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Abstract— We design sensing algorithms and a control law
for a group of mobile robots to follow a boundary curve
without utilizing a global positioning system (GPS). The sensing
algorithms allow each robot to estimate the shape and the
orientation of the entire formation from readings of range
sensors and a speedometer. The usage of GPS is avoided because
each robot is able to estimate the relative position of the
entire formation with respect to the boundary curve. Based
on these estimates, we present a control law that allows the
robot formation to achieve desired non-singular shape while
following the boundary curve. We control the distance between
the center of mass of the formation and the boundary curve
so that it converges to desired value. Our control law also
guarantees that there will be no collision between any pair of
robots and no collision between any robot and the boundary
curve.

I. INTRODUCTION

Navigation, path planning, and obstacle avoidance are

fundamental research problems for mobile robotics. In [1], a

boundary following strategy was developed for single robot

to avoid obstacles and reach a target. This work, together

with later developments such as [2], [3], established bound-

ary following as a viable approach for online navigation and

obstacle avoidance. One significant benefit for the boundary

following approach is that a robot may plan its motion based

on measurements of the boundary, without using any form of

a global positioning system (GPS). This advantage is desired

for applications where GPS is not available or can be easily

disturbed.

Significant recent developments have been achieved in

navigating multiple robots cooperatively. In [4]–[10], various

algorithms and control methods are developed for robot

teams to move to a target and/or avoid obstacles along

the way. These results require information from a GPS

to achieve desired formations. Even though the boundary

following methods for single robot may be combined with

the formation control laws, the benefit of not requiring GPS

is lost.
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In this paper, we develop sensing algorithms and control

laws so that a team of robots are able to perform boundary

following without GPS. Our method is based on the estab-

lishment of a shape theoretic approach in formation control

which does not depend on GPS. Shape theory is established

by physicists and statistician for measuring configurations

of clusters of particles [11]–[14]. Some recent work [15],

[16] applied the shape theory to cooperative control for

robot formations. Results in this paper extend previous work

by completely eliminating the requirements for GPS and

by combining the shape controller design with boundary

following control to provide an integrated navigation method

with provable convergence.

In section II, we introduce the algorithms that measure the

shape, orientation, and position of the formation based on

shape theory. We then develop the relative motion dynamics

of the entire formation with respect to a boundary curve

in section III. A controller for formation keeping, curve

tracking, and obstacle avoidance is introduced and justified

in section IV. Simulation results that demonstrate formation

shape changes while moving along an elliptic boundary are

shown in V.

II. FORMATION SHAPE, ORIENTATION, AND POSITION

For motion planning purposes, we model robots as point

particles. Suppose each particle has unit mass and there are

N particles in a formation. This formation can be described

in a lab coordinate frame with ri ∈ R2 as the position of

the ith particle. The velocity of each particle is ṙi ∈ R
2. A

global positioning system (GPS) is required to determine the

positions and the velocities in the lab coordinate system.

In this paper, we discuss the situation that a GPS is not

available. In replacement of the GPS, we make the following

assumptions on the sensing ability of each robot:

1) Each robot is equipped with range sensors (e.g. laser

range finders or sonars) that have a 360 degree of view.

To simplify our discussion, suppose the sensors are

powerful enough to cover the full workspace.

2) Each robot has a speedometer which measures its

speed. Note that the direction of motion is not known.

When a sensor ray is blocked by another robot, the distance

between the two robots can be determined. Let α be the

angle index of the sensor rays. Knowing α and the rel-

ative distances allows each robot to measure the relative

displacement vectors between itself and all other robots in

the formation. These relative vectors determine the formation

shape. Furthermore, each robot is able to attach a right

handed coordinate frame to the entire formation. An example

is shown in Figure 1, where the relative vector (r2 − r1) is
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Fig. 1. A gauge convention and a set of shape variables chosen to describe
a triangular formation. The x axis is aligned with (r2−r1). s1 is the distance
between r2 and r1, s2 is the distance between r3 and r1, and s3 is the angle
between (r2 − r1) and (r3 − r1).

always aligned with the horizontal axis of this frame, and

the vertical y-axis is perpendicular to the horizontal x-axis.

We call the procedure to establish such a coordinate frame

a gauge convention. Different robot may choose different

gauge conventions and they do not necessarily know what

gauge conventions other robots have chosen. For this reason

we call the coordinate frame chosen by robot i the ith frame.

Now suppose there is a stationery obstacle with a smooth

boundary curve in the workspace. We show that each robot

can determine the orientation and position of the formation

relative to this boundary curve. The key idea is to find the

point on the boundary curve that has the minimum distance

to the center of mass (COM) of the formation. We call this

point the closest point. The robot then estimates the tangent

vector to the curve and the curvature at this closest point.

These information will be used to estimate the orientation

and the position of the formation relative to the curve.

Let θi be the angle between the horizontal axis of the

ith frame and the tangent vector to the boundary at the

closest point to the COM. We use R ji to represent the

relative displacement vector between robot j and i, measured

in the ith frame. The entire formation can now be viewed

as a deformable body. The state of the deformable body

is described by three variables (Ric,gi,s): Ric indicates the

position of the center of mass i.e.

Ric =
1

N
∑
j 6=i

R ji , (1)

gi =

[
cosθi sinθi

−sinθi cosθi

]
describes the spatial orientation,

and s is a vector of shape variables. Such shape variables

must be independent of the orientation and position of

the formation. For example, the mutual distances between

particles can serve as shape variables c.f. our previous work

[15] and the reference [13]. To describe a planar formation

with N particles, altogether (2N − 3) shape variables are

required i.e. s = [s1,s2, ...,s2N−3]
T . Figure 1 shows a set of

shape variables for triangular formations.

Let dc be the distance between the COM and the closest

point. In order to determine the relative position of the COM

to the boundary curve and the formation orientation, we

propose the following algorithm:

Algorithm 1 Find dc and θi on the ith robot.

On the ith robot, perform the following procedures:

1) For j = 1,2, ...,N and j 6= i, measure the relative

displacement vectors R ji between robots j and i in

the ith frame.

2) Estimate the COM position Ric = 1
N ∑ j 6=i R ji.

3) For each value of α , find the intersection point, RI(α),
between the sensor ray indexed by α and the boundary

curve.

4) Estimate di(α) = ‖Ric −RI(α)‖, the distance between

the estimated COM and the intersection point RI(α).
5) Determine a candidate for the closest point by finding

α i
min and di

min:

di
min = min

α
{di(α)}

α i
min = arg

(
min

α
{di(α)}

)
. (2)

6) For j = 1,2, ...,N and j 6= i, find the relative angle β ji

between the two vectors RI(α
i
min) and R ji.

7) For j = 1,2, ...,N and j 6= i, send (di
min,β ji) to robot j.

8) Gather d
j
min and βi j from other robots. Note βi j indi-

cates that the angle comes from robot j. Find index k

and the minimum distance dc as

k = arg

(
min

i
{di

min}

)

dc = dk
min. (3)

9) If k = i, then the closest point is at Ro = RI(α
i
min). If

k 6= i, then the closest point is at

Ro = −Rki + dc cosβik

Rki

‖Rki ‖
+ dc sinβikR⊥

ki (4)

where R⊥
ki is the unit vector that is perpendicular to

Rki with a leading angle of 90◦.

10) Estimate the tangent vector and the curvature at the

closest point using, for example, algorithms in [15].

This produces estimates θi and κc

We define the size of a formation as

Z =

(
‖Ric ‖

2 +
N

∑
j 6=i

∥∥R ji −Ric

∥∥2

) 1
2

.

It is true that as long as the size of the formation is less

than the distance between the closest point and the center of

mass i.e. Z < dc, the closest point can always be detected

by any of the robots. To see this, imagine a disc with radius

dc centered at the COM. The closest point, hence the entire

obstacle, is located outside the disc. We now draw the second

disc centered at the COM but with radius Z. Then the disc

with radius Z lies within the disc with radius dc. Any line

between any robot and the closest point lies entirely inside

the bigger disc, hence is not blocked by any portion of the
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Fig. 2. The moving frames attached to a particle r and the closest point
ro .

obstacle. Therefore, since all robots are considered to be ideal

points, the closest point is detectable by all robots.

Therefore, the steps 6)–9) in algorithm 1 for determining

the closest point via communications are redundant when the

formation is small. However, in reality, the sensors all have

limited range, the robots often have significant size and the

boundary curve of an object is not always smooth. We need

such redundancy to make sure the closest point is always

well-determined.

To describe velocities, we use Vic for the velocity of the

center of mass, Ωi for the angular velocity of the body and

ṡ for shape changes over time.

To estimate the velocity Vic, we have Vic = Ṙi + Ṙic

where Ṙi is the velocity of robot i in its chosen coordinate

system. The length of Ṙi is the speed and is measured by

the speedometer. We need to determine the direction of Ṙi.

It is necessary to use the equations that govern the relative

motion between a particle (robot) and the boundary curve.

These equations are established in [17]. Here we outline the

necessary steps.

Let γ > 0 be the non-zero speed of a particle. We can

construct a right-handed moving frame at the particle using

the unit velocity vector x = ṙ
γ and a uniquely determined

unit normal vector y to form a right handed coordinate frame

with x, as shown in Figure 2. We introduce a steering control

u = 1
γ2 f · y and a speed control v = f · x where f is the total

force applied to the particle.

On the smooth, closed boundary curve of a planar object,

we can always find a point which has the minimum distance

to the particle. Let ro denote the position of this closest point

on the boundary curve. The tangent vector xo and the normal

vector yo at this point forms a right-handed frame moving

with this point when the particle moves. Let φ denote the

angle between x and xo so that

cosφ = 〈xo,x〉 and sinφ = 〈xo,y〉 . (5)

Let d = ‖r− ro‖. Then in [17], we found

ḋ = −Snγ sin(φ)

φ̇ = γ

(
κ cos(φ)

1±|κ |d
−u

)

γ̇ = v. (6)

where Sn = sign(〈r− ro,yo〉) which assume constant +1 or

−1, depending on the choice for the direction of the curve.

We use the first equation in (6) to estimate the direction

of the velocity of the particle.

Algorithm 2 On the ith robot, estimate Vic, the velocity of

the COM.

1) Measure Ṙ ji for j = 1,2, ...,N and j 6= i.

2) Measure the angle φi between Ṙi and the tangent vector

to the boundary at the closest point to robot i using

φi = arcsin( ḋi
Snγi

) where ḋi is the rate of change for the

distance between robot i and its closest point and γi is

the speed of robot i.

3) Find the velocity Vic = Ṙi +
1
N ∑N

j 6=i Ṙ ji.

After Vic is known, we can also find φc that is the angle

between Vic and the tangent vector to the boundary at the

closest point to the COM.

In the planar setting, the angular velocity will always be

perpendicular to the plane. For each robot, the angular speed

Ωiz can be estimated as

Ωiz = θ̇i +‖Vic ‖cos(φc)
κc

1±|κc|dc
. (7)

All robots will agree on the measurements of shape

variables s and the rate of change for those shape variables

ṡ. On the other hand, the measurements for the orientation

gi (i.e. θi) and angular velocity Ωi depend on how the robot

establishes the body coordinate frame. Different robots may

not always agree on each other because the angles between

displacement vectors may change over time. This phenomena

is called gauge dependence.

The angular velocity Ωi needs to be adjusted so that all

robots will agree on an estimate of the rotational motion of

the formation. In [18], we define the gauge covariant angular

velocity as ϒ = Ωi + Aṡ where A, called the collection of

vector potentials, is a matrix that depends on the shape

variables s. The procedure to compute A can also be found

in [18].

III. CONTROLLED DYNAMICS

In the lab fixed coordinate frame, each particle satisfies the

second order Newton’s equation: r̈i = fi where fi represents

the total force on particle i for i = 1,2, ...N. The formation

control problem when the measurements for positions ri are

available has been studied intensively using graph theoretic

method ,c.f. [19]–[22], to name only a few.

Without the GPS, the dynamics of the formation–viewed

as a deformable body–can be studied as a controlled La-

grangian system. The Lagrange-D’Alembert principle is ap-

plied to derive the dynamics which are described by the

following equations:

1) the equation for the center of mass, rc = 1
N ∑N

i=1 ri, in

lab frame is

Nr̈c = fc (8)

where fc is the combined force on the center of mass;
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2) the equations for shape change and rotation are

d

dt
(Iϒ) = −Ω× Iϒ+ ug , (9)

d

dt
(Gṡ)+ AT d

dt
(Iϒ) =

1

2
[
∂ I

∂ s
]∗ : (ϒ,ϒ)

+ ([
∂A

∂ s
]∗− [

∂A

∂ s
])(ṡ, Iϒ)

+
1

2
[
∂G

∂ s
]∗(ṡ, ṡ)+ us, (10)

where I is the locked inertia tensor, G is a metric

tensor on shape space and A is the collection of vector

potentials. All these tensors are functions of shape

variables as shown in [18].

In equations (9) and (10), [ ∂ I
∂ s

], [ ∂G
∂ s

] and [ ∂A
∂ s

] are third order

tensors obtained by taking the Frechet derivatives of the

tensors I,G and A with respect to vector s, [ ∂ I
∂ s

]∗, [ ∂G
∂ s

]∗ and

[ ∂A
∂ s

]∗ are the cyclic transpose of these third order tensors, c.f.

[23], and (ug,us) are controls for rotation and shape changes.

Equation (8) still requires the position rc in the lab

coordinate frame. In stead of using (8), we use the following

set of equations, which are similar to (6), to describe the

relative movement between the COM and the boundary curve

ḋc = −Snγc sin(φc)

φ̇c = γc

(
κc cos(φc)

1±|κc|dc
−uc

)

γ̇c = vc. (11)

Here we view the COM as one particle. Equations (11) are

derived by following the same procedure for a generic parti-

cle. We use the subscript “c” to indicate that the variables are

defined for the COM and its closest point on the boundary

curve. Hence γc represents the speed of the COM, uc is the

steering control for the COM, and vc is the speed control of

the COM.

Therefore, equations (9), (10), and (11) are the system

dynamics for the entire formation observed by each robot in

its own choice of body coordinate frame. All quantities in

these equations can be estimated by the robot using range

sensors and a speedometer.

IV. CONTROLLER DESIGN

We want to control the entire formation to move along

the boundary curve in desired formation. Suppose the desired

shape of the formation is given by s0 and the desired distance

between the COM and the boundary curve is given by d0.

The goal is to design feedback controls (ug,us,uc,vc) so that

as t →+∞, the controlled dynamics achieve s → s0 and dc →
d0. Meanwhile, we want to avoid collisions between particles

and between any particle and the boundary curve.

The speed of the COM can be stabilized at the unit speed

by the controller vc = −k1(γc −1) where k1 > 0 determines

the convergent speed. From now on we assume that the speed

of the COM γc = 1.

In order to avoid collision with the boundary, we want the

distance between any particle and the COM to be always less

than the distance between the COM and the closest point

on the boundary curve. This can be written as a sufficient

condition:

max
i

{‖ri(t)− rc(t)‖} < dc(t) (12)

for all t > 0. If Z(s(t)) < dc(t), then condition (12) is

satisfied.

We define w = dc −Z(s) and construct a smooth function

h̄(w) with its derivative f̃ (w) = h̄′(w) satisfying the following

conditions:

(A1) h̄(w) ≥ 0 for w ∈ (0,+∞) where h̄(w) = 0 if and only

if w = d0 −Z(s0);
(A2) h̄(0) → +∞ and h̄(+∞) → +∞;

(A3) f̃ (w) = 0 if and only if w = d0 −Z(s0).

We introduce a Lyapunov candidate function

VA = h̄(w)−2log(cos(
φc

2
))+VL. (13)

where VL is the following function:

VL =
1

2

2N−3

∑
i=1

hi(si)+
1

2
ϒT Iϒ+

1

2
ṡT Gṡ (14)

with each hi(si) being a smooth function of a shape variable

si and satisfying the following conditions:

(A4) hi(si) assumes its minimum when si = s0
i ;

(A5) limsi→0 hi(si) = +∞;

(A6) let fi(si) = h′i(si), then fi(si) = 0 if and only if si = s0
i .

To compute the time derivative of VA along the controlled

dynamics, we first compute the derivative of each term in

the right hand side of equation (13). For the first term we

have

˙̄h(w) = f̃ (w)
(
−Ż + ḋc

)

= − f̃ (w)

(
∂Z

∂ s
ṡ+ Sn sin(φc)

)
. (15)

For the second term we have

d

dt

(
−2log(cos

φc

2
)

)
=

sin( φc

2
)

cos( φc

2
)

φ̇c

=
sin( φc

2
)

cos( φc

2
)

(
κc cosφc

1±|κc|dc
−uc

)
.(16)

For the third term, let F(s) be a vector function such that

Fi(s) = fi(si). The time derivative of function VL is

V̇L = 〈F(s), ṡ〉+
〈
Ω,ug

〉
+ 〈ṡ,us〉

= 〈ṡ,us + F(s)〉+
〈
Ω,ug

〉
(17)

where we use 〈 , 〉 to denote the inner product.

Therefore, the time derivative for VA is

V̇A =
sin( φc

2
)

cos( φc

2
)

(
κc cosφc

1±|κc|dc
−2Sn cos2(

φc

2
) f̃ (w)−uc

)

+

〈
ṡ,us + F(s)− f̃ (w)

(
∂Z

∂ s

)T
〉

+
〈
Ω,ug

〉
. (18)
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We design the control laws to be

uc =
κc cosφc

1±|κc|dc
−2Sn cos2(

φc

2
) f̃ (w)+ k2 sin(

φc

2
)

ug = −k3ϒ

us = −F(s)− k3ṡ− k3AT ϒ+ f̃ (w)

(
∂Z

∂ s

)T

. (19)

where k2, k3 > 0. This results in

V̇A = −
sin2( φc

2
)

cos( φc

2
)
− k3‖ϒ‖2 − k3‖ ṡ‖2 . (20)

As one can see, this derivative is not greater than zero.

In order for V̇A = 0 we must have the following equations

satisfied:

Ω = 0, ṡ = 0, and sin(
φc

2
) = 0 . (21)

Theorem 4.1: Suppose there is one smooth boundary

curve in the workspace of a robot formation. Suppose the

initial states of the formation satisfy cos( φc(t0)
2

) 6= 0 and

Z(s(t0)) < dc(t0). Suppose the desired shape of the formation

is given by s0 and the desired distance between the COM

and the boundary curve is given by d0 such that the size

Z(s0) < d0. Then under the control laws (19) , the following

statements hold:

1) The shape of the formation converges i.e. s(t) → s0 as

t → +∞.

2) The distance between the COM and the boundary

curve converges, i.e. dc(t) → d0 as t → +∞.

3) No collision will happen between any pair of particles

or between any particle and the boundary curve.

Proof: By LaSalle’s invariance principle, the dynamics

for the state variables (φc,dc,s, ṡ,Ω̇) converge to the maximal

invariant set within the set M1 where (21) are satisfied. On

this set M1, the closed loop system equations are simplified

to

ḋc = −Sn sin(φc) = 0

φ̇c = 2Sn f̃ (w)

I(Ω̇+ As̈) = 0

Gs̈ = −F(s)+ f̃ (w)

(
∂Z

∂ s

)T

. (22)

Then on the invariant set, we must have φ̇c,Ω̇ and s̈ all

vanish. Therefore we conclude that on the maximal invariant

set f̃ (w) = 0 and F(s) = 0. This, together with sin( φc

2
) = 0,

prove the convergence results.

If at any time instance, Z(t) is near dc(t), then condition

(A2) provides that h̄(w) → ∞, hence VA → ∞. Because

initially Z(t0) < dc(t0), then the initial value of the Lyapunov

function VA is finite. Since the value of the Lyapunov

function is not increasing, it is guaranteed that Z(t) < dc(t)
for all t > t0. Therefore, no collision can happen between

any robot and the boundary curve.

If collision between a pair of particles is about to happen,

we must have si → 0 for some shape variable si. Therefore

TABLE I

INITIAL POSITION AND VELOCITY FOR THE THREE PARTICLES

Particle Position Velocity

1 (−14,1) (1,0)

2 (−14,−1) (1,0)

3 (−13,0) (1,0)

TABLE II

PLANS FOR THE FORMATION AROUND AN ELLIPTIC BOUNDARY

Time(s) s1 s2 s3 Size(Z) Separation(dc)

0-8 1 1 π/3 1 1.3

8-14 0.6 1.2 π/3 0.98 1.28

14-20 2 2 π/3 2 2.3

20-26 1 2 π/5 1.50 1.80

26-30 0.6 0.6 π/3 0.6 0.9

hi(si) → ∞. Hence if initially there is no collision between

any pair of particles i.e. hi(si) is finite, then no collision can

happen at any time t. If at any time instance cos( φc(t)
2

) = 0,

then the Lyapunov function VA goes to infinity. Therefore, if

initially cos(
φc(t0)

2
) 6= 0, then cos(

φc(t)
2

) 6= 0 for all t > t0.

V. SIMULATION RESULTS

We present simulation results in MATLAB to demonstrate

the tracking behavior. We show here a formation of three

robots (particles) in the workspace with one obstacle that

has elliptic boundary. Table I shows the initial position and

velocity of the three particles. Although the states are given

in a lab coordinate frame, This information is not available

to the robots. Instead, the robots use their range sensors and

speedometer to measure the shape, orientation and position

of the formation relative to the boundary ellipse.

We choose a set of three shape variables as shown in

Figure 1. Variable s1 is the distance between particle 1 and

2, s2 is the distance between particle 1 and 3, and s3 is

the angle between the two displacement vectors r12 and r13.

Note that our methods do not depend on the choice of shape

variables. For example, we can also let s3 be the distance

between particle 1 and 3. The convergence results still hold.

We designed a motion plan to perform shape changes

while the formation is moving around the elliptic obstacle.

The plan is shown in Table II. All data in the table are the

desired values which define the shape of the formation and

the distance between the center of mass and the closest point.

For example, in time between 0 and 8 seconds, we want the

shape of the formation to be a equilateral triangle with each

side having unit length. Initially, all three particles are outside

the boundary and there is no collision between particles and

the boundary ellipse. To guarantee safe operation for all time,

we want dc(t)−Z(s(t)) = 0.3.

After the plan is executed, we analyze the data and plot the

change of the data over time. Figure 3 shows the trajectory

of the center and the configuration of the formation at points

along the trajectory. It is intuitive that there is no collision

and the formation shape is as desired.
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Fig. 3. Motion and shape changes of the three-robot formation tracking
an elliptic boundary
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Fig. 4. Convergence of shape variable s1 as a function of time.
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Fig. 5. Convergence of dc, the distance between the COM and the boundary
.

The convergence of one shape variable is shown in Figure

4. The other two shape variables are not shown due to space

limitation. As we can see, shape changes are desired at time

instances 8, 14, 20, and 26. The shape variables converges

to the desired value each time a shape change is desired.

The boundary tracking performance is shown in Figure 5.

We see the distance between the closest point and the center

converges to the desired values.

VI. SUMMARY AND FUTURE WORK

We develop a method for robot formations to perform

shape changes while following a boundary curve. We have

shown that no GPS is required if each robot is equipped with

range sensors and a speedometer. Future work may include

study of how the algorithm scales to additional agents, how

measurement noise affects performance, and how reduced

communication or communication delays between robots

affect the results.
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