
Distributed implementations of global temporal logic motion specifications

Marius Kloetzer and Calin Belta
Center for Information and Systems Engineering

Boston University
15 Saint Mary’s Street, Boston, MA 02446

{kmarius,cbelta}@bu.edu

Abstract— We present a computational framework for au-
tomatic synthesis of decentralized communication and control
strategies for a robotic team from global specifications given
as temporal and logic statements about visiting regions of
interest in a partitioned environment. We consider a purely
discrete scenario where the robots move among the vertices of
a graph. However, by employing recent results on invariance
and facet reachability for dynamical system in environments
with polyhedral partitions, the framework from this paper can
be directly implemented for robots with nontrivial dynamics.
While providing a rich specification language and guaranteeing
the correctness of the solution, our approach is conservative, in
the sense that we might not find a solution even if one exists.
The overall amount of required computation is large. However,
most of it is performed off-line before the deployment.

I. INTRODUCTION

Planning and controlling robot motion is a challenging
problem that received a lot of attention in recent years [1].
The goal is to be able to specify a task in a rich, high
level language and have the robot(s) automatically convert
this specification into a set of low level primitives, such
as feedback controllers and communication protocols, to
accomplish the task.

This work is motivated by two disadvantages of the
current approaches to robot motion planning and control.
First, in most of the existing works, the motion planning
problem is simply specified as “go from A to B” [1], and
this is not rich enough to describe a large class of tasks
of interest in practical applications. Second, most current
approaches to multi-robot planning and control are bottom-
up, in the sense that local interaction rules, thought to be
true in natural systems [2] (e.g., schools of fish, swarms
of bees) or designed from first principles [3], are shown to
produce emergent behavior at global level (largely known as
“consensus algorithms”). However, the inverse (top-down)
problem, which seems more relevant to robotics, remains
largely unanswered: “Can we automatically generate prov-
ably correct local communication and control strategies from
task specifications given in rich and natural language over
regions of interest in an environment?”

The starting point for this paper is the observation that
“rich” and “human-like” task specifications, such as the

This work was partially supported by NSF CAREER 0447721 and NSF
0410514 at Boston University.

M. Kloetzer is the corresponding author.

temporal and logic statements about the reachability of re-
gions of interest given above, translate naturally to formulas
of temporal logics, such as Linear Temporal Logic (LTL)
and Computation Tree Logic (CTL) [4]. Such logics and
corresponding model checking algorithms are normally used
to specify and check the correctness of computer programs,
which can be seen as continuously operating, reactive (con-
current) systems [5].

Inspired by this, here we consider a purely discrete prob-
lem, in which n agents can move among a finite number
of locations. We consider n + 1 relations over the set of
locations. One relation captures communication constraints
among the agents as a function of their position. Each
of the remaining n relations captures each agent’s motion
constraints. We present a framework for automatic generation
of local control strategies from a task specification given as
an arbitrary LTL formula over the set of locations.

It is important to note that, due to recent results on
construction of feedback controllers for facet reachability and
invariance in polytopes [6]–[8], the solution to this purely
discrete and finite dimensional problem can be actually
implemented by robots with non-trivial dynamics moving
in environments partitioned using popular schemes such as
triangulations and rectangular grids [9].

The use of temporal logic for task specification and
controller synthesis in mobile robotics has been advocated
as far back as [10], and recent works include [11]–[13] and
our own work [14]. As opposed to [11], [13], [14], here we
consider teams, rather than just single agents. As opposed
to [12], we focus on synthesis of provably correct strategies,
rather than on verification of existing ones. As far as we
know, this is the first attempt to constructing a framework for
automatic construction of distributed control strategies from
global specifications given as temporal and logic statements
over a partitioned environment. Arguably, the closest related
works are recent results in concurrency theory [15], where
global specifications given as languages over a set of actions
are checked for implementability by a set of agents jointly
owning the actions and synchronizing on them. However, in
the robotics problem that we consider, there is no easy way to
define this set of actions. Consequently, we chose to start by
constructing a “rich” centralized solution and then pruning
it to guarantee distributed implementability. In this regard,
this paper can be seen as an extension of our previous work
[16], where the communication architecture was centralized.

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 393

II. PROBLEM FORMULATION

We consider a discrete environment with a finite set of
locations P = {p1, . . . , pk}, and a team of n, n < k, agents
that can move in this environment. The motion capabilities
of each agent i, i = 1, . . . ,n, are captured by a relation:

αi ⊆ P×P, (1)

in the sense that robot i can move from pi to p j while not
visiting other locations if and only if (pi, p j) ∈ αi.

The agents are assumed to have identical communication
capabilities, which can be modelled as the following reflexive
and symmetric relation:

∼⊆ P×P, (2)

where (pi, p j) ∈∼ if and only if an agent located in pi can
directly communicate with an agent located in p j.

We make the following assumptions: (1) Each agent
can stay in its current location (i.e., (p j, p j) ∈ αi, for any
i = 1, . . . ,n and j = 1, . . . ,k); (2) Initially, the agents are
in different locations, (3) One agent can move only be-
tween locations from which robots can communicate (i.e.,
αi ⊆∼); (4) Each agent takes a negligible amount of time for
computation and communication; (5) Each agent acts like a
communication relay.

Assumptions (2) and (3), combined with the strategy
presented in Section V, will guarantee that only one robot
can occupy a location at a given time, for all times, and that
no collisions among agents can appear. Finally, assumptions
(4) and (5) insures that any two robots part of a connected
component of the communication graph induced by relation
∼ can actually communicate.

Remark 1: The finite and purely discrete framework in-
troduced above represents a formal abstraction of a realistic
multi-robot scenario. Indeed, the set P can label the regions
of a partitioned environment (obtained using, for example,
triangulations or rectangular grids). The communication re-
lation (2) can be the set of edges of the partition quotient
graph, if two robots are restricted to communicate only when
they are in adjacent regions. Alternatively, (P,∼) can be a
visibility graph, if the inter-robot communication is based
on line of sight. The “motion capacity” relation (1) captures
our capability to design controllers guaranteeing that a robot
can be either kept in a region for all times or driven to
a neighbor region in finite time, regardless of the initial
position of the robot in the current region. Computational
efficient algorithms for the construction of such controllers
were presented for triangular and rectangular partitions for
robot dynamics ranging from fully actuated point-like robots
to unicycles of non-negligible size [7], [9].

We consider the following problem:
Problem 1: Given a team of n agents with motion capa-

bilities (1) and communication constraints (2), their initial
non-overlapping positions in P, and a task specified as an
“arbitrary” temporal and logic statement visiting locations
from P, find individual control strategies for each agent that
guarantee the accomplishment of the task.

As it will become clear in the next section, “arbitrary”
temporal and logic statements will be formally defined as
Linear Temporal Logic formulas. From our experience, this
logic is expressive enough to capture most useful motion
tasks, such as sequencing, convergence, surveillance, etc.

Problem 1 will be solved by designing one generic al-
gorithm to be individually run by every agent, and agent-
specific inputs for the generic algorithm on each agent. We
make the natural assumption that first the memory of each
agent is written, and then they are deployed in the envi-
ronment and simultaneously powered on. Once the agents
are programmed and started, they will autonomously evolve
and can interact between themselves based on the imposed
communication constraint. There is no central supervising
controller for the team during the execution of the task,
and this leads to a decentralized solution for the proposed
problem.

Case study: For illustration, throughout this paper, we
consider the example shown in Figure 1. The environment is
assumed to be planar and partitioned in a set of rectangles,
labelled from the set P = {p1, . . . , p16}. We consider a team
of three identical robots, with initial positions in regions p1,
p3 and p13, respectively. We assume that two robots can
communicate when they are in rectangles that share an edge
(rectangles diagonally placed do not communicate). We want
to accomplish the following task:

“Do not visit any yellow region (p8, p10, p16) until all
these three regions are simultaneously visited, and always
avoid the grey regions (p4, p6, p15)”

As we will see, such a task, although close to natural
language, can be easily translated into an LTL formula. Note
that the nature of the task clearly implies a cooperation in
form of synchronization between robots (all yellow regions
must be simultaneously visited).

Since the three robots are identical, we have α1 = α2 = α3

(we will simply denote these relations by α in further
references to this case study). For simplicity, we will assume
that each robot can stay inside a rectangle for all times,
and move to any rectangle sharing an edge with the current
rectangle. In other words, α is the adjacency relation between
rectangles, and coincides with the communication relation
∼. Again, as mentioned in Remark 1, this “purely discrete”
scenario is not necessarily restrictive. The robots can be,
for example, fully actuated point like robots with polyhedral
control constraints moving in the rectangulated environment.
The “discrete” communication constraint can, for example,
be seen as arising from the restriction that two robots can
directly communicate only when the distance between them
is at most 2.5.

III. PRELIMINARIES

Definition 1: A transition system is a tuple T = (Q,Q0,→
,Π,�), where Q is a set of states, Q0 ⊆ Q is a set of initial
states, →⊆ Q×Q is a transition relation, Π is a finite set
of atomic propositions (or observations), and �⊆ Q×Π is a
satisfaction relation.

394

Fig. 1. Partition and task for the proposed example. The yellow regions
should be simultaneously entered, and the grey regions should be always
avoided.

For an arbitrary state q ∈ Q, let Πq = {π ∈ Π |q � π},
Πq ∈ 2Π, denote the set of all atomic propositions satisfied
at q. A trajectory or run of T starting from q is an
infinite sequence r = r(1)r(2)r(3) . . . with the property that
r(1) = q, r(i) ∈ Q, and (r(i),r(i+ 1)) ∈→, for all i ≥ 1. A
trajectory r = r(1)r(2)r(3) . . . defines a word over set 2Π,
w = w(1)w(2)w(3) . . ., where w(i) = Πr(i). The set of all
words that can be generated by T is called the (ω-) language
of T .

As already mentioned, we consider motion specifications
given as formulas of Linear Temporal Logic (LTL) [4] 1.
A formal definition for the syntax and semantics of LTL
formulas is beyond the scope of this paper. The LTL formulas
are recursively defined over a set of atomic propositions Π,
by using the standard boolean operators and a set of tem-
poral operators. The boolean operators are ¬ (negations), ∨
(disjunction), ∧ (conjunction), and some temporal operators
that we use are: U (standing for “until”), � (“always”),
♦ (“eventually”). LTL formulas are interpreted over infinite
words over set 2Π, as are those generated by transition system
T . Assume that φ1 and φ2 are two LTL formulas over Π
and w is a word produced by T . Formula φ1U φ2 intuitively
means that (over word w) φ2 will eventually become true
and φ1 is true until this happens. Formula ♦φ means that φ
becomes eventually true, whereas �φ indicates that φ is true
at all positions of w. More expressiveness can be achieved
by combining the mentioned operators.

The mentioned syntax makes LTL very appealing for
specifying motion tasks, and some supporting examples
include reachability and obstacle avoidance tasks (“reach A
eventually, while always avoiding B”, written as ♦A∧�¬B),
convergence tasks (“reach A eventually and stay there for
all future times” - ♦�A), etc. Moreover, if more robots
are available, the attainment of disjoint regions at the same

1For technical reasons related to the abstraction from continuous to
discrete robot dynamics [14], we restrict our attention to LTL−X , a subclass
of LTL that lacks the “next” temporal operator.

time might be of interest, as in “reach A and B eventually”
(♦(A∧B)).

The specification from the Example introduced in Section
II can be translated into the following LTL formula:

φ = ¬(p8∨ p10∨ p16)U (p8∧ p10∧ p16)∧�¬(p4∨ p6∨ p15)

IV. ROBOT MODELS AND PROBLEM REFORMULATION

Using the definitions from Section III, we are now ready
to reformulate Problem 1 formally.

The motion capabilities of each robot i, i = 1, . . . ,n, will
be embedded in a transition system Ti with k states, each
state corresponding to a location of set P. The transitions of
every Ti will be trivially inherited from relation αi, and the
initial state will represent the initial deployment of agent i,
i = 1, . . . ,n.

Each transition system Ti, i = 1, . . . ,n has the form:

Ti = (Qi,q0i ,→i,Πi,�i), i = 1, . . . ,n, (3)

where Qi = P = {p1, . . . , pk}, q0i ∈ Q is the initial location
of agent i (a singleton), →i= αi(⊆ Qi×Qi) is the transition
relation, Πi = P is the set of locations (propositions for
the LTL formula), and �i is the trivial satisfaction relation
(q,π) ∈�i if and only if q = π .

Note that the only differences between the transition
systems Ti are given by their initial states and possibly by
their transition relations (for agents with different movement
capabilities). The motion of each agent is in fact abstracted
to the sequence of locations it reaches, i.e., to a sequence
of symbols from P. Thus, a motion of agent i is a word
produced by a run of Ti from equation (3), and the motion
of the whole team of agents can be viewed as generating a
word w over set 2P (tuples of regions currently occupied by
the n robots). Since the task is an LTL formula over set P,
we can speak of satisfaction of this LTL formula by the team
of agents.

Problem 1 can be now reformulated as:
Problem 2: Given a set of n transition systems Ti as in (3),

a specification φ given as an LTL formula over their set of
observations P, and a relation ∼∈ P×P capturing the com-
munication constraints among agents, find individual control
strategies for each agent that guarantee the accomplishment
of the task.

A control strategy will produce sequences of locations to
be visited by an agent (a run of Ti). However, along such a
run there will be some moments of communication with other
agents, necessary for accomplishing a synchronized motion,
as detailed in Section V.

Case study revisited: Returning to the proposed example,
the motion of each agent is captured by a transition system
with 16 states, each state corresponding to a rectangle from
partition. The transitions are obviously given by adjacency
relations between rectangles, plus self-transitions in every
state, as resulted from relation α . The only difference be-
tween T1, T2 and T3 is given by their initial states: q01 = p1,
q02 = p3, and q03 = p13.

395

V. FINDING A DECENTRALIZABLE SOLUTION

In this section we will find a solution for the whole team
of agents, in the form of a run of a transition system showing
the succession of n-tuples of states to be visited. Although
a similar idea was used in [16], we are now searching for a
solution that can be distributed among individual agents, in
contrast with a fully centralized one. We build this solution
as follows: first, we construct a global transition system TG

capturing the behavior of the whole team. Second, we find
a decentralizable run of TG satisfying the LTL formula.

To formally define TG, we first have to define two more
functions, by using the set QG from Definition 2 (the set of
all possible ordered n-tuples with elements from P):

M : QG ×QG → 2{1,...,n}, (4)

with M (q,q′) giving the set of indices of agents that occupy
different regions in configurations q and q′, respectively (e.g.,
if we have 3 agents, M ((p2, p6, p7),(p2, p7, p5)) = {2,3}).

Furthermore, let:

C : QG ×{1, . . . ,n}→ 2{1,...,n}, (5)

where C (q, i) is the set of agents communicating with robot
i when configuration of the team is q. The communication
mentioned here is not just the direct communication, but
includes communication through all possible agents acting
like relays. Function C is computed by using the relation ∼
and standard procedures from graph theory.

Definition 2: The transition system TG = (QG,QG0,→G

,ΠG,�G) capturing the behavior of the group of n agents
is defined as:

• QG ⊂ Q1 × . . .×Qn is defined by (q1, . . . ,qn) ∈ QG if
and only if qi �= q j for i �= j,

• QG0 = (q01 , . . . ,q0n),
• →G⊂ QG ×QG is defined by (q,q′) ∈→G, with q =

(q1, . . . ,qn) and q′ = (q′1, . . . ,q
′
n), if and only if (1)

(qi,q′i) ∈→i, i = 1, . . . ,n, (2) ∀i, j = 1, . . . ,n with i �= j,
if q′i = q j, then q′j �= qi, and (3) M (q,q′) ⊆ C (q, i),
∀i ∈ M (q,q′),

• ΠG = P,
• �G⊂QG×ΠG is defined by ((q1, . . . ,qn),π)∈�G if π ∈
{q1, . . . ,qn}.

In other words, the states of the transition system TG

capture all possible ways in which the k regions labelled with
symbols from P are occupied by the n robots (cardinality
of QG equals arrangements of k things taken n at a time).
Configurations in which two agents overlap (occupy the
same region) are excluded, thus guaranteeing the avoidance
of inter-agent collisions. The possible motions of the team
are modelled by the transition relation →G. A transition of
TG occurs when some agents synchronously2 take allowed
transitions (requirement (1) of Definition 2), and we exclude
the case when two agents switch positions, since this could
cause collision (requirement (2)). Moreover, requirement (3)

2Synchronization of transition systems is usually achieved through shared
actions, or inputs [17]. However, including such synchronization actions in
Definition 1 would unnecessarily complicate the notation.

shows that all moving agents should communicate among
themselves. This last requirement is implied by the fact that
only communicating agents can synchronize when changing
their currently occupied locations. Note that the moving
agents should communicate only while the team is in the
configuration to be left (denoted by q = (q1, . . . ,qn) in
Definition 2), and they are not restricted to communicate
when the next configuration (denoted by q′ = (q′1, . . . ,q

′
n)) is

reached. This is because the synchronization when leaving
configuration q guarantees that the corresponding locations
from q′ are synchronously hit. In requirement (3), i ∈
M (q,q′) can be arbitrarily chosen, since C (q, i1) = C (q, i2),
∀i1, i2 ∈M (q,q′), and we call the set C (q, i) the active com-
municating set. Finally, each team configuration is equipped
with n predicates enumerating the locations occupied by the
agents (satisfied propositions), without explicitly specifying
their exact position.

We now want to find a run of TG whose produced word
(over set 2P) satisfies the LTL specification φ . Indeed, if
we had such a run r, we would project it to the n agents
(by splitting each of its n-tuples in its components) and we
would obtain a run for each transition system Ti. Transition
relation from TG guarantees that for every single transition
from these runs, the moving agents can communicate, and
thus synchronize among themselves. However, there is no
guarantee that the agents know when to take their next
transition, simply because they might not know when the
previously moving group completed their transition. For
overcoming this, we introduce a requirement we call transi-
tivity of communication, stating that a run of TG can be decen-
tralized if any two successive active communicating sets have
nonempty intersection. Formally, a run r = r(1)r(2)r(3) . . .
of TG satisfies the transitivity of communication property if,
for any position i = 1,2, . . ., we have:

C (r(i), j)∩C (r(i+1),k) �= /0,
∀ j ∈ M (r(i),r(i+1)), ∀k ∈ M (r(i+1),r(i+2)) (6)

In [14] we developed a tool inspired by model checking,
which receives as inputs a transition system and an LTL
formula over its set of propositions, and finds (when possible)
a run of the transition system satisfying the LTL formula.
The run has a special structure, namely a finite sequence
of states called prefix, followed by an infinitely repeating
finite sequence of states, called suffix. Moreover, there are
no finite successive repetitions of a state in an obtained run.
For details of this algorithm, we refer the interested reader
to [14]. However, neither the tool from [14], nor a model
checking algorithm can be used (or easily modified) for
obtaining a run satisfying property (6). Therefore, we will
cut transitions in TG such that the newly obtained reduced
transition system, called Tr, generates only runs satisfying
(6).

Due to space constraints and the involved formalism, we
only give the main idea for reducing TG to Tr. We first
find all the disjoint sets of communicating agents in initial
state QG0. For each of these sets, a different Tr can be
created as follows. Consider one of this sets to be the active

396

communicating set, denoted by C0, and start with Tr = TG.
From all outgoing transitions of QG0 in Tr, keep only the
self-loop and those for which the set of moving agents is
included in C0. Then, for all the new states that can be visited
by taking these transitions, keep only the self-loops and the
outgoing transitions for which the intersection between their
active communicating set and C0 is nonempty. The process
is repeated for each newly visited state, by updating C0 to
be the active communicating set for the currently considered
outgoing transition. The algorithm finishes when no new (not
yet visited) states are reached.

We feed Tr and φ to the algorithm from [14], and if we
obtain a run r, this is also guaranteed to be a run of TG

(because the set of transitions of Tr is a subset of transitions
of TG, fact which implies the inclusion of the language of
Tr in the language of TG). To choose among several possible
runs, we select the one corresponding to a minimum number
of robot movements (transitions in Ti, without counting self-
loops) in prefix and first repeating sequence from suffix.
However, such a run is not necessary optimal under the same
criterion in TG. If a run is not obtained, we construct another
Tr, by considering another initial C0, and we search for a run
in this Tr. If we do not obtain a run for at least one Tr we can
build, we conclude that Problem 1 is infeasible. Assuming a
run is obtained, we further have to actually decentralize it,
as described in Section VI.

Case study revisited: The obtained TG has 3360 states,
and its initial state is QG0 = (p1, p3, p13). There are three
communicating sets in QG0, namely 1,2,3 (e.g., QG0 can
transit in (p1, p4, p13), but cannot transit in (p2, p4, p13)). TG

has a total number of 55344 transitions, and its construction
took about 45 seconds on a medium performance laptop. The
first reduced transition system Tr is constructed by consider-
ing C0 = {3}, the obtained reduced transition system Tr has
only 28583 transitions, and it was created in 64 seconds. A
run satisfying the formula was obtained (in 23 seconds) and
thus we don’t have to create any other Tr. The obtained run
is depicted in Figure 2. It has a prefix of length 7, namely
the sequence of states (p1, p3, p13) (p1, p3, p9) (p1, p3, p5)
(p2, p3, p1) (p3, p7, p2) (p7, p11, p3) (p11, p12, p7), and a suf-
fix consisting in infinitely many repetitions of configuration
(p10, p16, p8). By design, this run of TG satisfies both the
desired specification and the transitivity of communication
property. Initially agent 3 moves towards agent 1, then they
start to communicate and both move towards robot 2, and
eventually all three agents reach configuration (p11, p12, p7),
from where they can enter the yellow regions at the same
time.

VI. DECENTRALIZED IMPLEMENTATION

Assuming that a run r of TG is obtained as described in
Section V, we want to decentralize it among robots. We first
design a generic algorithm to be run on each agent, and
then, using run r, we produce agent-specific inputs for these
algorithms.

Algorithm 1 presents the steps that are infinitely iterated
by each robot. The main idea in decentralizing a run r

is to have a token possessed by a single agent at any
given time. The agent having the token initiates the next
synchronous movement of some agents (next transition in the
run r). Thus, there will be no simultaneous movements of
non-communicating agents. Every agent keeps broadcasting
(in its communication range) its identification (index) and
the location it currently occupies, and listens for possible
commands. There are two types of commands that an agent
can receive: a synchronized moving command, showing the
next location to be reached and the group of robots to
synchronize with, and a token command, showing that the
token is passed to the agent in question. Unless a moving
command is received, each agent is stopped in the current
location.

The memory of each agent is organized as a first-in
first-out queue. An entry in this queue stores the following
information: position, taking values in set {pre f ix,su f f ix},
and showing if the current configuration of the team is in the
prefix or suffix; M ⊆ {1, . . . ,n}, giving the set (indices) of
moving agents for the next transition from r to be taken; Np

(an ordered tuple with |M | elements from P), containing
the next location that each agent from M should visit;
nexttok ∈ {1, . . . ,n}, giving the index of the agent that will
receive the token once the currently scheduled transition
from r is taken. The agent initiating the current transition
detects its completion based on the following: either it
receives the new locations occupied by agents in M , or,
if it cannot communicate anymore with some agents from
M , it concludes that those agents completed their moving
command.

Algorithm 1 Operations iterated by each agent i = 1, . . . ,n
� listen and execute received commands
� broadcast index i and location occupied
if token = 1 then

� read first entry from queue memory: position, M ,
Np, nexttok

� send to agents from M the next location to be
visited (corresponding position from Np), and set to
synchronize with (M)
� wait for agents from M to complete their task
if position = pre f ix then

� delete first entry from queue memory
else

� move first entry from queue memory to end
end if
� send token to agent nexttok

end if

The robot-specific inputs for Algorithm 1 are found
by scanning the successive team configurations and ac-
tive communicating sets encountered along the run r.
Due to space constraints, we omit the details, and we
refer the interested reader to the technical report from
http://iasi.bu.edu/∼software/LTL-decentr.htm.

397

Fig. 2. Successive configurations of the team for the proposed example. The regions occupied by the three robots are red, blue and green, respectively.
The regions to be simultaneously reached are yellow, and the regions to be always avoided are grey.

VII. CONSERVATISM AND COMPLEXITY

Our approach to solving Problem 1 is conservative because
of three main reasons. First, the assumptions from Section II
introduce conservativeness with respect to movement capa-
bilities and communication constraints. Second, we assume
that only communicating agents can move at the same time,
rather than allowing independent movements of agents from
different communication sets. Third, reducing TG to Tr as in
Section V can imply that no solution satisfying property (6)
is found, although such a solution might have existed in TG.

From the complexity point of view, the bottleneck of the
presented approach is the part from Section V, because TG

has k!/(k−n)! states. Not only creating and reducing TG to
Tr raises complexity problems, but also finding a run in Tr.
In order to find a run, a Büchi automaton (accepting infinite
words satisfying the LTL formula) is involved, and its size is
exponentially upper bounded in the size of the LTL formula.

VIII. CONCLUSIONS

We presented a fully automated computational framework
for decentralized deployment of a team of robots from task
specifications given in high-level and rich language consist-
ing of temporal logic statements about visiting regions of
interest in a partitioned environment. While we focused on a
purely discrete problem, the implementation of the algorithm
is immediate for robots with continuous dynamics moving
in environments with triangular or rectangular partitions,
and with communication constraints induced by physical
proximity. The approach was implemented as a software
package under Matlab, which is freely downloadable from
http://iasi.bu.edu/∼software/LTL-decentr.htm.

REFERENCES

[1] J. C. Latombe, Robot Motion Planning. Kluger Academic Pub., 1991.
[2] V. Gazi and K. M. Passino, “Stability analysis of swarms,” IEEE

Transactions on Automatic Control, vol. 48, no. 4, pp. 692–696, 2003.

[3] N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials, and
coordinated control of groups,” in 40th IEEE Conference on Decision
and Control, Orlando, FL, December 2001, pp. 2968 – 2973.

[4] E. M. M. Clarke, D. Peled, and O. Grumberg, Model checking. MIT
Press, 1999.

[5] Z. Manna and A. Pnueli, The temporal Logic of Reactive and Con-
current Systems: Specification. Berlin: Springer-Verlag, 1992.

[6] L. Habets and J. van Schuppen, “A control problem for affine dynam-
ical systems on a full-dimensional polytope,” Automatica, vol. 40, pp.
21–35, 2004.

[7] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
planning and control in polygonal environments,” IEEE Trans. on
Robotics, vol. 21, no. 5, pp. 864–874, 2005.

[8] C. Belta and L. Habets, “Control of a class of nonlinear systems on
rectangles,” IEEE Transactions on Automatic Control, vol. 51, no. 11,
pp. 1749 – 1759, 2006.

[9] M. Kloetzer and C. Belta, “A framework for automatic deployment
of robots in 2d and 3d environments,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, Beijing, China, 2006.

[10] M. Antoniotti and B. Mishra, “Discrete event models + temporal
logic = supervisory controller: Automatic synthesis of locomotion
controllers,” in IEEE International Conference on Robotics and Au-
tomation, May 1995.

[11] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of
multiagent motion tasks based on LTL specifications,” in 43rd IEEE
Conference on Decision and Control, December 2004.

[12] M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi, “Multi-robot
motion planning: A timed automata approach,” in Proceedings of the
2004 IEEE International Conference on Robotics and Automation,
New Orleans, LA, April 2004, pp. 4417–4422.

[13] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers
for path planning: a temporal logic approach,” in Proceedings of
the 2005 IEEE Conference on Decision and Control, Seville, Spain,
December 2005.

[14] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from LTL specifications,” in Hybrid Systems: Compu-
tation and Control: 9th International Workshop, ser. Lecture Notes in
Computer Science, J. Hespanha and A. Tiwari, Eds. Springer Berlin
/ Heidelberg, 2006, vol. 3927, pp. 333 – 347.

[15] M. Mukund, “From global specifications to distributed implementa-
tions,” in Synthesis and control of discrete event systems. Kluwer,
2002, pp. 19–34.

[16] M. Kloetzer and C. Belta, “LTL planning for groups of robots,” in
IEEE International Conference on Networking, Sensing, and Control,
Ft. Lauderdale, FL, 2006.

[17] R. Milner, Communication and concurrency. Englewood CliDs, NJ:
Prentice-Hall, 1989.

398

