
Distributed Multi-Robot Task Assignment and Formation Control

Nathan Michael, Michael M. Zavlanos, Vijay Kumar, and George J. Pappas

Abstract— Distributed task assignment for multiple agents
raises fundamental and novel problems in control theory and
robotics. A new challenge is the development of distributed
algorithms that dynamically assign tasks to multiple agents,
not relying on a priori assignment information. We address this
challenge using market-based coordination protocols where the
agents are able to bid for task assignment with the assumption
that every agent has knowledge of the maximum number of
agents that any given task can accommodate. We show that
our approach always achieves the desired assignment of agents
to tasks after exploring at most a polynomial number of
assignments, dramatically reducing the combinatorial nature
of discrete assignment problems. We verify our algorithm
through both simulation and experimentation on a team of
non-holonomic robots performing distributed formation stabi-
lization and group splitting and merging.

I. INTRODUCTION

Recent advances in communication and computation have
given rise to distributed control of multi-agent systems
which, compared to conventional centralized control, provide
increased efficiency, performance, and scalability as well
as robustness due to its ability to adjust to agent failures
or dynamically changing environments. Inspired by these
appealing properties of distributed control, we propose a
distributed and online solution to the multi-agent dynamic
task allocation problem where the assignment of robots to
tasks may need to be continuously adjusted depending on
changes in the task environment or group performance.

Assignment problems are fundamental in combinatorial
optimization and, roughly, consist of finding a minimum
weight matching in a weighted bipartite graph. They arise
frequently in operations research, computer vision, as well
as distributed robotics, where graphs have recently emerged
as a natural mathematical description for capturing intercon-
nection topology [1]–[6]. Depending on the form of the cost
function, assignment problems can be classified as linear or
quadratic. Optimal solutions to the linear assignment prob-
lem can be computed in polynomial time using the Hungarian
algorithm [7]. The quadratic assignment problem, however, is
NP-hard [8] and suboptimal solutions are achieved by means
of various relaxations. Approaches are either purely discrete
[9], or continuous [10], based on the solution of differential
equations that always converge to a discrete assignment.
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In distributed robotics, task assignment considers an en-
vironment populated with tasks and a group of robots that
are equally capable of performing each of the tasks but may
only be assigned to one task at any given time. Tasks can in
general be generic objects such as spatial locations, network
resources, or classifications. Assignment approaches can be
either online [11], [12] or off-line [13] depending on whether
the assignment of agents to tasks is designed to account for
changes in the task environment or is solved independently in
advance. Task assignment also aims to enhance the system’s
performance, typically by reducing the overall execution
time. In distributed multi-agent target assignment this usually
translates to optimizing a cost associated with the total
distance traveled by the agents [13], [14].

In this paper we propose a distributed market-based co-
ordination algorithm in which agents are able to bid for
task assignments with the assumption that the agents have
knowledge of all tasks as well as the maximum number of
agents that can be assigned to every individual task. Each
auction is performed among neighboring groups of agents
and requires only local communication. We assure that the
final assignment will respect the maximum agent specifi-
cation for every task by requiring that all agents bidding
for a particular task are eventually neighbors. Although no
global cost is optimized, we show that a desired assignment
of agents to tasks is always achieved after exploring at
most a polynomial number of assignments, dramatically
reducing the combinatorial nature of discrete assignment
problems. We illustrate the effectiveness of our approach
through nontrivial computer simulations as well as through
experimentation. In particular, we consider teams of multiple
robots that navigate and stabilize to a given formation, or
split and merge into groups of different sizes.

The presentation of the paper is organized as follows. In
Sect. II we formalize the assignment problem and provide
necessary notation. Sect. III details the distributed coor-
dination algorithm. We address experimental and software
details in in Sect. IV and algorithm performance in Sect. V.
Simulation and experimental results for a team of differential
drive non-holonomic robots are presented in Sect. VI.

II. PROBLEM DEFINITION

Given n identical agents and m ≤ n tasks to be ac-
complished by the agents, let nk be the maximum number
of agents that can be assigned to task k, such that n =
n1 + · · · + nm. Then, the problem addressed in this paper
can be stated as follows.

Problem 1 (Distributed Task Assignment): Given n
agents and m tasks, determine distributed control laws that
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split the agents into m groups of size nk associated with
each task k = 1, . . . ,m.

In the proposed framework, a task represents a generic
notion associated with a common objective or item that all
agents assigned to it should share. For instance, a task can
be associated to a location that a group of agents should
explore, a box that a group of agents should lift, or even
a computation that a group of agents should collaboratively
evaluate. In all cases, the common objective that defines the
task requires collaboration of the group of agents that are
assigned to it.

Since the assignment of the agents to tasks is not provided
a priori, it needs to be determined dynamically. We achieve
this goal by letting every agent explore a sequence of tasks
it considers available and eventually establish an assignment
with an available task, according to the specifications of
Problem 1.1 Task assignment is based on a distributed market
characterized by the absence of a centralizing auctioneer,
where agents are able to bid for the task to which they
wish to be assigned. Local communication among neighbors
enables assignments to be made by comparing bids as
well as information propagation in the underlying network,
regarding the availability of the requested tasks. Inter-agent
communication and the proposed bidding process together
form a distributed coordination framework able to achieve
the desired assignment (Section III).

III. DISTRIBUTED TASK ASSIGNMENT

Let I = {1, . . . ,m} denote the index set of all available
tasks and define the availability αk(t) ∈ {0, 1, . . . , nk} of a
task k ∈ I at time t by the number of agents that can still
be assigned to that task without exceeding the limit nk. We
assume that every agent i holds an estimate of the availability
αk(t) for every task k ∈ I, which we denote by α

[i]
k (t). For

every agent i, let Ia
i (t) , {k ∈ I | α

[i]
k (t) > 0} denote

the index set of all tasks that are considered available at
time t. Then, It

i (t) , I\Ia
i (t) = {k ∈ I | α

[i]
k (t) = 0}

denotes the index set of all tasks that are considered taken.
Initially we assume that α

[i]
k (t0) = nk for all agents i and

so Ia
i (t0) = I and It

i (t0) = ∅. Define, further, a selection
function fs : 2R → R by fs(X ) , x ∈ X for any set
X ∈ R, where x ∈ X can be chosen according to any policy,
deterministic or not. Applied on the index sets Ia

i (t), the
selection function fs returns an available task k ∈ Ia

i (t) to
which agent i may be assigned.

Construction of the aforementioned discrete assignment
component relies on distributed market-based coordination,
where the agents are able to bid for a desired task assignment.
In particular, we say that a task k ∈ I is being “sold” in the
market if there is at least one agent i such that fs(Ia

i (t)) = k.
In the absence of a centralizing auctioneer, local communi-
cation among the agents is required to achieve the desired
coordination. Let Ni(t) denote the set of neighbors of agent
i, indicating those agents that agent i can communicate

1We call task k unavailable if it has been assigned to nk agents and
available otherwise.

Task 1 Task k Task m

A2

A1
A5

A4A3

Fig. 1. Forming local auctions: Consider agents A1 through A5, all
requesting to be assigned to Task k. Solid lines between the agents
indicate communication links. In the proposed scenario, two local auc-
tions are formed involving agents A1 and A2, and A1, A3 and A5,
respectively. Note that A1 participates in both auctions. If bid(A1) >
max{bid(A2), bid(A3), bid(A5)}, then A2, A3 and A5 will switch to a
different task, while A1 and A4 will keep requesting Task k. If bid(A2) >
bid(A1) > max{bid(A3), bid(A5)}, then A1, A3 and A5 will switch to
a different task. Similarly, other bidding scenarios can be considered and
the local auctions are guaranteed to break any ties over Task k.

with at time t. Each auction of the proposed market-based
coordination scheme is described in Algorithm 1, while the
assignment process consists of a sequence of such auctions
taking place locally among neighboring groups of agents
(Fig. 1).

Every auction takes place among an agent and all of its
neighbors that wish to be assigned to the same task (line 1,
Algorithm 1). The outcome of the auction depends on the
values of the bids that the involved agents have placed. In
particular, the agent with the highest bid wins the auction and
continues to pursue its desired task (line 6, Algorithm 1). If
there is a tie within the bids, the involved agents bid higher
for the same task (line 10, Algorithm 1), while each agent
with a lower bid selects a new task among the available
ones (line 14, Algorithm 1) and updates its availability by a
one unit decrement (line 15, Algorithm 1). In terms of the
proposed market, this unit decrement indicates that the task
is being “sold” in the market one more time. Note that this
availability can never increase as the aforementioned task
will always be eventually assigned to an agent (possibly
not to the first one to claim an assignment) depending on
the bidding process. In addition to decrementing a task’s
availability once an agent requests an assignment, every
agent also updates task availabilities by setting them to the
minimum value of itself and its neighbors (lines 3, 7 and 13,
Algorithm 1). This minimum update rule is based on the fact
that each time a task is “sold” in the market it will always be
eventually assigned to an agent. Agents that are not aware of
a task’s availability can claim it (line 14, Algorithm 1) and
eventually bid for it. The minimum update rule, however,
informs agents about a tasks’ availabilities and prohibits
them from requesting assignments with unavailable tasks.
This speeds up the assignment process, but more importantly,
guarantees progress towards reaching a final assignment as
it does not allow continuous bidding for any particular task,
which could hinder convergence of the assignment algorithm.
Note that in the case of n tasks, each with availability
nk = 1, the proposed algorithm reduces to the one described
in [15].
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Correctness of the proposed scheme critically relies on the
assumption that every agent requesting to be assigned to a
task will eventually be able to communicate and compare
bids with all other agents requesting to be assigned to the
same task. In other words, it is assumed that every conflict on
any particular task can be resolved as eventually all involved
agents are able to communicate and collectively initiate a
local auction and determine a final assignment, if required
(Fig. 1).2 Finally, the bidding process is assumed to be sound,
namely every tie on the bids is eventually broken (line 9 of
Algorithm 1). With these assumptions we can now state our
main result.

Proposition 3.1: Given n agents, each implementing Al-
gorithm 1, the group is always guaranteed to reach an
assignment that respects the availabilities of every task.
Furthermore, the final assignment is reached after the group
has explored at most n(n + 1)/2 assignments.

Proof: Clearly, the minimum update rule and the
assumption that all agents requesting to be assigned to a
task will eventually be able to communicate and compare
bids with all other agents requesting to be assigned to the
same task, guarantee that the final assignment will respect
the task availabilities. As discussed above, this is because
all agents requesting to be assigned to a task will eventually
share common availability information and will be able to
initiate a final auction to determine the final assignment, if
required. On the other hand, the assumption that any ties
in the bids are always eventually broken guarantees that
no auction can ever deadlock. This, combined with the fact
that agents are prohibited from bidding for unavailable tasks
(minimum update rule) guarantees progress towards the final
assignment in finite time. To determine a bound on the
number of assignments that need to be explored before the
final assignment is reached we construct the following worst
case scenario.

Assume n tasks with availability one each and let the
agents explore tasks sequentially, in a decreasing-bid order.
Without loss of generality, we may assume that the agent
with the highest bid gets assigned to the first task. Then, the
second highest bid agent loses one auction for the first task
and is assigned to the second task. The third highest bid agent
loses two actions for the first and second task, respectively,
and is assigned to the third task. Continuing in this way and
summing up the number of times each agent had to pursue
a new task gives a total number of assignments explored
equal to n(n + 1)/2. For more details on correctness of the
proposed scheme, we refer the reader to [15].

IV. EXPERIMENTAL SETUP AND SOFTWARE DESIGN

The remainder of the paper is dedicated to verifying the
effectiveness of the algorithm presented in Sect. III in the
context of formation control of a team of robots. We begin

2As an example, consider the case of a motion planning task where robots
are required to physically visit targets and communication is proximity-
based. Then, the aforementioned communication assumption is clearly
satisfied.

Algorithm 1 Market-Based Coordination for Agent i

Require: A task ki = fs(I) and bid bi ≥ 0
1: Compute the set of agents bidding for the same task ki,

i.e., Ai := {j ∈ Ni | kj = ki}
2: if Ai = ∅ then
3: Update the availabilities by, α

[i]
k := minj∈{i,Ni}{α

[j]
k }

for all tasks k ∈ I,
4: Update the sets Ia

i , It
i and neighbors Ni,

5: else if Ai 6= ∅ then
6: if bi > maxj∈Ai{bj} then
7: Update the availabilities by,

α
[i]
k := minj∈{i,Ni}{α

[j]
k } for all tasks k ∈ I,

8: Update the sets Ia
i , It

i and neighbors Ni,
9: else if bi = maxj∈Ai

{bj} then
10: Bid higher for the same task ki, i.e.,

bi := fs([bi,∞)),
11: Update neighbors, Ni,
12: else if bi < maxj∈Ai{bj} then
13: Update the availabilities by,

α
[i]
k := minj∈{i,Ni}{α

[j]
k } for all tasks k ∈ I,

14: Select a new available task by,
ki := fs

(
Ia

i \{k | α
[j]
k = 0}

)
15: Bid higher for the new task by, bi := fs([bi,∞))

and update its availability by α
[i]
ki

:= α
[i]
ki
− 1,

16: Update the sets Ia
i , It

i and neighbors Ni,
17: end if
18: end if

by discussing implementation details relevant to the analysis
and experimental design that follows.

A. Algorithm

The distributed auctioning algorithm was implemented in
C++ using the open-source robotics software Player, part
of the Player/Stage/Gazebo project [16]. The Player server
enables network communications between multiple robots.
Player also permits integration with simulation allowing
the same code base to be used in both simulation and
experimentation on the real hardware.

Each agent communicates a message packet containing its
current position and item selection, availability estimate, and
bid. The position is used to model limited communication
neighborhoods in simulation and experimentation as well
as to provide position estimates to the underlying control
algorithms for local obstacle avoidance. Additionally, each
agent chooses any initial or updated items from a random
uniform distribution over the set of items with non-zero
availability.

Implementing the algorithm on a team of robots intro-
duces network delays. Additionally, because the system is
distributed the resulting implementation is asynchronous.
To alleviate these issues, the algorithm is divided into two
modules which monitor the auction in multiple concurrent
threads on each robot. An underlying message relay operat-
ing at high frequency aggregates and provides messages to
the algorithm. The relay also tracks and prunes data below
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Fig. 2. Scarab Robot. The differential drive ground platform used in exper-
imentation. Each robot is equipped with on-board computation, a tracking
target for global pose estimation, and 802.11a wireless communications.

a threshold of “liveliness,” to emulate the effects of lost
network communications between neighbors.

B. Simulation and Experimentation

As noted in Sect. IV-A, the algorithm implemention
uses the networking capabilities of Player. Simulations are
performed using Gazebo, a 3D simulator that interfaces
with Player. In simulation, Player uses shared memory to
exchange messages locally. For this reason simulation results
do not contain network delays. Additionally, Player currently
only supports TCP communications and thus the network
message passing is peer-to-peer rather than broadcast.

A team of six Scarab robots, one of which is shown
in Fig. 2, serves as the experimental platform. The Scarab
is a differential drive non-holonomic robot with on-board
computation. Each Scarab is equipped with a localization
target that provides accurate pose estimation in real time. Ad-
ditionally, the Scarabs communicate on a wireless 802.11a
network. Further details of the robot design and experimental
environment are provided in [17].

V. ALGORITHM PERFORMANCE

We tested the algorithm for effectiveness under a variety
of conditions and discuss here two cases evaluated on a team
of six robots with complete and limited network connectivity
(see Sect. IV-A). By limited network connectivity, we mean
that although all agents are connected, they do not all share
the same set of neighbors. Each scenario was tested using
two auction definitions: a unique item for each robot (nk =
1, k = {1, . . . , 6}) and two items shared equally between
the six robots (nk = 3, k = {1, 2}). The results of one trial
auction for each of the four resulting test cases are shown in
Fig. 3.

Figures 3(a) and 3(b) demonstrate the effects of complete
versus limited communication on the update of the algorithm
for two trial auctions. Clearly, Fig. 3(a) depicts an immediate
response to any commonly shared items since information
is globally available in a single iteration. However, when
communication is limited (Fig. 3(b)) the two robots share a
common item for several iterations before the information is
dispersed to the other agent.

(a)

(b)

(c)

(d)

Fig. 3. Algorithm Performance. Four trials involving six robots demonstrate
the effects of complete and limited inter-agent communication on auctions
consisting of unique and equally shared items. Each line represents the
current item selection of a robot. Note that since each auction is occurring
locally and asynchronously, the x-axis depicts iterations rather than time.
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Figures 3(c) and 3(d) show similar results. Empirically,
we observe that in Fig. 3(d), although initially the auction
is randomly divided such that it favors completion, a single
agent shares an item that exceeds the permissible availability.
Note that one would expect the robot to change on iteration
seven since there are six agents in the system and full
knowledge should therefore take six hops. However, as the
robots are computing these values asynchronously and with
network delays, it is reasonable to expect that some robots
are able to perform faster updates and are therefore more
advanced in the progression of the algorithm.

VI. APPLICATION TO DISTRIBUTED
FORMATION CONTROL

In distributed robotics, the assignment problem addressed
in Algorithm 1 naturally arises in applications involving des-
tination and target allocation. The formation control problem
is an example of one such application.

Consider the assignment of multiple tasks associated with
predefined spatial locations or regions which define a for-
mation. For the case where each robot is associated with
a unique task k, the resulting auction definition is nk = 1
for all k and m = n under the assumptions discussed in
Sect. III. Such a situation resolves to a unique point and
can therefore be considered as distributed formation control.
However, if nk > 1, then the resulting auction dynamically
groups a subset of robots. In such a situation, k is a shared
item or task, which we choose to associate with a region in
space. The resulting auction therefore defines group splitting
and merging depending upon the auction specification.

Both of these auctions require that an underlying con-
trol law exists concurrently with the capability to resolve
inter-agent collision avoidance and way-point navigation.
Of course, any control law suitable for the application is
acceptable. For the purposes of our implementation, we have
selected a control law modeled closely after the distributed
navigation function controllers presented in [18], [19] for
nonholonomic, non-point robots. Reactive control laws are
also permissible. Recall that each agent is transmitting its
current position within the message packet described in Sect.
IV-A. This information permits a control law to resolve
collision scenarios without requiring further information.

A. Simulation Results

We tested Algorithm 1 in a distributed formation control
scenario where robots are uniquely assigned to spatial points
in R2 that collectively spell the name “GRASP.” A simulated
team of twenty non-holonomic robots modeled closely to
agree with the physical characteristics of the Scarab robot
perform way-point navigation, while avoiding collisions, to
a location dynamically assigned by the distributed auction.
A thresholding of messages originating more than 5 m from
each robot models the effect of limited communication on
the algorithm. The series of images in Fig. 4 provides a
depiction of the evolution of the simulation.

B. Experimental Results

We experimentally tested the algorithm on six Scarab
robots. In Sect. VI-A, we consider the formation problem
where each robot is bidding for a unique location. In ex-
perimentation, we consider the capabilities of the algorithm
to resolve auctions involving shared items where each item
represents a region characterized by a disc centered at a
specific location in the experimental environment.

From an initial formation (Fig. 5(a)) the robots are trans-
mitted a series of auction descriptions that defined the
number of items being auctioned as well as the maximum
availabilities. The underlying code base ensures that message
queues are cleared between auctions to prevent old messages
from effecting the next manually triggered auction.

An auction defined by m = 2, n1 = n2 = 3, de-
termines the formation shown in Fig. 5(b), where k1 and
k2 correspond to the points (0, −1.75 m) and (0, 1.75 m)
in the global reference frame, respectively. The resulting
control specification causes a division of the group into two
subgroups of equal size. Figure 5(c) depicts the formation de-
fined by a similar auction transmitted to the robots, but with a
specification that further splits the team into four subgroups.
The auction is defined by m = 4, n1 = n2 = 1, n3 = n4 =
2, where tasks k1 and k2 were defined previously and k3 and
k4 correspond to the points (1.75 m, 0) and (−1.75 m, 0).

VII. DISCUSSION AND FUTURE WORK

We addressed the problem of distributed task allocation
for a team of robots and proposed a distributed algorithm
that requires at most n(n + 1)/2 iterations to converge. The
general definition of tasks or items makes this algorithm
applicable to a wide range of scenarios. We discussed the
performance and implementation of the algorithm on a team
of robots. We concluded with simulation and experimental
results that demonstrated the effectiveness of the algorithm
for applications such as distributed formation control and
merging and splitting of groups.

A future study on the effect of broadcast versus peer-to-
peer communication in an ad-hoc network for a larger system
is merited. In this paper, we modeled limited communication
by ignoring messages from agents that are not within a
predefined neighborhood due to a limited experimental area.
Additionally, we characterized the algorithm with six robots
using TCP communications.

Other future directions include the application of the
algorithm to tasks such as distributed manipulation, pattern
generation, persistent surveillance, and environmental mon-
itoring, where the ability to spilt or merge a team of robots
depending upon object or pattern shape or the geometry of
the environment becomes relevant. Finally, an integration
of the algorithm with mixed initiative control, where tasks
are allocated concurrently by a human or supervisory agent,
would permit interaction with only a subset of the team of
robots while the remaining robots dynamically adjust to the
changing system.
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(a) (b) (c) (d)

Fig. 4. Simulated Formation Control. Twenty nonholonomic robots modeled after the Scarab control to a series of letters forming the local laboratory
name “GRASP.” Each robot has a limited sensing and communication range. Concurrent with the auction, each robot is performing decentralized collision
avoidance and way-point control. Figures 4(a)–4(d) depict the transition between the two letters “S” and “P.” The full simulation is captured in the
supplemental video.

(a) (b) (c)

Fig. 5. Experimental Results. A team of six Scarab robots perform formation control defined by distributed task assignment. The robots begin as a group
in Fig. 5(a). The team is split evenly between two regions in Fig. 5(b). Four regions define the final auction and formation control shown in Fig. 5(c).
Each region is marked by a white “X.”

REFERENCES

[1] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, June
2003.

[2] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transac-
tions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, Sept. 2004.

[3] H. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed
and switching networks,” IEEE Transactions on Automatic Control,
vol. 52, no. 5, pp. 863–868, May 2007.

[4] J. Cortes, S. Martinez, and F. Bullo, “Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensions,”
IEEE Transactions on Automatic Control, vol. 51, no. 8, pp. 1289–
1298, Aug. 2006.

[5] R. Sepulchre, D. Paley, and N. E. Leonard, “Stabilization of planar
collective motion: All-to-all communication,” IEEE Transactions on
Automatic Control, vol. 52, no. 5, pp. 811–824, May 2007.

[6] S. Poduri and G. S. Sukhatme, “Constrained coverage for mobile
sensor networks,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation, New Orleans, LA, May 2004, pp. 165–172.

[7] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval Research Logistics, vol. 2, no. 1, pp. 83–97, 1955.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. San Francisco, CA: W. H.
Freeman, 1979.

[9] H. A. Almohamad and S. O. Duffuaa, “A linear programming approach
for the weighted graph matching problem,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 15, no. 5, pp. 522–525,
May 1993.

[10] M. M. Zavlanos and G. J. Pappas, “A dynamical systems approach
to weighted graph matching,” in Proc. of the IEEE Conference on
Decision and Control, San Diego, CA, Dec. 2006, pp. 3492–3497.

[11] K. Lerman, C. Jones, A. Galstyan, and M. J. Mataric, “Analysis of
dynamic task allocation in multi-robot systems,” The Int. Journal of
Robotics Research, vol. 25, no. 3, pp. 225–242, Mar. 2006.

[12] M. M. Zavlanos and G. J. Pappas, “Dynamic assignment in distributed
motion planning with local coordination,” IEEE Transactions on
Robotics, vol. 24, no. 1, Feb. 2008.

[13] M. Ji, S. Azuma, and M. Egerstedt, “Role-assignment in multi-agent
coordination,” in Int. Journal of Assistive Robotics and Mechatronics,
vol. 7, no. 1, Mar. 2006, pp. 32–40.

[14] S. L. Smith and F. Bullo, “Target assignment for robotic networks:
Asymptotic performance under limited communication,” in Proc. of
the American Control Conf., New York, July 2007, pp. 1155–1160.

[15] M. M. Zavlanos and G. J. Pappas, “Distributed formation control with
permutation symmetries,” in Proc. of the IEEE Conference on Decision
and Control, New Orleans, LA, Dec. 2007, pp. 2894–2899.

[16] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage
project: Tools for multi-robot and distributed sensor systems,” in Proc.
of the Int. Conf. on Advanced Robotics, Coimbra, Portugal, June 2003,
pp. 317–323.

[17] N. Michael, J. Fink, and V. Kumar, “Experimental testbed for large
multi-robot teams: Verification and validation,” IEEE Robotics and
Automation Magazine, Mar. 2008.

[18] D. V. Dimarogonas and K. J. Kyriakopoulos, “A feedback stabilization
and collision avoidance scheme for multiple nonholonomic non-point
agents,” in Proc. of IEEE Int. Symposium on Computational Intelligent
Control, Limassol, Cyprus, June 2005, pp. 820–825.

[19] D. V. Dimarogonas, S. G. Loizou, K. J. Kyriakopoulos, and M. M.
Zavlanos, “A feedback stabilization and collision avoidance scheme
for multiple independent non-point agents,” Automatica, vol. 42, no. 2,
pp. 229–243, Dec. 2006.

133


