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Abstract— Postural kyphosis as one of the most common
kinds of kyphosis is usually diagnosed in adolescents and young
adults. Long-term kyphosis will not only affect the persons’
appearance, but also result in thoracic deformity accompanied
by pain. In this paper, we introduce a cost-effective shoe-
integrated system which mainly consists of 8 force sensing
resistors (FSRs) for gathering the pressure information under
the 8 bony prominences. Based on the gathered plantar pressure
information, the methodology of Cascade Neural Networks with
Node-Decoupled Extended Kalman Filtering (CNN-NDEKF) is
applied for training the model of detecting the gait pattern
associated with postural kyphosis. Experimental results demon-
strate that the proposed approach is efficient. This device is of
particular significance to provide feedback in the application
of postural kyphosis rectification.

I. INTRODUCTION

Kyphosis generally refers to an increased curvature of
the thoracic spine in the sagittal plane. Long-term kyphosis
will result in thoracic deformity accompanied by pain. Since
spine is of a consecutive multi-segmented structure, kyphosis
can affect not only the thoracic spine, but also the cervical
(upper) and lumbar (lower) spine. The exaggerated curves of
cervical and lumbar spine happen in the inward direction to
compensate for the increased outward curve in the thoracic
spine.

To be one of the most common types of kyphosis, postural
kyphosis is mainly attributed to slouching posture. Different
from Scheuermann’s kyphosis, postural kyphosis presents a
smooth curvature while the patient bends forward. Postural
kyphosis is usually diagnosed in adolescents and young
adults. The traditional treatment for postural kyphosis is
with education of proper posture and suitable exercises to
strengthen the back and abdomen muscles so as to support
proper posture. After long-term postural training, postural
kyphosis will be effectively corrected and lead to no problem
in the patients’ future life.

Keeping proper posture in daily life is the key to
amend postural kyphosis. However, few adolescents can self-
consciously correct their slouching posture. In this condition,
the brace is introduced for curve correction which is custom-
made for each patient. Besides, E. Lou et al. introduced a
garment including two 3-axis accelerometers to monitor the
kyphosis angle and provide vibration feedback to children
[1]. The limitation for both brace and garment approaches is
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to affect the upper body appearance so as to make patients
feel uncomfortable during the wearing process. Based on
the study of plantar pressure for human walking, the plantar
pressure distribution will shift along with the increase of
curvature for the thoracic spine. That is to say, gait analysis
especially based on plantar pressure provides an indirect
approach for detecting postural kyphosis. We propose an
intelligent shoe-integrated system from which the pressure
information derived can give efficient assistance in deter-
mining and alarming the persons associated with postural
kyphosis. Fig. 1 displays the postures of slouching and proper
walking.

     

             (a)                         (b)       

Fig. 1. (a) Slouching walking (b) Proper walking

The Pedar insole system (Novel, Munich) with 99 ca-
pacitance transducers for planter pressure measurement is a
commercially available system which is widely used in clinic
sites and laboratories due to its repeatability and accuracy
[2]. However, the limitations of this device include a heavy
wireless and memory storage module, a thick insole, and an
expensive price. The heavy weight of wireless and memory
storage module limits the period of gait trial. Since Pedar
insole system utilizes the capacitance transducer which is
thicker (approximately 2 mm) in comparison with other types
of sensors for in-shoe force measurement, it makes subjects
feel a little uncomfortable when they wear their shoes
together with this insole. The price is relatively expensive
(approximately USD 31,000), which is impossible to be
afforded by most patients, even for some clinics. In our
research group at CUHK, we have already developed the
platform for a shoe-integrated system. In [3], this intelligent
shoe-integrated system has been developed to measure both
the pressure distribution under eight special plantar regions
and the mean plantar pressure during a subject’s normal
walking gait. Ideal experimental results show that it is
possible to use only eight force sensing resistors (FSRs) to
calculate the mean pressure which used to be acquired by a
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device equipped with numerous sensors, such as the Pedar
insole.

In this paper, a cost-effective shoe-integrated system for
detecting postural kyphosis is introduced. Only 8 FSRs are
used for gathering the pressure information under the 8 bony
prominences of each foot. The proposed pattern recognition
approach is based on Cascade Neural Networks with Node-
Decoupled Extended Kalman Filtering (CNN-NDEKF).

This paper is organized as follows. In section II, the
architecture of the shoe-integrated system is introduced. We
describe the methodology for detecting postural kyphosis in
section III. Experimental results are discussed in section IV.
We draw the conclusion and proposed future improvements
in the final section.

II. SYSTEM DESIGN

Fig. 2 shows the system architecture, including the three
major components: insole, microprocessor-based data gath-
ering module, and wireless communication subsystem. The
whole system is compact and light (82g) so that it is easily
integrated with users’ own shoes.

 

Fig. 2. Outline of the system design

A. Insole Subsystem

Insole subsystem shown in Fig. 3 is a flexible instrumented
part for sensing the force parameters inside the shoe. Eight
FSRs (Interlink Electronics, Santa Barbara, CA) are installed
on one side of a thin insole under subcutaneous bony
prominences: 1-5 metatarsal heads, hallux (big toe), and the
heel (which is divided into a posterior and inside portion).
Considering the different sizes of bony prominences, we
select two kinds of FSRs. Two FSR-402s (12.7 mm diameter
active surface, 0.5 mm thick) are used in the first metatarsal
head and hallux. Six FSR-400s (5 mm diameter, 0.4 mm
thick) are placed under the other positions.

FSR is a type of polymer thick film (PTF) device exhibit-
ing a decrease in resistance when an increase in the force
is applied to the active area. In our circuit design, a voltage
divider is used to measure the resistance change of the FSR
in order to obtain the relationship between the applied force
and the voltage.

 

Fig. 3. Photograph of the insole

B. Microprocessor-Based Data Gathering Subsystem

The subsystem used to gather information from the insole
is mainly composed of a microprocessor-based circuit board
(in Fig. 4). It includes a low-power and high-performance 8-
bit AVR microprocessor-ATmega16L, peripheral components
(resisters, capacitors, etc.), and one battery. The micropro-
cessor runs at a clock frequency of 8 MHz. All circuitry
operates with 5 V power which is generated by a LM78L05
regulator and powered by one 7.4 V/Li-ion battery. We use 8
ADC channels with 10-bit resolution to transform the analog
voltage information generated from the FSRs into scaled
digital data.

 

Fig. 4. Circuit board together with battery

C. Wireless Communication Subsystem

The aim of this subsystem is to wirelessly transfer the
digital data processed by the ATmega16L to the host com-
puter in realtime. There were two major transfer methods of
previous in-shoe data acquisition systems. One was to restore
the original information in FLASH RAM and then download
the data to PC after the gait test through a parallel port
for further analysis [4]. The other method was to transmit
the data immediately via the RS232 serial port [5]. Both
approaches introduce few transmission errors which make
the analysis result relatively stable. Despite this, there are
some limitations. For the former, it is impossible to monitor
human motion and provide the feedback in realtime. For the
latter, the wire between the data acquisition system and the
host computer makes it difficult to perform detection in a
relatively large space.

In our system, the small amount of digital data makes it
possible to use wireless communication with a high sampling
rate. Thus, a low-power radio frequency (RF) communication
module, GW100B (56×28×7 mm in size), is selected. The
RF transmitter and RF receiver are connected with the micro-
processor and the host computer respectively. The forward
error correction (FEC) processing of GW100B allows for a
low error rate making the whole system reliable.
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III. METHOD

A. FSR Sensor Calibration

In order to compensate for the nonlinearity of FSR, each
sensor needs to be calibrated after it has been located on the
surface of the insole. The popular digital force gauge DPS-
20 (IMADA CO., LTD) is used to detect a discrete force in
the range from 0 to 10 kg for the FSR-400 and 0 to 20 kg
for the FSR-402. The digital outputs of the force gauge are
stored in the PC via RS232. Then we can get the calibration
result for each sensor according to the relationship between
the applied force and the corresponding digital output of the
FSR. Experimental results demonstrate that the exponential
function is fit well to the calibration data. One calibration
curve of the FSR-402 under the big toe of the right foot is
displayed in Fig. 5.

 

Fig. 5. One FSR-402 calibration curve

Equation (1) describes the relationship f between the FSR-
402 digital output x and the applied force in newton:

f = a · eb·x + c · ed·x (1)

Coefficient Value

a 7324
b -0.02291
c 136.4
d -0.004305

B. Cascade Neural Networks with Node-Decoupled Ex-
tended Kalman Filtering for Gait Modeling

Gait analysis based on plantar pressure distribution pro-
vides an indirect way for detecting postural kyphosis. Human
gait of either proper or kyphosis walking is regarded as the
measurable stochastic process. The methodology that we are
considering is to model human gait for realizing postural
kyphosis detection. The CNN-NDEKF is applied to generate
the classifier for this binary pattern recognition problem.

Nechyba and Xu proposed a new learning architecture
of neural network, which combines (1) cascade neural net-
works (CNN), dynamically improving the architecture of
the neural network to be part of the training process, and
(2) node-decoupled extended Kalman filtering (NDEKF), a
efficient convergent alternative to gradient-descent training
algorithms. They analyzed the computational complexity
of the proposed approach and demonstrated the significant
improvement in learning times and/or error convergence of
CNN-NDEKF compared with other machine learning ap-
proaches [6]. In our research group, CNN-NDEKF has found
successful applications in learning human control strategy
[7], modeling human strategy in controlling a dynamically
stabilized robot [8], modeling human sensation in virtual
environments [9], and learning human navigational skill for
smart wheelchair [10]. In the following, we briefly summa-
rize the CNN-NDEKF algorithm and the reason for us to
adopt this algorithm for modeling human gait associated with
proper and postural kyphosis walking.

First, there is no prior assumption for the network architec-
ture. Hidden units will be dynamically added into an initially
minimal network once at a time. Fig. 6 illustrates the growth
process for the initial two-input, one-output network with
two hidden units installed one by one. Note that each new
hidden unit will not only receive one input-connection from
each input unit, but also from each pre-existing hidden unit.
Therefore, a cascade neural network with mi input units
(including the bias unit), mh hidden units, and mo output
units, has mw connections where,

mw = mimo +mh(mi +mo) + (mh − 1)
mh

2
(2)

 

Fig. 6. The cascade learning architecture: adding hidden units once at a
time to the initial two-input, one-output network

Secondly, the activation function of each hidden unit is
not constrained to be the particular type. For each new
hidden unit, the activation function, which mostly reduces
RMS error (eRMS) for the training data will be selected.
Sinusoidal, Bessel, and Gaussian functions are the typical
alternatives to the standard sigmoidal activation function.

Thirdly, node-decoupled extended Kalman filtering
(NDEKF) [11] fits seamlessly within the cascade learning
framework, which shows better convergence properties with
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less computation than gradient-descent techniques (e.g.
backpropagation and quickprop algorithm).

Suppose P is a w×w conditional error covariance matrix
storing the interdependence of every pair of w weights in
the given neural network. The weight recursion of NDEKF
is given by

ωi
n+1 = ωi

n + {(ψi
n)T (Anξn)}φi

n (3)

where ωi
n is denoted as the input weight vector at iteration

n, for unit i ∈ {0, 1, . . . ,mo}. ξn is the mo-dimensional
error vector for the current training mode, ψi

n is the mo-
dimensional vector for the partial derivatives of the output
unit signals related to the ith unit’s net input, and

φi
n = P i

nζ
i
n (4)

An =

[
I +

mo∑
i=0

{(ζi
n)Tφi

n}[ψi
n(ψi

n)T ]

]−1

(5)

P i
n+1 = P i

n − {(ψi
n)T (Anψ

i
n)}[φi

n(φi
n)T ] + ηqI (6)

where ζi
n is the wi-dimensional input vector for the ith

node, P i
n is the wi ×wi conditional error covariance matrix

for the ith node, and ηq is used to alleviate singularity
problem of P i

n. In (3) to (6), []’s, {}’s, and ()’s respectively
represent matrices, scalars, and vectors.

The flexible architecture of cascade neural network is ideal
for modeling human gait of proper and kyphosis walking.
The model parameters are updated during the learning pro-
cedure which ensures the model to get the best classification
performance. The process for CNN-NDEKF-based learning
algorithm is summarized as follows. Initially, the network
architecture begins with some inputs and one or more output
units based on the requirement of special applications. There
are no hidden units in the network architecture. Every input
unit is directly connected to each output unit through a con-
nection with pre-trained weight. With no significant eRMS

reduction, the first hidden unit is picked up from the pool
of candidate units. As soon as the hidden unit is installed,
all input weights to the hidden unit are frozen, while the
weights to the output units are trained using NDEKF. The
process will repeat until the eRMS reduces sufficiently or the
number of hidden units achieves the predefined maximum
number.

IV. EXPERIMENTS AND ANALYSIS

A. Data Acquisition and Database Formation

After A/D transformation, the digital data of all FSRs
are packaged, which effectively decrease the transmission
error and increase the sampling frequency to 50 Hz which
is adequate for the activity of walking [12]. Then in the
host computer, we obtain the corresponding information
applied for each sensor based on data reconstruction and
calibration. Fig. 7 and Fig. 8 individually display the force
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Fig. 7. Force waveforms under 8 right foot regions during proper walking
posture (M1 = 1st metatarsal head, M2 = 2nd metatarsal head, M3 = 3rd
metatarsal head, M4 = 4th metatarsal head, M5 = 5th metatarsal heads, PH
= posterior heel, and IH = inside heel)
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Fig. 8. Force waveforms under 8 right foot regions during kyphosis walking
(M1 = 1st metatarsal head, M2 = 2nd metatarsal head, M3 = 3rd metatarsal
head, M4 = 4th metatarsal head, M5 = 5th metatarsal heads, PH = posterior
heel, and IH = inside heel)

waveforms under each FSR for proper and kyphosis walking
as a function of time.

One young volunteer with no kyphosis was invited for this
investigation. The training data with 10000 sampling points
(5000 sampling points for either positive or negative sample)
is gathered in outdoor environments which is then used for
training the CNN-NDEKF model. Since we do data analysis
by examining both the left and right feet, the dimension of
the original data is 16.

B. Data Preprocessing

It is necessary and important to apply feature extraction in
data preprocessing for modeling proper walking gait and the
kyphosis one, since failures in feature generation can signif-
icantly diminish the efficiency of the system performance.
Among the several feature extraction methods, Fast Fourier
Transform (FFT), Principal Component Analysis (PCA), and
Independent Component Analysis (ICA) are widely used in
the application of pattern recognition.
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In order to obtain the best performance of detecting
postural kyphosis, different preprocessing approaches are
utilized, including only using the original data, FFT, PCA,
ICA, FFT+PCA, and FFT+ICA. After that, the retrieved
data is applied to be the input for training CNN-NDEKF
model. Table I lists the generated data dimension after
preprocessing, errors of detecting proper walking, errors of
detecting postural kyphosis, and the average success rate of
classification corresponding to each preprocessing method
with the same training and testing samples (1500 sampling
points for either positive or negative sample). We can find
that the preprocessing approach of FFT is most effective for
realizing the best classification performance compared with
the other approaches mentioned above.

TABLE I

TESTING RESULTS USING DIFFERENT PREPROCESSING APPROACHES

Preprocessing
Method

Data
Dimension

Errors of
Proper
Walking

Errors of
Postural
Kyphosis

Ave.
Success
Rate

Original Date 16 98 38 95.4%
FFT 48 18 0 99.4%
PCA 10 259 126 87.1%
ICA 10 276 95 87.6%
FFT + PCA 16 256 158 86.2%
FFT + PCA 10 320 123 85.2%
FFT+ ICA 16 86 14 96.6%
FFT+ ICA 10 410 156 81.1%

C. Testing Results

The classification results for the volunteer based on the
trained CNN-NDEKF model with 3 order FFT preprocessing
are listed in Table II. For either proper walking or kyphosis
walking, 1500, 2500, and 3500 sampling points are respec-
tively selected as the testing data. The total success rate can
reach 98% which demonstrates the shoe-integrated system
we built is efficient for the problem of detecting postural
kyphosis.

TABLE II

TESTING RESULTS

Gait Pattern Total Correct Failed Success Rate

Proper Walking 1500 1482 18 98.8%
2500 2416 84 96.6%
3500 3342 158 95.4%

Postural Kyphosis 1500 1500 0 100%
2500 2495 5 99.8%
3500 3479 21 99.4%

TOTAL 15000 14714 286 98%

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we present a methodology for detecting
postural kyphosis under the framework of the shoe-integrated
system. First, the prototype of the intelligent system is
introduced which includes 8 FSRs for acquiring the pressure
parameters under the 8 bony prominences of each foot.
Secondly, we apply Cascade Neural Networks with Node-
Decoupled Extended Kalman Filtering (CNN-NDEKF) to

train the model for this binary classification problem. Experi-
mental results demonstrate that Fast Fourier Transform (FFT)
is the suitable data preprocessing approach for our problem.
The total success rate for 15000 test samples reaches 98%.
The compact, wireless, and wearable system has the potential
application for detecting postural kyphosis in order to assist
persons in developing proper walking posture in their daily
life.

In the future work, we will do more experiments for
investigate the device’s long-term effect and more individuals
will be invited for the clinical trial. Other intelligent learning
algorithms, such as support vector machines (SVM) and
hidden Markov model (HMM) will also be introduced for
this classification problem.
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