
On the Design of Traps for Feeding 3D Parts on Vibratory Tracks

Onno C. Goemans and A. Frank van der Stappen ∗

Abstract— In the context of automated feeding (orienting) of
industrial parts, we study the algorithmic design of traps in
the bowl feeder track that filter out all but one orientation
of a given polyhedral part. We propose a new class of traps
that removes a V-shaped portion of the track. The proposed
work advances the state-of-the-art in algorithmic trap design by
extending earlier work [1], [3], [11]—which focuses solely on 2D
parts—to 3D parts, and by incorporating a more realistic part
motion model in the design algorithm. The presented complete
design algorithm takes as input any polyhedral part, along with
its center of mass, and reports all valid trap designs that feed
the given part.

I. INTRODUCTION

A part feeder takes in a stream of identical parts in arbi-

trary orientations and outputs them in a single orientation.

We consider the problem of sensorless orientation of parts

in which parts are positioned and oriented using passive

mechanical compliance.

The oldest and still most common approach to automated

feeding is the vibratory bowl feeder. It consists of a bowl,

which is partially filled with (identical) parts, and a helical

metal track that starts at the bottom and winds its way

up along the bowl [5]. The bowl and track undergo an

asymmetric helical vibration that causes the parts to move

up the track, where they encounter a sequence of mechanical

devices such as wiper blades, grooves and traps. Most of

these devices are filters that serve to reject (force back to

the bottom of the bowl) parts in all orientations except for

the desired one. A stream of oriented parts emerges at the top

after successfully running the gauntlet. A device or sequence

of devices is said to feed a part if it allows only one specific

orientation of the part to pass.

For the manufacturing of feeders, engineers still rely

mostly on skill, experience, and ad-hoc guidelines. Currently,

the largest cost factor of bowl feeder production is the design

of the custom mechanisms tailored to feed a specific part.

The expenses and time associated with the design of part

feeders remains a barrier to flexible automation.

To aid in the design of bowl feeder layouts, researchers

have used simulation [2], [14], [18], [19], [20], heuristics

[15] and genetic algorithms [8]. Genetic algorithms have

also been used for a programmable bowl setup using beam

sensors [21]. Geometric analysis tools have been developed

that help designers visualize the configuration space of a

∗ Onno C. Goemans and A. Frank van der Stappen are with the
Dept. of Information and Computing Sciences, Utrecht University, PO
Box 80089, 3508 TB Utrecht, The Netherlands. Email: onno@cs.uu.nl,
frankst@cs.uu.nl. Onno C. Goemans acknowledges the support of the
Netherlands Organisation for Scientific Research (NWO). A. Frank van der
Stappen is partially supported by the Dutch BSIK/BRICKS-project.

Track wall

V-Trap

Direction of MotionTrack Floor

α

β

Fig. 1. Vibratory track with V-trap T (α, β).

given combination of part and bowl layout [7]. Research

to single reorientation and rejection mechanisms has been

focused at certain classes of simple parts [5], [6] and, for a

more general class of parts, at the design of traps [1], [3],

[11]—traps are devices constructed by removing sections of

the track. A common characteristic of the general solutions

in the latter category is that the resulting (trap) designs only

apply to two-dimensional parts. A recent piece of work not

sharing this characteristic proposes a blade mechanism for

feeding polyhedral parts [10].

Even in the broader context of sensorless feeding in

general, the majority of the achievements apply to flat, two-

dimensional parts, or to 3D parts of which the resting face

is fixed beforehand [17]. In addition to the aforementioned

blade mechanism, three other contributions that also focus

on polyhedral parts are work by Berretty et al. [4], which

focuses on tilted plates with fences, work by Zhang and

Gupta [22], which uses step devices, and work by Lynch [16],

which employs a robot arm over a conveyor belt.

In this paper, we narrow the gap between the industrial

application of vibratory bowls and scientific work on the

automated design of sensorless feeders by studying the

algorithmic design of traps for feeding 3D parts. Extending

prior work on traps [1], [3], [11] for 2D parts, we propose a

class of traps for feeding 3D parts that is inspired by similar

devices from the practice of vibratory feeder design [5], [6].

We believe that this class of what we refer to as V-traps is

rich enough to feed a broad class of 3D parts yet simple and

structured enough to facilitate efficient automated design.

V-traps are created by removing a V-shaped section of

the feeder track between two lines fanning out from the

track wall. We characterize a V-trap by two parameters,

α and β, which are the angles between the left and right

trap edges, respectively, and the track wall (Fig. 1). A trap

can thus be described as T (α, β). V-shaped traps provide a

way to positively influence the deflection of rejected parts

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 385

off the track: traps with a larger difference between α and

β are preferable [5], [6]. The availability of all solutions,

as output by our complete design algorithm, allows for the

selection of trap designs with good deflection abilities as a

post-processing phase. Except for the one-parameter balcony

trap [3], we surmise that the class of V-traps generally

provides stronger deflection capabilities than previously pro-

posed classes of traps [1], [3], [11]; further research is needed

to confirm this intuition.

In addition to presenting the first design algorithm for traps

for feeding 3D parts, we advance the state of the art by

incorporating a more realistic model for part motion into the

design process. Prior work on the design of rejection devices

for vibratory bowls assumes that parts slide smoothly along

the track, while in reality they “hop” along the track. In this

paper, we adopt a model for the hopping motion of parts

as proposed by Boothroyd [5], [6] in the context of trap

design, and extend our design algorithm to take this motion

model into account. This extension allows us to eliminate

trap designs that are undesirable for practical use.

We consider rigid three-dimensional polyhedral parts of a

single type, all of which are assumed identical. We assume

the position of the center of mass C to be known, as it

dictates the stability of the part. While moving up the track,

a part rests on the track in a stable pose; that is, the part

rests on the track floor and against the track wall, where both

contacts support C. The stable floor contact is the result of

gravity, while a slight tilt of the feeder track assures a stable

wall contact. Finally, the part is rejected when its center of

mass is no longer supported by the track floor.

As in the earlier works on algorithmic trap design, we

assume parts move along a flat track in a quasi-static manner

without interfering with each other. Also, we adopt the

assumption that rejected parts are always deflected off the

vibratory track; i.e., during part rejection, we assume the

part-track friction to be zero and the acceleration of the part

due to gravity to infinite. Although these assumptions still

leave a gap to be bridged for the industrial application of

automated trap design, we believe that the presented work

provides a model flexible enough to allow for relaxing the

aforementioned idealization. The radius of the helical track

is assumed large compared to the dimensions of the part,

allowing us to approximate the section of the track as linear.

Our goal in this paper is to develop an algorithm for the

automated design of V-traps. The algorithm is complete in

the sense that it identifies all existing valid trap designs that

feed the part. It receives as input the polyhedral part P along

with its center of mass C. The algorithm either outputs the

set Σ of all valid trap designs that feed P or reports that no

such trap exist. In an additional step, we also also take as

input the maximum distance a part can travel in one “hop”,

and output all valid trap designs that feed P while taking

the more realistic motion model into account.

This paper is organized as follows. In section 2, we discuss

the part-trap interaction in more detail and provide a number

of definitions. In section 3, we first provide an intuitive

explanation of our algorithm and continue with a discussion

α
β

track wall

track

x

y

Fig. 2. Illustration of a trap placement T (α, β, x).

at a more detailed level. Section 4 explains the hopping

part motion and discusses the necessary augmentations to

the algorithm presented in section 3. We conclude in section

5 with a brief summary, several remarks and future work.

II. MODELING

We will first address the track poses, which are the

possible poses of P whilst it moves up the track. The

second subsection provides several general observations and

definitions, and the third and final subsection discusses the

interaction between part and trap.

For lack of space, we omit proofs of complexity and time

bounds in the current and following section. These proofs

can be found in section 2 and 3 of [12].

A. Track Poses

A polyhedral part in three-dimensional space has three

rotational degrees of freedom. While moving up the track,

P settles in a stable pose on the track, thus discretizing its set

of possible orientations. A stable track placement consists of

two stable contacts, namely the contact with the (track) floor

and with the (track) wall. We assume the floor and wall are

sufficiently wide and high, respectively, such that the both

always contain the perpendicular projection of P .

A stable floor contact is a placement in which P rests on

the floor with a face of its convex hull that supports C—

the convex hull [9] of P is the smallest convex set of points

containing P . A face is said to support C if, when resting on

the floor, the face contains C projected along the direction of

gravity onto the floor. Observe that such a contact discretizes

two of the three degrees of rotational freedom.

The second aspect of a stable pose, the stable wall

contact, is ensured by the earlier mentioned track tilt. This

contact discretizes the remaining degree of freedom, the roll

orientation, which is the rotation about the axis through C

perpendicular to the floor contact of P . Given P in a stable

floor contact, the discretization of the roll orientation depends

on the shape of the perpendicular projection of P and C onto

the track floor: a stable wall contact is a roll orientation in

which the projection of P rests against the wall with an edge

of its convex hull that supports the projected C.

In the remainder of this paper, we refer to a stable part

pose simply as a pose. The number of possible part poses is

O(n2), where n denotes the number of vertices of P .

B. Definition & Notation

Let us first look in more detail at T . In theory, the interval

of α- and β-values, denoted by A and B, respectively, is

[0, π], where α < β (Fig. 2). In a practical setting, values in

the lower and upper portions of these intervals produce traps

386

Ci

(a)

Ci

(b)

Ci

p2 =p′
2

p3

p′
3

p1
p′

1

(c)

Fig. 3. (a) set of floor features of Pi touching the floor. (b) illustrates that
it suffices to consider p′

1
, p′

2
and p′

3
with respect to the safety of the trap

placement. (c) star-hull of Pi.

that span too much track length to be practically feasible.

We assume that the allowed α-interval, A = [αs, αe], and

β-interval, B = [βs, βe], are given.

Let us consider P as it moves over T . The stability of

a given pose positioned above T is determined by its floor

features, which are the features (vertices and edges) of P

resting on the floor when in the given pose. A pose is stable

as long as the convex hull of the floor features contains

the perpendicular projection of C onto the track floor. As

the pose moves over T , each floor feature at some point

temporarily loses contact with the floor. As a result, the pose

can become unstable and gets rejected by T .

In summary, for a given pose, the stability above T and

thus rejection by T is determined by its floor features; hence,

the design algorithm only needs to consider the floor features

of a pose. This observation reduces our problem to a planar

one with respect to part-trap interaction (Fig. 3a). We denote

the floor features of a pose by Pi, where i ∈ {1, . . . , k} and,

as shown before, k = O(n2). Furthermore, we denote by ni

the number of vertices of Pi. We note that Pi can consist

of faces, edges or vertices of P , or any combination of the

aforementioned. For a given Pi, let Ci denote C projected

along the direction of gravity onto the track floor.

Lemma 1.
∑k

i=1 ni = O(n2).

We define the world coordinate frame such that the wall

coincides with the horizontal x-axis, and the positive y-axis

crosses the floor (Fig. 2). We note that (x, 0) describes a

point on the track wall. For ease of explanation, we consider

the part as stationary and slide the trap underneath the part

in the negative x-direction. We extend our trap notation and

denote a trap placement by T (α, β, x), where x ∈ X ⊂ R

specifies the position of the intersection point of both trap

edges on the x-axis (Fig. 2). Furthermore, we denote a

left and right trap edge by respectively l(α) and r(β) and,

similarly, use l(α, x) and r(β, x) to denote the left and right

trap edge for a particular trap placement.

C. Part-Trap Interaction

For a given T (α, β, x), we define the supported subset

Si(α, β, x) of Pi as the subset of Pi that is in contact with

the track. Similarly, we define Si(α, x) and Si(β, x) as the

subsets of Pi that are in contact with the track adjacent

to l(α, x) and r(β, x), respectively. If the convex hull of

Si(α, β, x) contains Ci, then Pi is stable for T (α, β, x). We

refer to such a placement as a safe placement; a placement

is unsafe otherwise. For a given Pi, α and x, placement

T (α, βc, x) is a critical placement when T (α, β, x) is safe

(b) (c)

Ci

Ci

(a)

Ci

r(β, x)l(α, x)

x

Fig. 4. Pi is (a) forward-unsafe, (b) backward-unsafe and (c) topple-unsafe.

if and only if β ≤ βc. Alternatively, we say that βc is the

critical β for the given α and x.

Definition 1. For a given Pi, α and x, the critical βc is the

β-value for which T (α, β, x) is a safe placement for β ≤ βc

and an unsafe placement for β > βc.

For a given Pi, a safe trap (design) T (α, β) is a trap for

which each placement is safe; i.e., T (α, β) passes Pi without

rejecting Pi. For a given Pi and α, we say that T (α, βc) is

a critical trap if it is a safe trap that features at least one

critical placement; hence, T (α, β) is a safe trap for Pi for

β ≤ βc, while unsafe for β > βc. Again, we alternatively

say that βc is the critical β for the given α.

Definition 2. For a given Pi and α, the critical βc is the

β-value for which T (α, β) is a safe trap for β ≤ βc and an

unsafe trap for β > βc.

The star-hull of Pi captures the part of Pi that is relevant

to the safety of Pi over an arbitrary trap. The star-hull is

defined by
⋃

p∈Pi
Cip or, more informally defined, it is the

set of points of Pi furthest away from Ci in every direction.

Fig. 3a and fig. 3c show an example Pi and its star-hull,

respectively. Intuitively, any triple of points in Si(α, β, x)
that defines a triangle containing, i.e., supporting Ci, can

be replaced by a triple of points in the star-hull of Pi that

similarly supports Ci; hence, it suffices to consider points in

the star-hull of Pi when reviewing trap safety (see [12] for

details). We assume for the remainder of this paper that each

Pi is represented by its star-hull. We note that the star-hull

has the same asymptotic complexity as Pi.

Definition 3. The star-hull of Pi is defined as
⋃

p∈Pi
Cip.

We can distinguish three types of unsafety that can cause

Pi to fall into T : forward-unsafety, Pi falls forward (Fig. 4a)

when Ci is positioned over T , but Pi is not yet supported

by r(β, x); backward-unsafety, Pi falls backward (Fig. 4b)

when Ci is positioned over T , but Pi not is supported by

l(α, x); and topple-unsafety, Pi topples (Fig. 4c) when Ci is

positioned over T and Pi is in contact with both l(α, x) and

r(β, x), but Ci is unsupported.

III. TRAP DESIGN

In the first subsection, we provide an intuitive sketch of

our algorithm. The second and third subsection model falling

and toppling. The last subsection combines these two models

to identify the set of all valid solutions Σ.

A. General Approach

A specific V-trap is defined by α and β. These parameters

span a two-dimensional space, which we refer to as the trap

387

α

β

F
c
1

F
c
2

F
c
3

F
c
4

P2

P3

P3

α < β

α = β

Fig. 5. This figure shows four arbitrary critical trap functions in a subset
of the trap space (these example functions do not match any real part). The
light gray area depicts Σ, where the fed poses are specified for three subsets
of Σ.

space; each point in this space describes a unique V-trap. The

idea is to subdivide the trap space for each Pi into a safe

and unsafe region, where a (un)safe region is a set of points

corresponding to (un)safe traps for Pi. We then combine the

subdivisions of all Pi and extract Σ. This subdivision for a

given Pi is defined by the critical trap function F
c
i (α), which

specifies βc for each α in [αs, αe]. The curve specified by

this function divides the trap space in two subsets: points

below or on F
c
i correspond to safe traps for Pi, while points

above F
c
i correspond to traps that reject Pi.

The subdivisions are combined as follows. We add F
c
i for

all i ∈ 1, . . . , k to the trap space, resulting in an arrangement

of curves [9], [13]. The trap designs that reject all but one

stable pose correspond to the points in the trap space that are

above all but one F
c
i . Let us refer to such a point as a valid

solution σ and to the set of all valid solutions as Σ (Fig. 5).

Let us summarize, for this concept plays a central role in

our algorithm. Each F
c
i corresponds to one specific Pi and

specifies the impact of all possible trap designs on Pi. There

exist O(n2) poses, thus the trap space contains O(n2) critical

trap curves. By combining all Fc
i , we are able to extract Σ.

We zoom in onto the critical trap functions, which are

the building blocks of the algorithm. The computation of Fc
i

consists of several algorithmic steps. Recall that we distin-

guish between forward-, backward- and topple-unsafety. We

capture forward and backward-unsafety with the fall function

F
f
i (α), and we capture the topple-unsafety with the topple

function F
t
i (α). The function F

c
i is a composition of F

t
i

and F
f
i . These, as well as other functions defined in the

following, are piecewise algebraic of bounded degree.

B. Falling

The fall function F
f
i specifies βf for each α in [αs, αe]

such that Pi falls (does not fall) forward or backward into

T (α, β) for β > βf (β ≤ βf); i.e., intuitively, all points

below or on F
f
i correspond to trap designs that are forward-

and backward-safe for Pi. The F
f
i function is composed of

F
ff
i (α), which captures forward falling, and F

fb
i (α), which

captures backward falling. In the following, we discuss the

approach to construct F
ff
i —we omit the similar construction

of F
fb
i —and conclude with the formation of F

f
i .

Let us first consider αs and identify the corresponding

βf . We choose x = xs such the left trap edge l(αs, xs)
contains Ci: here, Ci is about to start moving over T , so the

Ci

ls
αs αe

β

(a) (b)

xstrack wall

rs α = β

Fig. 6. (a) l (solid lines) for three x values and r (dotted lines) for the
corresponding βf . Note that ls and rs are shorthands for l(αs, xs) and
r(βf , xs), respectively. (b) illustrates the shape of a resulting graph—the
graph does not match the part. The arrows between fig. (a) and (b) illustrate
the relation between two convex hull points and their corresponding fall
curve segments.

chance on forward falling is maximal. We then choose βf

such that the right trap edge r(βf , xs) is tangent to the right

side of Pi (Fig. 6a). Clearly, choosing a larger β results in Pi

falling forward into T (α, β), while a smaller β would not be

a boundary value between the forward-safe and unsafe β’s.

The approach to construct F
ff
i is as follows. Starting at

αs, we apply a sweep approach [9] by increasing α until

α = αe, while keeping Ci contained in l and maintaining r

as the tangent to Pi. As a result, r “slides” along the convex

hull of Pi. Using basic geometry, we map each convex hull

vertex encountered by r to a curve of constant degree; each

curve defines F
ff
i for a sub-interval of [αs, αe].

Lastly, to construct F
f
i , we combine F

ff
i and F

fb
i by

taking the lower envelope of F
ff
i and F

fb
i . The lower

envelope is the geometric construction comprised of all

(partial) curves that are minimal with respect to β [9], [13];

i.e., all points below or on both F
ff
i and F

fb
i correspond to

trap designs that are forward- and backward-safe.

Lemma 2. The function F
f
i consists of O(ni) curves of

constant degree and requires O(ni) computation time.

C. Toppling

The topple function F
t
i specifies βt for each α in [αs, αe]

such that Pi does not topple into T (α, β) if and only if β ≤

βt; intuitively, Pi does (not) topple into traps corresponding

to points (below or on) above F
t
i . We recall that topple-

unsafety can per definition only occur when Ci is over

T (α, β, x) and both l(α, x) and r(β, x) intersect Pi. In the

remainder of this subsection, we will implicitly assume that

T (α, β, x) satisfies these criteria.

Let us start with an alternative view on the definition of

a safe part placement. We define a fixed local coordinate

system with Ci as its origin. Let ρ(p) ∈ Γ = [0, 2π] be

the counter-clockwise angle of the half-line extending from

Ci through point p ∈ Pi with the positive x-axis of this

local coordinate system (Fig. 7a). For a given T (α, β, x),
we say that γ ∈ Γ is (un)supported if there exists (no) p ∈

Si(α, β, x) such that ρ(p) equals γ. A placement T (α, β, x)
is safe if and only if there exists no interval [γa, γb] of length

|γa, γb| > π that is unsupported, where |γa, γb| specifies

the length of the γ-interval measured in counter-clockwise

direction from γa. Furthermore, an interval is considered

unsupported if it contains no supported γ (Fig. 7a).

388

x

y

p

ρ(p)
Ci x

y

plb

pla pra

prb

(a) (b)
(x, 0)

Ci

Γa
Γc

Γd

Γb

Fig. 7. (a) Part plus local coordinate system with Ci as origin; ρ(p)
specifies the angle in Γ for point p; intervals Γa, Γc and Γb, Γd are
supported and unsupported subsets of Γ, respectively. (b) the intersection
points pla and plb of l(α, x) with Pi, and pra and prb of r(β, x) with
Pi.

With the above definition of a safe placement in mind,

let us revisit the topple-unsafety definition. For an arbitrary

T (α, β, x), let pla and plb be the intersection points of

l(α, x) with Pi with the smallest and largest distance to

(x, 0), respectively; furthermore, let pra and prb be defined

similarly for r(β, x) (Fig. 7b). We refer to pla and pra as

the first intersection point of l(α, x) and r(β, x) with Pi and,

similarly, to plb and prb as the last intersection points.

Using these points, we can define four closed γ-

intervals of which the extremes are certain to be supported,

namely [ρ(pra), ρ(prb)], [ρ(prb), ρ(plb)], [ρ(plb), ρ(pla)] and

[ρ(pla), ρ(pra)]. We observe that |ρ(pra), ρ(prb)| < π and

|ρ(plb), ρ(pla)| < π. Thus, to determine whether T (α, β, x)
is safe, we only need to consider [ρ(prb), ρ(plb)] and

[ρ(pla), ρ(pra)]. Keeping in mind that Pi is represented by

its star-hull (Def. 3), it can be seen that the interiors of these

two intervals contain no supported γ (see [12] for details).

Lemma 3. A trap placement T (α, β, x) is topple-unsafe if

and only if |γ(pla), γ(pra)| > π or |γ(prb), γ(plb)| > π. The

points pla and plb are the first and last intersection point of

l(α, x) with Pi; pra and prb are defined similarly for r(β, x).

Following the above definition, we can distinguish be-

tween two types of topple-unsafety, corresponding to the

event of |γ(pla), γ(pra)| > π and |γ(prb), γ(plb)| > π.

Intuitively, in the latter case, Pi rotates away from the wall

and flips directly into the bowl, while in the former case, Pi

attempts to rotate toward the wall and thus slides down along

the wall back into the bowl. We model both types of topple-

unsafety separately by constructing the functions F
ta
i and

F
tb
i , after which both functions are combined to form F

t
i .

We focus our discussion on F
tb
i that captures topple-unsafety

related to plb and prb, i.e, the last intersection points of

l(α, x) and r(β, x) with Pi. The discussion of F
ta
i is very

similar and is limited to a few remarks.

In contrast to the approach used to construct F
f
i , we need

to consider a range of x-values to determine F
tb
i (α) for

a given α. We introduce the placement space, which is a

three dimensional space spanned by α, β and x; observe that

each point in this space specifies a unique trap placement. In

this space, we will construct an “extended” version of F
tb
i

that takes x into account; we will denote this function by

G
tb
i (α, x). For a given α and x, this function specifies βt

such that Pi does not topple into T (α, β, x) if and only if

Ci

α

β

x

αa

F
tb
i (αa)

G
tb
i

α α

Xi(α)

Fig. 8. (a) An example of Xi(α), (b) Illustration of mapping of Gtb
i to

Ftb
i .

Ci

x

y

(a)

plb

Qi

r(β, x)

Ci

x

y

(b)

Qi
r(βt, xa)

(xa, 0)

l(αa, xa)

qt

Fig. 9. (a) Example of Qi that is intersected by r(β, x). (b) Example of
identification of βt for (αa, xa)—r(βt, xa) is tangent to Qi in point qt.

β ≤ βt. Intuitively, Gtb
i describes a surface in the placement

space such that Pi does (not) topple into traps corresponding

to points (below or on) above G
tb
i .

Let us first consider the domain of Gtb
i . Recall that toppling

can only occur when Ci is over T and Pi is in contact with

both l(α, x) and r(β, x); applied to G
tb
i , this means that

the domain of G
tb
i consists of all (α, x) for which l(α, x)

intersects Pi and Ci is on the trap-side of l(α, x). We use

Xi(α) to denote the set of x-values of this domain for a

given α (Fig. 8). Let us consider Gtb
i and F

tb
i again. Clearly,

Pi does not topple into T (α, β) when it does not topple into

T (α, β, x) for x ∈ Xi(α). Hence, for a given α, F
tb
i is

defined as the minimum of Gtb
i for x ∈ Xi(α) (see Fig. 8).

Definition 4. F
tb
i (α) = min{Gtb

i (α, x)|x ∈ Xi(α)}.

In summary, Gtb
i is the basis for the construction of F

tb
i .

We first discuss the identification of βt for a given (α, x)-
value, after which we continue by generalizing this concept

and developing an algorithm to construct Gtb
i . We conclude

with the generation of F tb
i using G

tb
i .

We consider an arbitrary (α, x), denoted by (αa, xa),
and determine the corresponding βt. Let plb and prb be

defined as before and let Qi be defined as {p ∈ Pi|ρ(p) ∈

[ρ(plb) − π, ρ(plb)]} (Fig. 9a). Based on lemma 3, we can

conclude T (αa, β, xa) is topple-safe if and only if β is such

that r(β, xa) intersects Qi. Intuitively, Qi contains all p ∈ Pi

for which |ρ(p), ρ(plb)| ≤ π, hence β must be such that

r(β, xa) contains a point of Qi to ensure Pi does not topple

into T (αa, β, xa). Upon reflection, we can conclude that βt

is such that r(βt, xa) is tangent to Qi. Let qt ∈ Qi be the

point where r(βt, xa) touches Qi (Fig. 9(b)). Clearly, for any

β > βt, r(β, xa) does not intersect Qi, while for any β < βt,

r(β, xa) also intersecting Ciqt. As a final observation, we

note that the convex hull of Qi suffices to determine the

tangent r(βt, xa).

Definition 5. Qi(γ) = CH({p ∈ Pi|ρ(p) ∈ [γ − π, γ]}),
where CH denotes the convex hull. Furthermore, let

vq1(γ), vq2(γ), . . . , vqm(γ) denote the vertices of Qi(γ),
where m specifies the number of vertices in Qi(γ). The

389

x

(a)

Qi(γ)

plb

vq1(γ)

γ

Ci

γ

Ci

x

(b)

vq1(γ)

vq2(γ)

vq3(γ)

vq4(γ)

vq5(γ)

vq6(γ)

Pi

Fig. 10. (a). Qi(γ) for a given γ, where vq2(γ), . . . , vq5(γ) are fixed
vertices of Pi and vq1(γ) and vq6(γ) depend on γ. (b). Example of an
event for which vq1(γ) 6= plb: point plb is the last intersection point of
l(α, x), but is not equal to vq1(γ).

γa

Ci

vq1(γa)

x-axis

Qi(γa)

l(α, x) r(βt, x)

(x, 0)

Fig. 11. By sliding (x, 0) along the x-axis and maintaining l(α, x) through
vq1(γa), construct Qi(γa) can be used to identify βt for a set of (α, x)
values.

vertices are numbered in counter-clockwise order and

ρ(vq1(γ)) = γ.

Let us further investigate Qi(γ) as this structure plays

a central role in our approach. Firstly, we note that

vq2, . . . , vqm−1 are vertices of Pi and, except for their

addition to and removal from Qi(γ), do not depend on γ.

The position of vertices vq1(γ) and vqm(γ) does depend on

γ (Fig. 10(a)). Secondly, when again considering (αa, xa),
we can observe that plb is part of Qi(γ); more precise, their

relation can be described as follows: plb = vq1(ρ(plb)) =
vq1(γ). For here on, we use vq1(γ) to refer to the last

intersection point of l(α, x) with Pi. We note that there exists

one exception to the latter note. That is, plb is not necessarily

equal to vq1(γ) when the support line of an adjacent edge of

vq1(γ) contains Ci (Fig. 10b). In the following discussion of

the algorithm, we temporarily ignore such cases and discuss

its treatment separately later on.

We generalize the use of Qi(γ). Let γa denote an arbitrary

γ-value. Employing Qi(γa), we can determine βt for all

(α, x) for which vq1(γa) is the last intersection point of

l(α, x) with Pi. Intuitively, this set of (α, x) values can be

discovered by sliding a point (x, 0) along the x-axis, while

maintaining l(α, x) through vq1(γa) and letting r(βt, x)
“glide” along the boundary of Qi(γa) (Fig. 11).

The above observation is the basis for the algorithm to

construct F tb
i . The general idea of the algorithm is as follows.

Let us first consider a given γ. We can identify the set

of (α, x)-values for which vq1(γ) is the last intersection

point of l(α, x). We observe, however, that it suffices for

the algorithm to maintain the x-component of each (α, x);
namely, for a given γ and x, there exists only one α such

that l(α, x) contains vq1(γ). We refer to the resulting set

of x values as the active subset of X (Fig. 12a and b).

Subsequently, the algorithm determines βt for each x in

the active subset. In summary, for a given γ, the algorithm

γ

Ci

hli(γ)

hli(γ − π)

x

(a)
active subset

(b)

vq1(γ) vq1(γ)

la

ha

lc

ld

rd

rc

hb

xc xd

(c)

Ci Ci

Fig. 12. (a). An example of the identification of an active subset of X,
which in this case goes to infinity for +x. Furthermore, ha and hb give an
impression of how βt-values will be linked to active x-values. (b). (αc, xc)
and (αd, xd) are two examples of active (α, x) values for which βt is
defined by rc and rd. (c). hli(γ) and hli(γ − π) sweeping over Pi.

models topple-unsafety by using Qi(γ) to identify the active

subset of X and determine the corresponding βt-values.

The above concept generalizes as follows. For an arbitrary

initial γs, the algorithm constructs Qi(γs). Starting from

γs, the algorithm then traverses Γ while maintaining Qi(γ).
Simultaneously, it uses Qi(γ) to identify the active subset

of X and the corresponding βt-values for each visited γ.

As a result, the algorithm constructs a planar subdivision [9]

of the Γ, X-space. This subdivision specifies for each (γ, x)
whether it is active and, if so, the corresponding βt. Using

the property that an active (γ, x) uniquely maps to a (α, x),
the algorithm maps the Γ, X-space subdivision to the A, X-

space, after which G
tb
i can be constructed using A, X-space

subdivision and the stored βt information. Finally, we can

construct F t
i (α) = min{Gtb

i (α, x)|x ∈ Xi(α)} (Def. 4) by

projecting G
tb
i onto the A, B-plane and computing the lower

envelope of the resulting arrangement.

For lack of space, a detailed explanation of the algorithm

is omitted. We refer the interested reader to section 3 of [12].

D. Solution

The composition of the trap function F
c
i by combining

F
f
i and F

t
i is straightforward. Recall that all points on or

below F
f
i and F

t
i correspond to trap designs that ensure

Pi does not fall forward/backward nor toppling, respectively.

Hence, intuitively, all points that are on or below both F
f
i and

F
t
i correspond to safe traps for Pi. The function F

c
i is the

lower envelope of F
f
i and F

t
i .

Lemma 4. F
c
i has a O(n2

i 2
α(n2

i
)) complexity and requires

O(n2
i 2

α(n2

i
)) time to compute, where α(n) is the extremely

slowly growing inverse of the Ackermann function.

We generate F
c
i for each i ∈ {1, . . . , k} and add the result

to the trap space, resulting in an arrangement of curves. We

recall that a point that lies above all but one F
c
i in terms of β

represents a valid solution; that is, it represents a V-trap that

rejects all but one pose of P . The desired Σ is the part of trap

space between the upper envelope and the critical curves one

level down, where the upper envelope is the curve comprised

of all (partial) critical curves that are maximal with respect

to β [9]. In geometry, this part is referred to as the ≤1-level

of an arrangement of curves [9] (Fig. 5).

Once Σ is generated, the algorithm reports the set of

valid V-trap designs. Solution set Σ consists of a number of

subsets, each consisting of valid solutions that feed a specific

pose of P . No valid solution exists when the ≤ 1-level

390

sliding forward

sliding backwardpart hops

dj

z

x

Ci

x-axis

C ′

i

xaxb

r(βf , xb)l(αa, xa)l(αa, xb)

dj

(a) (b)

Fig. 13. (a) illustrates a possible part motion modus, where dj is the
effective jump distance. (b) shows placements l(αa, xa) and l(αa, xb) of
the left trap edge, where l(αa, xb) is the placement at the moment Pi lands
after jumping when Ci crosses l(αa, xa). Using C′

i , which is Ci offset by

dj in negative x-direction, βf as output by Fff
i (αa) can be computed.

is empty; in other words, when the entire upper envelope

consists of coinciding critical curves. The occurrence of

the latter is unlikely. We conjecture that V-traps do not

exist for certain classes of parts with prominent geometric

symmetries; characterizing the class of parts for which V-

traps are guaranteed to exist is a subject for future research.

Theorem 1. The complexity of Σ is O(a2α(a)) and Σ can

be constructed in O(a2α(a) log a) time, where a = n32α(n3).

IV. MODELING PART MOTION

Abandoning the assumption that parts glide along the

track, the following considers the hopping part motion in-

duced by the asymmetric helical vibration of the vibratory

bowl. Fig. 13(a) illustrates a motion modus proposed by

Boothroyd [5], who applies this model among others in

the context of trap design. The model can be explained as

follows. In one vibration cycle, the upward motion of the

bowl accelerates P , after which P is launched into flight

as the bowl starts to move back. Next, P lands and slides

forward a bit due to inertia, and then slides back a bit again

as the bowl returns to its upward motion. Depending on the

part and bowl, different part motion modes are possible as

well. Still, all modes have in common that the part has some

effective jump distance, denoted by dj , which we assume

to be known. As a result, Pi may unjustly survive T (α, β),
hence T does not satisfy the feeding property.

This section discusses the computation of the set of all

trap designs that feed P while taking the above introduced

motion model into account. We remark that this solution set,

denoted by Σ, effectively consists of two subsets: Σ∩Σ and

Σ−Σ. Let σa be an arbitrary trap design in Σ, and let Pa be

the pose fed by σa. Trap σa feeds all occurrences of Pa when

σa is in Σ∩Σ: trap σa is in Σ thus all trap placements of σa

are safe for Pa. Whereas σa feeds only a percentage of the

occurrences of Pa when σa is in Σ− Σ: certain placements

of σa are unsafe for Pa, therefore the specific jump pattern

of a given occurrence of Pa determines its rejection.

The algorithm to compute Σ is similar to the (original)

algorithm that computes Σ. In overview, the algorithm to

compute Σ constructs functions that capture forward- and

backward-unsafety and both types of topple-unsafety, while

taking the jumping motion into account; let these functions

be denoted by F
ff
i , F

fb
i , F

ta
i and F

tb
i . The subsequent

x

β

βa

G
tb
i (αa)

dj

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

βt

Xi(αa)

Fig. 14. shows Gtb
i for fixed α = αa, defined for x-interval Xi(αa). Set

Ξ(αa, βa) consists of ξ1, . . . , ξ6, and Ξu(αa, βa) consists of ξ2, ξ4 and

ξ6. Finally, the value of βt = F tb
i (αa) is illustrated—observe for example

that Pi is rejected by T (αa, βa) for ξ2 is in Ξu(αa, βa) and |ξ2|x > dj .

construction of critical trap functions and solution set Σ is

the same as for the original algorithm.

The complexity of Σ and its computation time can be

shown to be polynomial; further research is needed to deter-

mine the precise specification of these (polynomial) bounds.

A. Falling

This subsection addresses the computation of F
ff
i —the

similar construction of F
fb
i is omitted. We show will that

with a minor adjustment, the original algorithm to compute

F
ff
i (section III-B) can also be applied to compute F

ff
i .

We consider an arbitrary α-value, denoted by αa, and

determine βf = F
ff
i (αa). As in the original approach, we

select x = xa such that l(αa, xa) contains Ci: this trap

placement—pose Pi is about to fall forward—offers the best

chance for Pi to escape rejection. Assuming the extreme

case that Pi indeed jumps at trap placement x = xa, then

T moves by dj in the negative x-direction before Pi again

lands. Let xb = xa − dj denote the new trap placement.

Finally, following the original approach, angle βf is such

that r(βf , xb) is tangent to Pi (Fig. 13b).

In short, the original approach to identify βf for αa

remains unchanged, except for the intermediate offset of the

trap placement. Instead of adding this intermediate step to

the original algorithm, we can offset Ci by dj in negative x-

direction (Fig. 13b). Choosing the left trap edge for αa such

that it contains Ci then directly produces xb and subsequently

βf . In conclusion, after offsetting Ci, the algorithm presented

in section III-B can be applied to compute F
ff
i .

B. Toppling

As F
tb
i for a given Pi, function F

tb
i is derived from the

G
tb
i (section III-C). In the following, we first explain the

identification of βt = F
tb
i (α) for a given α and then present

an algorithm that employs this idea to compute F
tb
i .

Let us consider the cross-section of Gtb
i for a fixed α = αa,

denoted by G
tb
i (αa). In the X, B-plane containing G

tb
i (αa),

we examine the horizontal line segment at fixed β = βa

that spans x-interval Xi(αa)—observe that this line segment

describes all trap placements in which Ci is over T (αa, βa).
The set of intersections with G

tb
i (αa) subdivides the line

segment into a set of sub-segments, which we denote by

Ξ(αa, βa) (Fig. 14).

391

We observe that the interior of a given segment in

Ξ(αa, βa) is either below or above G
tb
i (αa), thus describes a

connected set of trap placements that are either safe or unsafe

for Pi, respectively. Let the set of segments above G
tb
i (αa)

be denoted by Ξu(αa, βa). Furthermore, we observe that by

increasing or decreasing β, the length of the segments in

Ξu(αa, β) monotonically increases or decreases, respectively.

Angle βt = F
tb
i (αa) is defined as the maximum β-value

for which the length of each segment in Ξu(αa, β) is at most

dj . Intuitively, for any β ≤ βt, the aforementioned mono-

tonicity ensures that the intervals of unsafe trap placements

are short enough for Pi to be able to jump across, while for

any β > βt, there exists at least one interval of unsafe trap

placements that causes Pi to topple into T .

Definition 6. F tb
i (α)=max{β | ∀ξ ∈ Ξu(α, β) : |ξ|x ≤ dj},

where |ξ|x is the length of the x-interval spanned by ξ.

To compute F
tb
i , we need to express the algorithm as

an operation on G
tb
i . Again considering G

tb
i (αa) for fixed

α = αa, we sketch the approach to compute βt = F
tb
i (αa).

Let the unsafe segment of a point p in G
tb
i (αa) be defined

as the longest horizontal line segment that contains p and

consists solely of points in and above G
tb
i (αa). The unsafe

segment of p is critical either if its length equals dj , or if its

length is larger than dj and the neighboring points of p in

G
tb
i (αa) feature unsafe segments with lengths smaller than

dj—the latter occur only if p is a local maximum of Gtb
i (αa).

To compute βt, the algorithm identifies the critical point set,

which is the set of points in G
tb
i (αa) featuring critical unsafe

segments; βf is the minimum β of the critical point set.

Generalizing over [αs, αe], function F
tb
i can be computed

by employing a plane-sweep approach [9], [13], which can

be sketched as follows. The sweep algorithm starts at αs,

where it computes the critical point set of G
tb
i (αs), orders

the points in the critical point set on their β-value, and

reports the minimum β-value. Then, while increasing α, the

algorithm maintains the critical point set of Gtb
i (α) and its β-

ordering. Events—appearances and disappearances of points

in the critical point set and changes in the β-ordering of

the critical point set—occur at a discrete set of α-values.

Function F
tb
i is described by the set of reported minimum

β-values over [αs, αe].

V. CONCLUSION

We have presented an algorithm for the automated design

of V-shaped traps for vibratory bowl feeder—these devices

receive a stream of identical polyhedral parts in arbitrary sta-

ble pose as input and output parts in one single pose. Inspired

by similar devices used in existing vibratory feeder systems,

the proposed work on V-traps serves as a representative study

to feeding 3D parts through rejection of part poses. Under

the assumption that the motion of the part is quasi-static and

rejected parts are always deflected off the track, our complete

algorithm reports either all possible single V-trap solutions

or that no solution exists. In addition, we have removed a

common idealized assumption on the motion of the parts and

replaced it by a more realistic model for part motion; this

model has been incorporated in our design algorithm.

Our aim in this paper has been to take the design of

complete algorithms for trap design to the realm of three-

dimensional parts. A challenging open problem is to fully

characterize the class of parts that are feedable with a single

V-trap. Such a classification can either motivate or rule out

the necessity of a study of more complex trap shapes and

their design algorithms.

Another open problem is the interaction between the part

and trap. Both previous and the herein presented research on

algorithmic trap design assume that parts move in a quasi-

static manner and rejected parts are always reflected off the

track. No research has been done to date on the relaxations

of these idealizations.

REFERENCES

[1] P. Agarwal, A. Collins, and J. Harer. Minimum trap design. IEEE

ICRA, pages 2243–2248, 2001.
[2] D. Berkowitz and J. Canny. Designing part feeders using dynamic

simulation. IEEE ICRA, pages 1127–1132, 1996.
[3] R.-P. Berretty, K. Goldberg, M. Overmars, and A. van der Stappen.

Trap design for vibratory bowl feeders. International Journal of

Robotics Research, 20:891–908, 2001.
[4] R.-P. Berretty, M. Overmars, and A. van der Stappen. Orienting

polyhedral parts by pushing. Comput. Geom., 21(1-2):21–38, 2002.
[5] G. Boothroyd. Assembly Automation and Product Design. Taylor &

Francis Ltd, 2005.
[6] G. Boothroyd, C. Poli, and L. Murch. Automatic Assembly. Marcel

Dekker, New York, 1982.
[7] M. Caine. The design of shape interactions using motion constraints.

IEEE ICRA, pages 366–371, 1994.
[8] A. Christiansen, A. Edwards, and C. Coello. Automated design of

parts feeders using a genetic algorithm. IEEE ICRA, pages 846–851,
1996.

[9] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry – Algorithms and Applications. 1997.

[10] O. Goemans, K. Goldberg, and A. van der Stappen. Blades: A
geometric primitive for feeding 3d parts on vibratory tracks. IEEE

ICRA, pages 1730– 1736, 2006.
[11] O. Goemans, A. Levandowski, K. Goldberg, and A. van der Stappen.

On the design of guillotine traps for vibratory bowl feeders. IEEE
CASE, pages 79–86, 2005.

[12] O. Goemans and A. van der Stappen. On the design of traps for feeding
3d parts on vibratory tracks. Technical report UU-CS-2007-028, 2007.

[13] J. Goodman and J. Rourke, editors. Handbook of Discrete and

Computational Geometry (Second Edition). 2004.
[14] M. Jakiela and J. Krishnasamy. Computer simulation of vibratory part

feeding and assembly. 2nd Int. Conf. on Discrete Element Methods,
pages 403–411, 1993.

[15] L. Lim, B. Ngoi, S. Lee, S. Lye, and P. Tan. A computer-aided
framework for the selection and sequencing of orientating devices for
the vibratory bowl feeder. Int. J. of Production Research, 32(11):2513–
2524, 1994.

[16] K. Lynch. Inexpensive conveyor-based parts feeding. Assembly

Automation Journal, 19(3):209–215, 1999.
[17] M. Mason. Mechanics of Robotic Manipulation. MIT Press, 2001.
[18] G. Maul and M. Thomas. A systems model and simulation of the

vibratory bowl feeder. 2nd International Conference on Discrete

Element Methods, 16(5):309–314, 1997.
[19] J. Selig and J. Dai. Dynamics of vibratory bowl feeders. IEEE ICRA,

pages 3299–3304, 2005.
[20] R. Silversides, J. Dai, and L. Seneviratne. Force analysis of a vibratory

bowl feeder for automatic assembly. ASME: Journal of Mechanical

Design, 127(4):637–645, 2005.
[21] M. Tay, P. Chua, S. Sim, and Y. Gao. Development of a flexible

and programmable parts feeding system. International Journal of
Production Economics, 98(2):227–237, 2005.

[22] R. Zhang and K. Gupta. Automatic orienting of polyhedra through
step devices. IEEE ICRA, pages 550–556, 1998.

392

