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Abstract— This paper presents coverage algorithms for mo-
bile sensor networks in which agents have limited power to
move. Rather than making use of a constrained optimization
technique, our approach accounts for power constraints by
assigning non-homogeneously time-varying regions to each
robot. This leads to a novel partition of the environment into
limited-range, generalized Voronoi regions. The motion control
algorithms are then designed to ascend the gradient of several
types of Locational Optimization functions. In particular, the
objective functions reflect the global energy available to the
group and different coverage criteria. As we discuss in the
paper, this has an effect on limiting each agent’s velocity to
save energy and balance its expenditure across the network.

I. INTRODUCTION

Mobile and static sensor networks hold the promise to

impact a large number of applications for exploration, envi-

ronmental monitoring, safety and recovery operations. It is

envisioned that next network generations will make use of

small low power mobile devices that operate in a distributed

manner [1]. Due to their modest sizes and weights, these

systems will have limited resources to divide between com-

munication, computation and motion sub capabilities. Power

management becomes a crucial issue for these systems.

One key area of interest regarding mobile sensor networks

is deployment to maximize coverage [2], [3], [4], [5], [6].

The ability to dynamically adjust to changes such as agent

failure or target acquisition give mobile networks an advan-

tage over static ones. Unfortunately, a drawback to mobile

networks is that of power consumption.

Power-aware algorithms have been the subject of extensive

research in static sensor networks and mobile middleware,

see [7], [8]. To the best of our knowledge, however, limited

work on power constraints and deployment has been done

in the multi-vehicle sensor network field. The work of [9]

and [10] utilize ordinary Voronoi diagrams and a discrete

algorithm to show convergence through simulations. Energy

considerations enter in their work as total distance traveled

until convergence. Another related result from [11], [12]

considers a network of agents performing scan lines over a

region of interest with energy and time constraints in mind.

More involved vehicle energy dynamics are considered in

that work, and they address the relevant problem of speed

management as well as optimizing the number of agents

necessary to provide adequate coverage.

This paper presents a new approach to the distributed

deployment problem of mobile sensor networks in which
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agents have limited energy budgets to move. To account for

this, we design algorithms that limit the maximum distance

an agent can travel by a dynamically-changing energy radius.

This leads to a novel partition of the environment into

limited-range, generalized Voronoi regions that produces a

more balanced region assignment. Our algorithms seek to

maximize objective functions involving: (i) the quantity of

coverage as defined by area, and (ii) the quality of coverage

as defined by standard Locational Optimization theory [13].

The new partition becomes very useful in order to obtain

gradient algorithms that guarantee local maximization of the

objective functions. To do so, we consider a kinematic energy

expenditure model for each agent. The maximization of the

objective functions will then require that agents tune their

speed as prescribed by the gradient information. The analysis

provided here extends and merges previous work in [14],

where coverage algorithms for agents with homogeneous,

static sensor ranges is studied, and in [15], where energy

partitions for coverage are initially explored disregarding

energy constraints on mobility.

We include simulations of each algorithm that show that

the corresponding objective functions are maximized. In par-

ticular we observe that the basic area-maximizing algorithm

may lead to situations where coverage remains constant and

yet agents expend energy. To avoid this, we modify our

algorithm in two ways: (i) we limit further how fast agents

can move but still maximizing the area covered, and (ii)

we redesign the algorithms so that a mixed area-centroidal

objective coverage function is maximized.

The paper is organized as follows. In Section II we define

the problem and present the objective functions that we

would like to maximize. In Section III, we present the

partition necessary to implement the maximization of the

functions in a distributed way with energy constraints. We

analyze the objective functions in Section IV, and present

their gradient directions. Section V introduces a common

gradient ascent algorithm with guaranteed performance to

apply to each case. In addition, we address some issues that

may arise with such flows. We present simulation results in

Section VI and discuss the performance of the algorithms.

Finally we point out lines for future research in Section VII.

II. NOTATION AND PROBLEM DEFINITION

Let Q be a convex polytope in R
N including its interior,

and let ‖ · ‖ denote the Euclidean norm. We will use R≥0 to

denote the set of positive real numbers. A map φ : Q → R≥0,

or a distribution density function, will represent a measure of

a priori known information that some event takes place over

Q. Equivalently, we consider Q to be the bounded support of

the function φ. We denote the interior of a set, S ⊂ R
N , as

Int (S). We will also denote the complement of a set, S, as
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SC and its boundary as ∂S. The cardinality of S is denoted

as |S|. A partition of a region Q is a collection of regions,

A = (A1, . . . , An), such that: (i), Int (Ai) ∩ Int (Aj) = ∅
for all i 6= j and (ii),

⋃n
i=1 Ai = Q.

Let P = (p1, . . . , pn) ∈ Qn be the location of n

sensors, each moving in Q. We interchangeably refer to

the elements of the network as sensors, agents, vehicles,

or robots. The sensors have initially an associated energy

content (E1(0), . . . , En(0)), 0 ≤ Ei(0) ≤ Emax, for all i ∈
{1, . . . , n}. Generally, as agents move, their energy reserve

will change. We propose the following agent dynamics:
{

ṗi = ui ,

Ėi = −gi(‖ṗi‖) ,
(1)

where ṗi denotes the velocity of agent i such that ṗi ∈
[0, vmax], ui is the control input, and gi : [0, vmax] → R≥0

is any increasing function such that g(v) = 0 only at v = 0.

Intuitively, g(v) captures the fact that energy expenditure

increases as velocity increases.

We now formulate the notion of guaranteed travel range,

the set of points that an agent can reach if it travels in

a straight line at any fixed velocity vi ∈ (0, vmax] before

running out of energy. Without loss of generality, assume

pi(t0) = 0 and Ei(t0) > 0. We wish to find

R = min
vi∈(0,vmax]

‖pi(T )‖ , (2)

where T > 0 satisfies Ei(T ) = 0. From (1), for fixed vi, we

have that Ei(t) − Ei(t0) = −g(‖vi‖)(t − t0), and so

T =
Ei(t0)

g(‖vi‖)
+ t0 . (3)

Integrating ṗi from (1), pi(t) = vi(t− t0). From (2) and (3),

R = min
vi∈(0,vmax]

∥

∥

∥

∥

Ei(t0)vi

g(‖vi‖)

∥

∥

∥

∥

. (4)

Note that if g(‖vi‖) is a polynomial satisfying g(0) = 0,

then (4) is well-defined. In addition, by definition for any

other velocity profile vi(t) along a straight line path, the

resulting travel range R̃ ≥ R.

For simplicity, we propose the following energy dynamics:

Ėi = −‖ṗi‖
2 = −‖ui‖

2 . (5)

Without loss of generality, we can let vmax = 1, and from (4),

the guaranteed travel range is R = Ei(t0).
We wish to deploy the robots to maximize a performance

metric that quantifies coverage and employs the guaranteed

travel ranges for agents. In the most general sense, and

motivated by a Locational Optimization approach [13], we

seek to maximize a general objective function

H(P, W ) =

∫

Q

max
i

fi(dwi
(q, pi))φ(q)dq , (6)

where fi : R → R is a non-increasing function, and

dwi
: R

N ×R
N → R is some metric function weighted by a

scalar wi ∈ R, for all i ∈ {1, . . . , n}. These scalars will be

associated with the travel ranges for each agent. Depending

on the interpretation of coverage H can be further specialized

as we see in the following.

A. Energy-limited coverage

If we interpret coverage to be the set of all reachable points

in Q, then under the previous assumptions, the range of an

agent i ∈ {1, . . . , n} is equal to the amount of energy Ei that

it has. Let Bi = B(pi, Ei) be a closed ball centered at pi with

radius Ei and similarly let Si = Bi \ Int (Bi) be a sphere

centered at pi with radius Ei. We will let R = Q∩
⋃n

i=1 Bi

denote the set of all covered points by the group of agents.

We now introduce various objective functions with this new

constraint in mind.

Area Coverage: The simplest problem to solve given

the energy-limited constraint is to maximize area covered.

Therefore, we can set fi(x) = 1[0,Ei](x) and dwi
(q, pi) =

‖q − pi‖. Under these assumptions, the general objective

function (6) becomes

Ha(P, E)=

∫

Q

max
i

1[0,Ei](‖q−pi‖)φ(q)dq=

∫

R

φ(q)dq . (7)

Centroidal Coverage: We can combine the energy-limited

range with a typical objective function from Locational

Optimization to obtain

Hc(P, E) =

∫

R

max
i

{−dEi
(q, pi)}φ(q)dq . (8)

This has the interpretation of minimizing the mean distance

from a point q to an agent at pi.

Mixed Coverage: We can combine (7) and (8) to strike

a balance between quantity of coverage and quality of

coverage. We introduce two weights, κa, κc, to emphasize

one over the other. The mixed coverage objective function is

Hm(P, E) = κaHa(P, E) + κcHc(P, E) . (9)

III. LIMITED-RANGE, GENERALIZED VORONOI REGIONS

In order to come up with local deployment rules for each

agent, it is convenient to assign different regions of the

space to them. Similarly as in [14], [15], the regions of

dominance should reflect each agent’s ability to cover an

area. In this section we introduce novel partitions of R,

De = (De
1, . . . , D

e
n) and DM = (DM

1 , . . . , DM
n ), based on

energy motion constraints.

De

1

De

2

De

3

De

4

1

2

3
4

Fig. 1. Proposed partition of R. The individual spheres are shown in dotted
lines, along with the boundaries of De

i
in solid lines.

Let us consider a configuration like the one shown in

Figure 1 where |Si ∩ Sj | > 1 for all i 6= j, i, j ∈
{1, . . . , n}. A possibility is to define De

i as the region

given by the intersection of Bi with halfplanes, H(pi, pj),
∀ i 6= j. The halfplanes H(pi, pj) contain pi and have as
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a boundary the line passing through the points in Si ∩ Sj .

Using a halfplane that contains all such points provides a

computationally convenient method of assigning regions of

dominance. This intuitive construction can be extended to

cases where |Si ∩ Sj | ∈ {1, 0} through the observation

provided in the following lemma.

Lemma 1: The intersection of spheres Si generated by

n agents with positions pi and energies Ei for all i ∈
{1, . . . , n} induces a natural partition of the space which is

the power-weighted Voronoi diagram, Ve = (V e
1 , . . . , V e

n ),

V e
i = {q ∈ R

N | ‖q − pi‖
2 −E2

i ≤ ‖q − pj‖
2 −E2

j } , (10)

for all i ∈ {1, . . . , n}.

•
Boundaries between neighboring points are straight lines

in two dimensions, or (hyper-) planes in higher dimensions.

Each of these planes divide R
N into two convex regions.

By construction, this indeed creates a partition of R
N .

Furthermore, since the intersection of convex regions is

also convex, the regions generated by the power-weighted

Voronoi partition are convex.

Regarding generalized Voronoi regions, we adopt the fol-

lowing nomenclature. When two Voronoi regions V e
i and V e

j

are adjacent (i.e., they share an edge), pi is called a Voronoi

neighbor of pj . The set of indices of the Voronoi neighbors of

pi is denoted by N e
i . Clearly, j ∈ N e

i if and only if i ∈ N e
j .

We define the (i, j) face as ∆e
ij = V e

i ∩V e
J . Note also that a

definition for N e
j may be obtained from the dual of the power

weighted Voronoi region, the power weighted Delaunay

graph, Ge
D . The graph (P, E) → Ge

D = (P, Ee
D(P, E)) is a

type of proximity graph (see [14]) consisting of the vertices

P and the edges Ee
D(P, E) such that

Ee
D(P, E) = {(pi, pj) ∈ P×P \diag(P×P )|V e

i ∩V e
j 6= ∅} .

In this way, we can define

N e
i = {pj ∈ P | (pi, pj) ∈ Ee

D(P, E)} . (11)

A. Multiplicatively-weighted Voronoi diagram

Recall from Section II that if vi = vj = vmax, then two

agents must spend all of their energy to reach a point at

the intersection of the energy spheres Si ∩ Sj . However,

both agents do not spend a proportionately equal amount

of energy to reach points along the interior of the bound-

ary segments ∆e
ij ∩ Bi. We can formulate a new parti-

tion, the multiplicatively-weighted Voronoi partition, VM =
{V M

1 , . . . , V M
n } such that

V M
i =

{

q ∈ R
N |

1

E2
i

‖q − pi‖
2 ≤

1

E2
j

‖q − pj‖
2

}

. (12)

Thus, given vi = vj = vmax, agents spend proportionately

equal amounts of energy to reach boundary points, ∆M
ij =

V M
i ∩ V M

j . According to [13], for this type of partition

generator points lie in their regions, which may not be convex

and may be disconnected. The boundaries of these regions

are composed of circular arcs. As in the power-weighted

case (10), the multiplicatively-weighted Voronoi diagram

induces its own limited-range Delaunay graph, GM
LD, with

corresponding edges EM
LD(P, E) and neighbors NM

i .

Figure 2 compares the power-weighted Voronoi partition

with the multiplicatively-weighted one. Notice that the re-

gions of Ve are convex whereas the regions of VM are not.

1(1)

2(1.5)

3(2)

4(2.5)

5(3)

1(1)

2(1.5)

3(2)

4(2.5)

5(3)

Fig. 2. Comparison of the power-weighted (left) and multiplicatively-
weighted (right) Voronoi diagrams. Energy contents are shown in paren-
theses. Observe that agent 2 is outside its region in the power-weighted
case.

B. Limited-range partitions

Thus far, we have proposed two possible partitions of the

entire space R
N , (10) and (12). We now incorporate these

two partitions with the limited range concept from Section II.

In order to partition R =
⋃n

i=1 Bi, we propose that

each element of De = (De
1, . . . , D

e
n) be defined as De

i =
Bi ∩ V e

i , i ∈ {1, . . . , n}. Agent regions of dominance, De
i ,

will have boundaries that consist of Voronoi face segments,

∆e
ij ∩ Bi, and energy radius arcs. We will refer to the

union of all those arcs as Arcs (De
i ), which gives ∂De

i =
⋃

j∈N e
i

(

∆e
ij ∩ Bi

)

∪Arcs (De
i ). This proposed partition will

also have a dual graph, the energy limited Delaunay graph

Ge
LD = (P, Ee

LD(P, E). The edge set is defined as

Ee
LD(P, E) = {(pi, pj) ∈ P × P \ diag(P × P ) |

V e
i ∩ V e

j 6= ∅, ‖pi − pj‖ ≤ Ei + Ej} .

The set of neighbors is defined similar to (11). In addition,

we will define the quantities M e
i and Ce

i as the mass and

centroid of the region De
i ,

M e
i =

∫

De
i

φ(q)dq , Ce
i =

1

M e
i

∫

De
i

qφ(q)dq . (13)

A similar treatment for the multiplicatively weighted

Voronoi diagram yields DM = (DM
1 , . . . , DM

n ) where

DM
i = Bi ∩ V M

i . Boundaries of DM
i will be composed

of Voronoi face arcs ∆M
ij ∩ Bi and energy radius arcs

Arcs
(

DM
i

)

. The proposed partition DM will also have its

own dual graph GM
LD with edge set EM

LD. Analogous to (13),

we define the mass and centroid of each region DM
i as MM

i

and CM
i , respectively.

It can be verified that De and DM are in fact partitions,

and we state the following theorem for clarity.

Theorem 2: Let De = {De
1, . . . , D

e
n} be a collection of

sets with De
i = Bi ∩ V e

i . Let DM = {DM
1 , . . . , DM

n } with

De
i = Bi∩V e

i . Then, De and DM are partitions of
⋃n

i=1 Bi.

The two partitions of R yield similar results as can be seen

in Figure 3. Generally speaking, the power-weighted partition

142



De is a good approximation to the multiplicatively-weighted

partition DM if the agents are spaced far enough apart, or

if the energy contents of neighbors are similar. Regions of

De are convex and it is computationally simpler to construct

regions, which may be a consideration in applications where

processing power is limited. The rest of this paper will

present results based off of the approximate partition De.

1(1)

2(1.5)

3(2)

4(2.5)

5(3)

1(1)

2(1.5)

3(2)

4(2.5)

5(3)

Fig. 3. Comparison of the limited range power-weighted (left) and
multiplicatively-weighted (right) partitions, for the same set of points from
Figure 2. Energy contents are shown in parentheses.

IV. OBJECTIVE FUNCTION GRADIENT

CHARACTERIZATION

In this section we derive the gradient direction for each

of the three objective functions that we have introduced

previously. These gradients define the proper direction of

flow in order to optimize coverage. Before computing the

gradients we would like to note the following result.
Lemma 3: The objective functions derived from (6) are

continuously differentiable.

In addition, with a clear definition of the partitioning of R,

we now specify the weighted distance metric found in (8) as

de
Ei

(q, pi) = ‖q − pi‖
2 − E2

i , (14)

for the partition De. We can now rewrite the objective

functions: (7) and (8). Specifically, using De, we have

Ha(P, E) =

n
∑

i=1

∫

De
i

φ(q)dq , (15)

Hc(P, E) =
n
∑

i=1

∫

De
i

−
(

‖q − pi‖
2 − E2

i

)

φ(q)dq . (16)

We now state the gradient expressions for these functions.

Proposition 4: Consider the objective functions Ha, Hc,

and Hm from (15), (16), and (9), respectively using the

partition De. Let X = (X1, . . . , Xn) be a general vector

field where

Xi = (Xpi
, XEi

) : Q × R → R
N × R ,

for all i ∈ {1, . . . , n}. Then, the Lie derivatives of Ha, Hc,

and Hm along the flow X are:

LXHa =
n
∑

i=1

(

∫

Arcs(De
i )

φ(γi)[n
t(γi)]

T dγi

)

Xpi

+

(

∫

Arcs(De
i )

φ(γi)dγi

)

XEi
, (17)

LXHc =

n
∑

i=1

(

2M e
i(C

e
i−pi)

T
)

Xpi
+(2EiM

e
i )XEi

(18)

LXHm = κaLXHa + κcLXHc , (19)

Remark 5: The gradient expressions can be derived for

the multiplicatively-weighted partitions DM in an analogous

fashion as (17), (18), and (19). They are, however, slightly

more complicated. A control law and convergence result can

be reached analogous to the results of the following section.

V. GRADIENT-ASCENT DEPLOYMENT ALGORITHMS

Once we have computed the gradient directions for each

objective function, we will apply a gradient-ascent control

algorithm for each case. Consider (1) with

ui = k(pi, Ei) sat

(

∂H

∂pi

)

, (20)

where the saturation function is

sat(v) =

{

v , ‖v‖ ≤ 1 ,
v

‖v‖ , ‖v‖ > 1 .

Here the control gain k(pi, Ei) ≥ 0 serves to modulate the

velocity of each agent along its gradient climbing path.

Now we analyze the time evolution of the resulting objec-

tive function with this law. We adopt the shorthand notation

ki = k(pi, Ei). Combining the gradient direction with the

time derivatives above, we get the following Lie derivative

for an objective function

dH

dt
=

n
∑

i=1

∂H

∂pi

ṗi +
∂H

∂Ei

Ėi (21)

=

n
∑

i=1

ki

∂H

∂pi

· sat

(

∂H

∂pi

)

− k2
i

∂H

∂Ei

∥

∥

∥

∥

sat

(

∂H

∂pi

)
∥

∥

∥

∥

2

=

n
∑

i=1

ki sat

(

∂H

∂pi

)

·

(

∂H

∂pi

− ki

∂H

∂Ei

sat

(

∂H

∂pi

))

.

Remark 6: Non-smooth dynamics are also possible:

ṗi = k(pi, Ei)

∂H
∂pi
∥

∥

∥

∂H
∂pi

∥

∥

∥

,

Ėi = −‖ṗi‖
2 = −k2(pi, Ei) .

Doing so would require the non-smooth analysis techniques

found in [16]. We would, however, arrive at the same

convergence conclusions found in the next subsections. •

A. Optimal gain selection

We wish that dH
dt

≥ 0 since we are maximizing the

objective function. We now derive a sufficient condition for

k and also present an optimal choice for k.

Lemma 7: Given the model (1), (20), and an objective

function H, the latter is maximized if

0 ≤ k(pi, Ei) ≤
sat
(

∂H
∂pi

)

· ∂H
∂pi

∥

∥

∥
sat
(

∂H
∂pi

)
∥

∥

∥

2
∂H
∂Ei

, (22)
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for all i ∈ {1, . . . , n}, and an optimal choice of k(pi, Ei) is

k∗(pi, Ei) =
1

2

sat
(

∂H
∂pi

)

· ∂H
∂pi

∥

∥

∥
sat
(

∂H
∂pi

)
∥

∥

∥

2
∂H
∂Ei

. (23)

Remark 8: Different energy dynamics can be considered

as in [12] where energy dynamics are modeled using a

fourth order polynomial in ṗi. More complex dynamics are

allowable if they are sufficiently smooth with respect to ṗi.•
Although using (23) provides the quickest rate of conver-

gence, it may not be the best. Consider the situation shown

in Figure 4, for the case where the objective function is (7).

Agent 4 has a small arc component compared to its entire

boundary. However with the area coverage gradient (17), the

optimal gain (23) remains constant since ∂Ha

∂pi
, ∂Ha

∂Ei
→ 0 at

the same rate. For this reason, we would like ki to be chosen

by the following constrained optimization way: maximize

the summand of (21) subject to ki ≤ ∂H
∂Ei

. Notice that this

quantity is of the form f(ki) = ki(c1 − kic2), a concave

parabola. With this constraint, the optimum k∗
i is then

k∗
i = min











1

2

sat
(

∂H
∂pi

)

· ∂H
∂pi

∥

∥

∥
sat
(

∂H
∂pi

)∥

∥

∥

2
∂H
∂Ei

,
∂H

∂Ei











. (24)

A simulation in Section VI further discusses this choice.

1

2

34

(a) (b)

Fig. 4. Agent number 4 in (a), has a small arc component compared to its
total boundary mass. The shaded area in (b) does not belong in the region
of any agent. The energy radii, Ei, are shown as dotted lines.

Remark 9: We discuss what information agents would

need to know in order to implement a control law as in (20)

in a distributed way. In order for vehicle i to correctly

construct a region De
i , it must receive position and energy

information (pj , Ej) from neighbors such that (pi, pj) ∈
Ee

LD(P, E). A sufficient condition to achieve this is if pj can

transmit to pi when ‖pi − pj‖ ≤ 2Em for all j 6= i. With

this communication requirement, the control law described

in (20) is spatially distributed over the graph Ge
LD; i.e. in

order to implement its motion control rule pi only needs to

know information about its neighbors in Ge
LD. •

B. Convergence analysis

We now replace the general objective, H, with the func-

tions developed in (7), and (9). The proof of the following

theorem relies on the LaSalle invariance principle (see [17]).

Theorem 10 (Critical configurations and convergence):

The critical points of a gradient ascent flow characterized

by (20) and appropriate choice of k using an objective

function H ∈ {Ha,Hc,Hm} are configurations where each

agent either satisfies ∂H
∂pi

= 0, or has no energy, Ei = 0.

The statement ∂H
∂pi

= 0 has the following meanings:

(i) the vehicle cannot further locally increase its coverage

area when using Ha,

(ii) vehicle i is located at the centroid of De
i when using

Hc, and

(iii) the vehicle has reached a balance between maximizing

area covered and remaining close to the centroid of De
i

when using Hm.

Agents approach these critical configurations as t → ∞.

VI. SIMULATIONS

In this section, we present simulation results for the

three coverage objectives. First, however, we will address

the motivation for choosing k∗
i from (24) over (23). In

this simulation, n = 8 agents were initialized at random

initial positions with Ei = 10 for i ∈ {1, . . . , 8}. The

agents were confined to Q = [0, 15] × [0, 15] ⊂ R
2 with

φ(x, y) = 1+10 exp[− 1
9 ((x−10)2+(y−10)2)]. The agents

maximized the area coverage objective function (7).
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Fig. 5. Comparison between the performance of k∗
i

from (23), (a); and
from (24), (b). Agent paths and final configurations are shown at left, and
the energy level of agent 4 is plotted at right. Shaded regions indicate a
high value of φ.

The use of k∗
i from (24) demonstrates a couple advantages

over (23) in the simulation of Figure 5. In Figure 5(a), agent

4 finishes with almost no energy, while the same agent has

significantly more energy in Figure 5(b). In addition, all 8
agents were deployed in Figure 5(a) while only 5 agents left

the starting location in Figure 5(b).

We first examine the area coverage case, (7). Here, n = 12
agents are confined to Q = [0, 10] × [0, 10] ⊂ R

2 with a

density function φ composed of 4 Gaussian distributions (see

Figure 6). The density function used was

φ(q) = 1 + 10
[

e−
‖q−r1‖2

9 + e−
‖q−r2‖2

2 + e−
‖q−r3‖2

2

+ e−‖q−r4‖
2
]

,

144



where r1 = (8, 8), r2 = (8, 2), r3 = (8, 4) and r4 = (3, 7).
Agents started at random positions in the lower-left corner,

with Ei = 3 for i ∈ {1, . . . , 12}. The agents followed the

gradient ascent control law in (20), and used (24).
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Fig. 6. Area coverage simulation results. The path lines and final
configurations are shown at the left; shaded regions indicate a high value
of φ. The cost function for the entire system, Ha, is plotted on the right.
The average energy content at the end of the simulation was 0.79.

The area coverage simulation increased the coverage of

Q as time progressed, Figure 6 (right). Because the gradient

tends to push agents away from each other, small holes of

uncovered area remain, such as the space between agents

1, 2, 3, 4. Also, the agents had an average energy level of

0.79 at the end of the simulation. We will see in the mixed

coverage case that this is improved upon.

The second simulation presents the mixed-coverage

case (9) with identical initial conditions. The area and

centroidal components carried equal weight, κa = κc = 1
from (9). Agents performed better in terms of final energy

content, with an average of 1.50 at the end of the simulation.

Qualitatively, there are fewer coverage holes compared to

the previous simulation. The centroidal component of Hm

“forces” agents towards the denser regions of φ, overcoming

the repulsive area-maximizing component of Hm.
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Fig. 7. Mixed centroid and area coverage simulation results. The path
lines and final configurations are shown at left; shaded regions correspond
to higher values of φ. The global cost function Hm is plotted at the right.
The average energy content at the end of the simulation was 1.50.

VII. CONCLUSIONS

We have presented a novel set of spatially distributed

coverage control algorithms. We designed three objective

functions to demonstrate the flexibility of this method. In

addition each of these algorithms place an emphasis on

individual energy levels through use of a generalized Voronoi

partition. We have shown through simulation that the three

cases that we developed perform as intended.

Current work includes developing an implementation of

the multiplicatively-weighted Voronoi partition. In addition,

incorporating nonholonomic vehicle dynamics into the con-

vergence analysis would provide a more practical scenario.

In the future we will implement these ideas in a physical

testbed as well. We are currently working on algorithms that

help us find a global optima.
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