

more than once. As each rule is applied, it is removed from

the rule sets of the robots involved in the application. Then,

before a primary can apply a rule with its locked robots,

it must first verify that each locked robot has the rule in

its rule set. Since each robot removes the leader-follower

positions rules from their set of rules as it is applied (with

the entire graph), this guarantees that the leader-follower

position rule is applied only once. Similarly, when vertex

addition rules are applied, the corresponding vertex addition

position rule is removed from the rule sets of the involved

robots. The vertex addition rule cannot be repeated, since

the involved robots have already removed it from their rule

sets. This implies that all rules are never applied more than

once. This also allows the assigned robots to have accurate

knowledge of which rules can still be applied, which they

use to determine the hop-counters. When the primary has

completed all modifications of graph information necessary

to apply the rule, it then unlocks all the robots it has locked.

With many primary robots attempting to lock sets of other

robots, it is possible for primary robots to lock robots in a

manner that prevents any applicable rule from being applied.

We define this as deadlock. To prevent deadlock, we define

a priority to each robot that corresponds to its index. We

137

say that robot i has a higher priority than robot j if i < j.

Since each robot has a unique index, no robots have the

same priority. When a locked robot refuses a lock request,

it communicates the index of the primary that locked it to

the robot requesting the lock. If it has a higher priority than

the robot that owns the lock, it immediately retries the lock

request. If it has a lower priority than the robot that owns

the lock, it immediately unlocks all robots that it owns locks

for, and waits for a time τ before reattempting the rule.

We assume that τ is defined as a worst-case period of time

long enough to allow n robots to attempt n rule negotiations

in series. When robots compete for locks, there is always

a lowest priority robot. If no robot can acquire a lock to

all the robots involved in a rule application, then the lowest

priority robot always releases its locks and waits for time τ
before trying again. Even if more robots begin attempting to

compete for the same locks, the delay time τ is defined for

a worst-case scenario of n robots competing. This implies

that, in a worst-case scenario, there will eventually be only

one robot attempting to acquire locks. Therefore, the network

cannot be constantly deadlocked.

V. IMPLEMENTATION SCENARIO

To consider the application of this EGG on a network of

mobile robots, we assume the following scenario: We have

a network of n robots with data collection sensors, and we

wish to distribute them in a 5 m triangular coverage pattern

over an area of interest. We assume that the robots have a

proximity range of ∆ = 6 m. We enter a triangulation pattern

of positions in our graphical program discussed in section II

and shown in Fig. 1.

This graphical program allows us to enter the proximity

range and, using the algorithms presented in [9], determines

that the formation is persistently feasible and defines the

minimally persistent graph G shown in Fig. 1, as well as

a leader-follower seed G2 (here, with vertices 1 and 2),

and a sequence of vertex addition operations that define a

Henneberg sequence G2, . . . , Gn = G. Using the methods

previously described, the program generates the EGG defined

by G. We assume the robots are programmed to implement

this EGG, along with prioritized lock negotiation, and are

positioned in the area of interest such that at least one robot

is within proximity range of all robots. Then the EGG is

executed.

VI. RESULTS

The scenario discussed in Section V is simulated for n =7

and n =25 robots, as well as numerous random target forma-

tions, including random numbers of robots and random edge

weights. In each simulation, the resulting states of the robots

are checked to make sure that all robots are within proximity

range of any robots necessary for control calculations. Also,

the rule evaluation simulates the prioritized lock negotiation.

During simulation, witnesses are exhaustively searched, and

when rules are applicable, each primary robot in the network

is assigned a corresponding witness to attempt to apply, if

one exists for that robot. In this way, we attempt to maximize

Fig. 1. A graphical program derives G from a set of desired positions
entered by a user, representing a desired formation. This program also
simulates the network in the left plotting area.

the number of robots competing for locks. The lock requests

are assigned a random order to arrive at their corresponding

robots.

Fig. 2 shows the simulation results of the scenario in

Section V where n =7. The graphical program in Fig.

1 simulates the network in the left window, from which

Fig. 2 and Fig. 3 are taken. In Fig. 2(a), we see that at

least one wanderer is in proximity range of all robots in

the network. This implies that the leader-follower position

rule is applicable, and it is applied, shown in Fig. 2(b). In

these figures, the numbers correspond to the vertex indices

in Fig. 1, and a dash (”-”) indicates that the final field is

false. While vertex addition operations define a sequence

of subgraphs, many vertex addition rules can be applied

concurrently. As shown in Fig. 2(c), two vertex addition

position rules are applied simultaneously, before either has

been finalized. This is because these rules depend only on the

presence of two assigned vertices in G(t), not on the entire

subgraph before the corresponding vertex addition operation.

In this way, EGGs can take advantage of concurrency to

accomplish the formation task. The wanderers spend most of

their time in wander mode circling the leader robot 1 because

this robot’s label is in the left graph of every vertex addition

position rule. Finally, the EGG has successfully completed,

as shown in Fig. 2(h).

To demonstrate further the impact of concurrency and the

effectiveness of the wander mode, we implemented a similar

scenario with n =25 robots, shown in Fig. 3. Using the same

proximity range ∆ and edge weights in the previous scenario.

As rules are executed, and wanderers begin satisfying the

guards of vertex addition rules, more and more rules are

able to apply concurrently. Eventually, the large triangulation

pattern is completed.

To verify these results, many thousands of randomly

generated positions were used to define minimally persistent

graphs, vertex addition operations, and EGGs. Experiments

show that the most ”risky” formations are those where edge

weights are close to the proximity range ∆. Since the final

rules in Section III switch the final label to true when the

robots are within ǫ of there desired positions, then ǫ defines

a maximum error that can be present before vertex additions

138

w
w

w

w

w
ww

(a) t = 0 s

w

w

w

w

w

1 −2

(b) t = 1 s

w
w

w

1 2

−3−4

(c) t = 4 s

w
w

w

1 2
−3

−4

(d) t = 5 s

ww

1 2

4

−3

−6

(e) t = 8 s

w 1 2

3

46

−5

(f) t = 12 s

1 2

3

4

5

6

−7

(g) t = 16 s

1 2

3

4

5

6

7

(h) t = 18 s

Fig. 2. EGG execution to assemble a hexagon triangular coverage pattern.

are performed. If ǫ is too large, and edges have weights close

to ∆, it is possible that enough error is present to force a

robot to be outside of proximity range of the robots necessary

for its control calculations. This situation was monitored in

simulation. Experiments show that when this occurs, it is

possible to redefine ǫ to be smaller in a manner such that

this does not occur in repeated execution. Experiments also

show that it is always possible to define τ such that the

prioritized lock negotiation never deadlocks.

In practice, the parameters ǫ and τ are determined by the

robot hardware involved. Typically, ǫ is minimally defined to

adequately represent when the robot has driven sufficiently

close to its goal to indicate to other robots that its maneuver

is completed. This varies with the precision of the sensor

hardware, and making it as small as possible helps guarantees

that the areas within proximity range of assigned robots do

not change quickly. Also, τ is both a function of the network

size and the robot’s communication hardware. Typically,

τ is estimated by determining the time required for robot

negotiations and how it scales with network size. However,

it is only necessary to define it sufficiently large.

VII. CONCLUSIONS

Given minimally persistent target formations and Hen-

neberg sequences corresponding to vertex additions, we

present automatic tools to generate EGGs that allow these

formations to emerge in a network of mobile robots. This

includes a description of graph-based representations of

target formations and the multi-agent network of robots, as

well as rules for specifying changes in network topology and

the control modes of the individual robots. We also present a

communication scheme that enables a distributed network of

robots to implement these EGGs effectively, in a manner that

both guarantees the accuracy of the EGG implementation

as well as the avoidance of deadlock. These methods are

(a) t = 0 s (b) t = 6 s

(c) t = 9 s (d) t = 13 s

(e) t = 15 s (f) t = 17 s

(g) t = 20 s (h) t = 30 s

Fig. 3. EGG execution to assemble a large triangular coverage pattern.

verified in simulation for a variety of target formations and

network sizes. All experiments demonstrate that it is possible

to define control laws and communication scheme parameters

to achieve these goals for minimally persistent target forma-

tions generated by Henneberg sequences of vertex additions.

REFERENCES

[1] P. Ogren, M. Egerstedt, and X. Hu, “A control lyapunov function
approach to multi-agent coordination,” IEEE Transactions on Robotics
and Automation, vol. 18, no. 5, pp. 847–851, Oct 2002.

[2] G. A. Kaminka and R. Glick, “Towards robust multi-robot formations,”
in Conference on International Robotics and Automation, 2006, pp.
582–8.

[3] L. Vig and J. A. Adams, “Multi-robot coalition formation,” IEEE

Transactions on Robotics, vol. 22, no. 4, pp. 637–49, August 2006.
[4] T. Eren, W. Whiteley, B. D. O. Anderson, A. S. Morse, and P. N. Bel-

humeur, “Information structures to secure control of rigid formations
with leader-follower architecture,” in Proceedings of the American

Control Conference, Portland, Oregon, June 2005, pp. 2966–2971.
[5] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups

of mobile autonomous agents using nearest neighbor rules,” IEEE

Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, June
2003.

[6] M. Ji and M. Egerstedt, “Distributed coordination control of multi-
agent systems while preserving connectedness,” IEEE Transactions

on Robotics, vol. 23, no. 4, pp. 693–703, Aug 2007.
[7] J. M. Hendrickx, B. D. O. Anderson, J.-C. Delvenne, and V. D.

Blondel, “Directed graphs for the analysis of rigidity and persistence
in autonomous agent systems,” International Journal of Robust and

Nonlinear Control, 2000.
[8] J. M. McNew and E. Klavins, “Locally interacting hybrid systems with

embedded graph grammars,” in Conference on Decision and Control,
2006, to Appear.

[9] B. Smith, M. Egerstedt, and A. Howard, “Automatic generation of per-
sistent formations for multi-agent networks under range constraints,” in
Proceedings of the International Conference on Robot Communication

and Coordination, 2007.
[10] L. Henneberg, “Die graphische statik der starren systeme,” 1911.

139

