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Abstract— This paper presents a miniature robot device and
control algorithm that can autonomously position electrodes
in cortical tissue for isolation and tracking of extracellular
signals of individual neurons. Autonomous electrode positioning
can significantly enhance the efficiency and quality of acute
electrophysiolgical experiments aimed at basic understanding
of the nervous system. Future miniaturized systems of this
sort could also overcome some of the inherent difficulties in
estabilishing long-lasting neural interfaces that are needed for
practical realization of neural prostheses. The paper describes
the robot’s design and summarizes the overall structure of the
control system that governs the electrode positioning process.
We present a new sequential clustering algorithm that is key
to improving our system’s performance, and which may have
other applications in robotics. Experimental results in macaque
cortex demonstrate the validity of our approach.

I. INTRODUCTION

This paper describes a miniaturized robotic mechanism
and an associated set of algorithms for extracellular neural
recording. Much of what we know about brain function
has been provided by extracellular neural recordings, which
are obtained by positioning the tip of an electrode near an
individual neuron. Extracellular recordings are also the key
inputs to emerging neuroprosthetic devices that promise to
aid the severely handicapped [1], [2], [3], [4]. However,
a fundamental problem lies in creating a neural recording
interface that can reliably and stably record neural signals
for long periods of time (e.g., for a few years). The robotic
system described in this paper can autonomously position
recording electrodes in cortical tissue in order to initially
optimize the recorded neuronal signal and subsequently track
the cell over shifts in position and signal characteristics. As
we describe below, our autonomous electrode paradigm can
increase the efficiency and quality of basic neurobiological
research, and also offers the potential to overcome some
of the difficulties in making the long-lasting stable neural
interfaces that are needed for neural prostheses.

The goal of extracellular recordings is to detect and local-
ize in time the occurrence of a neuron’s electrical impulses,
termed action potentials or spikes, which are the basis for
neural communication and information processing. Neural
recordings can generally be categorized as acute (typically
lasting several hours) or chronic (lasting weeks, months,
or years). In acute experiments, which are primarily used
for scientific research, an electrophysiologist commands a
microdrive (an electromechanical device which can position
an electrode along a linear track in micron-scale steps)

to advance electrodes into neural tissue until the action
potentials of a neuron are clearly discernible, or “isolated.”
This process of neural isolation is something of an art, and
is typically guided by both visual (oscilliscope) and audio
(relaying the amplified recording to a loudspeaker) means.
The isolation process requires significant training to master,
and also consumes a significant amount of the experimenter’s
time. Moreover, after the initial isolation, the microdrive
must be repeatedly repositioned by the experimenter to
maintain a high quality signal in the face of neural drift that
arises from tissue relaxation.

Chronic recordings use implanted arrays of stationary
electrodes. The signal yield of the array depends, however, on
the luck of the initial surgical placement. High impedance
electrodes have a limited “listening sphere,” and their tips
must be positioned within 30 microns (and preferably within
10 microns) from a neuron’s soma in order to obtain a
high quality signal. It is generally impossible for all of
the implanted electrode tips to fall within an active record-
ing region. Moreover, blood pressure variations and small
mechanical shocks will cause tissue migrations, and thus
subsequent degradation of the signal. Finally, reactive gliosis
can encapsulate the electrode, diminishing signal quality.

Fig. 1. Photographs of the Robotic Electrode Microdrive (left and center),
and a closeup of electrodes extending from their the guide tubes (right)

We describe below a control system that can autonomously
position electrodes so as to isolate and then maintain high
quality extracellular recordings. We have used this algo-
rithm for thousands of hours on several existing commer-
cial microdrives [5]. We also describe a novel miniature
robotic microdrive that can finely position three electrodes
independently. A first generation microdrive prototype has
been previously reported in [6], [7], and an early version
of our control system was described in [8], [9]. The robot
described in this paper is a substantial improvement over
that earlier design in terms of manufacturability, ease of use,
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and signal quality. Additionally, we have developed a new
signal clustering, classification, and tracking algorithm that
is at the core of our approach. Not only does this algorithm
significantly improve the operation of our control system, it
should also have applications to other areas of robotics.

Our autonomous electrode positioning paradigm has appli-
cations to various types of neural recordings. For acute scien-
tific recordings our approach can increase the efficiency and
quality of neural signal recording by freeing the experimenter
from the tedious task of positioning electrodes. As com-
pared to traditional manual positioning of the electrodes, our
automated approach also significantly increases the number
of electrodes that can be simultaneously positioned during
an acute recording, thereby increasing the quality of the
scientific results. Our microdrive’s small, light design can
enable it to remain on a subject (non-human primate) for
days at a time, allowing neuroscientists to study issues of
neural plasticity. The microdrive presented in this paper also
serves as a testbed to develop to parameters necessary for our
ongoing efforts to build large arrays of individually actuated
micro-electrodes using MEMS technology [10]. These minia-
turized implantable arrays would serve as the front end for
neuroprosthetic systems, and their autonomous positioning
capability would help to overcome the low signal yield
of chronic fixed electrode arrays. Muthuswamy et al. [11]
also are working toward implantable movable electrodes, but
actuators with longer range and lower power are needed, as
well as an accompanying control algorithm such as ours.

Section II describes the robotic microdrive mechanism,
including some pertinent manufacturing details, in the con-
text of the requirements of chronic and semi-chronic neural
recording devices. Section III describes the structure of
the control algorithm, including recent developments in the
finite state machine designed to address the challenges of
realistic recording environments. Section IV highlights a new
method of neuron tracking via a new Bayesian classification
algorithm. This algorithm potentially has applications to
other signal processing problems in robotics.

II. MECHANISM DESIGN AND FABRICATION

Microdrives suitable for chronic use must be implantable,
safe, minimally obtrusive, and require minimal maintenance.
Preferably, the device should be small in size and mass in
order to allow the experimental subject free movement and
comfort. Conversely, the compactness and proximity of all
the electrical pathways in a small device can increase noise
and interference in the recorded signal. Size limitations also
restrict the number of actuators, and hence recording elec-
trodes, that can be packaged in the device. The device must
be secure against leaks and impacts and easily sterilized.
Commercially available microdrives (for example: Thomas
Recording GmbH, Germany; FHC Inc., USA; Narishige
Inc., Japan) are too large to be practical for chronic use.
Previous chronic microdrives [12], [13], [14], [15] all require
manual repositioning of the electrodes (e.g., via lead screws
or temporary interfaces to actuators).

Circuit board with
connectors and
position sensors

Carriers

Main body

Guide tube 
and electrodes

Main shaft and
lead screw

Chamber adapter
and gross XYZ positioner

Cranial chamber

Fig. 2. Exploded view of electrode microdrive structure.

Figure 2 shows a schematic diagram of our microdrive
mechanism, while Figure 1 shows photographs of the device.
The mechanism’s main body encases three piezo-electric
linear actuators and contains electrode guide tubes and a
circuit board. The actuators (Klocke Nanotechnik, Germany)
provide both high precision (sub-micron steps) and long
range of motion (about 5.6 millimeters) and do not suffer
from gear backlash, which introduces significant imprecision
in other drives. Hall-effect sensors built into a small mounted
circuit board measure electrode depth to 1-micron precision.

Each linear actuator moves a carrier, to which the elec-
trodes are attached both electrically and mechanically. The
electrodes consist of platinum-iridium wires insulated with
glass along their length, except at the recording tip and
the back end (Alpha Omega Co., USA). The electrode
signals are routed to the circuit board via flexible, polyimide-
shielded copper strips, and then routed to a standard multi-
pin connector that connects to a headstage amplifier. The
electrodes are loaded tail-first through the guide tube and
their corresponding carrier tubes, and fixing them under
screw heads on the carriers

The main body assembly is held to a chamber adapter via
a main shaft (see Figure 2). This design allows the electrodes
to be positioned over any point within a 12mm diameter
circular area inside the recording chamber1. To initiate a
recording session, the microdrive is lowered manually by
the vertical lead screw until the guide tube pierces the dura,
which is a tough layer of tissue protecting the brain. The
guide tube protects the fragile electrodes during this process.
The use of the depth gauge on the side of the device aids the
user in establishing the rough depth of the electrodes. The
autonomous algorithm then positions the electrodes via the
linear actuators. For semi-chronic use, structural elements are

1The recording chamber is surgically implanted into the experimental
subject over the brain regions of interest. These chambers are standard in
the neuroscience recording community and not part of our design.
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Fig. 3. Left: Control algorithm cycle. Right: Prototypical path of Finite State Machine used in electrode movement decisions. See text for details.

locked into place with set screws, and a cover can be placed
over the entire assembly to protect against impact. Since
there are no parts to disassemble between uses, cleaning is
accomplished by a simple bath in a disinfectant solution.

Manufacture of the Drive. The majority of the micro-
drive’s components were manufactured through a layered
stereolithography (SLA) process. This approach minimizes
the number of fasteners, which often work themselves loose
or give way to leaks in the wet conditions of living tissue.
Because the material used in the SLA process is not biocom-
patible, its parts were coated with a 20-micron thick film of
Parylene, a conformal plastic known for its excellent biocom-
patibility properties. To account for the limited precision (0.1
mm) of the SLA process, Teflon bearing inserts are used in
the sliding joints, and their position can be adjusted via small
set-screws to achieve the joint precision and smoothness
needed when advancing the guide tube. The final assembled
device weighs 26.1g.

III. STRUCTURE OF THE CONTROL ALGORITHM

This section provides a brief overview of the control
algorithm’s overall structure (details of specific algorithm
components can be found in the references). The control
system’s main goal is to determine, based on the recorded
signal and the electrode’s position history, the best position
— or “depth” — for each electrode. Because each electrode
is moved independently, we focus on the processing steps
for a single electrode. The control algorithm operates in a
cycle (see Figure 3): 1) the electrode signal is acquired over
an interval while the electrode is stationary; 2) this signal
is analyzed (in several steps) to determine if and how the
electrode should be repositioned; 3) the electrode is moved
to a new position. The main challenge is to automate the
elements of this cycle, which are typically carried out by
an electrophysiologist, via unsupervised signal processing
methods, while also respecting constraints on the recording
process (such as not moving too fast to cause tissue damage,
or skewering a neuron, hastening its death) that are normally
handled by the electrophysiologist’s experience and intuition.

The first unsupervised signal processing step, known as
spike detection, identifies the action potential “events” in the

electrode’s voltage trace. We employ a wavelet-based method
developed by Nenadic and Burdick [16] specifically designed
for this application. The approximately 1.2-msec long spike
waveforms are extracted from the voltage trace and aligned
by their minima in preparation for the next steps.

The recorded signal from a single electrode may contain
actional potential waveforms from several neurons near the
electrode tip. Next, a spike sorting procedure is used to
classify the recorded spikes into different clusters, each of
which is attributed to a different neuron. A main contribution
of this paper is a new algorithm for this task, along with the
related data association and tracking algorithms that match
current clusters with specific neurons that were identified
during previous algorithm processing cycles (Section IV).

After these preprocessing steps, electrode movement de-
cisions are based on two metrics. A signal quality metric
(SQM), such as the signal to noise ratio (SNR) of the
spike waveforms, is the algorithm’s primary optimization.
We only require that the SQM increases with proximity to a
neuron. The dominant neuron has the highest SQM over a
recent time period. Additionally, because a neuron’s signal
is only valuable if it can be distinguished from those of
surrounding neurons, we also employ an isolation quality
metric (IQM) that measures the separation of the dominant
neuron’s waveforms from those of other neurons.

In the idealized scenario where one stable neural signal
source is ever present, the algorithm then determines the elec-
trode motion to increase the SQM of the dominant neuron. A
stochastic optimization procedure for this goal of maximizing
an unknown function based on noisy observations is detailed
in [9]. Since there may be confounding neurons as well, a
minimum IQM threshold must also be met to for a given
SQM optimization to be acceptable. A thorough discussion
of choice and use of metrics is found in Branchaud [5].

To account for many additional challenges in practical
recording, we use a finite state machine architecture, with
individual states and state transition crafted to address these
practical problems (see [5] for details). For example, Figure
3 shows a prototypical path of state transitions. In the
Spike Search state, the electrode is moved relatively quickly
through cortex to seek a region where neural activity is above
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a threshold (indicating that there may be isolatable neurons
nearby). Once neural activity is detected, the Gradient Search
state moves the electrode so as to find a region where
a statistically significant positive-sloped SQM curve may
be constructed. The Isolate Neuron state then invokes the
stochastic optimization method [9] to both build the SQM
curve and determine the electrode’s motion towards the
maximum of that curve. Within this state, another finite state
machine monitors the possiblity that the electrode will move
along a path that will puncture, and thus kill, a neuron. In
this case, the electrode may be commanded to “back away”
if deemed too close to the neuron. As mentioned earlier,
electrode–tissue drift may degrade the signal over time. The
states Re-estimate Gradient and Re-isolate Neuron adjust
the electrode to maintain a strong isolation. Finally, state
transitions account for other typical recording events, such
as the temporary or permanent appearance or disappearance
of neurons on the recorded signal.

IV. BAYESIAN SPIKE CLUSTERING AND NEURON
TRACKING

As noted earlier, the electrode tip may happen to be within
the “listening sphere” of multiple neurons, causing the spike
activity of several neurons to be recorded. Sorting these
spikes according to their generating neuron is a challeng-
ing process, typically completed manually via analysis of
the voltage waveforms. The waveforms from an example
recording are shown in the top left of Figure 3, with their
2-dimensional principal component (PCA) representation
above them, where each waveform is represented as a point.
Although all waveforms are similar, enough separation in
PCA space exists to distinguish three neurons.

Within each recording interval that initates one cycle of the
algorithm (one time step), it is essential that the spikes that
arise from different neuronal sources are classified correctly.
Knowing which spikes belong to which neurons is critical
for computing an accurate SQM and IQM, as well as for
the eventual scientific or clinical use of the neural data.
Moreover, to build a faithful SQM curve which is at the
basis of our optimization based approach, we must track
neurons over sequential recording intervals by matching
current signal clusters with previous clusters.

The non-stationarity of spike waveforms due to elec-
trode drift is a commonly cited culprit for difficulties in
tracking neurons over time [17], [18], [19]. However, when
the recording application involves repeated sampling and
clustering over time, our experience has shown that the
inconsistency of conventional clustering methods’ output is
a crucial issue. Due to the difficulties of unsupervised clus-
tering, data sampled during consecutive time intervals will
often be clustered much differently, changing each cluster’s
statistics enough to significantly reduce the reliability of
matching clusters across consecutive time windows.

In our novel classification and clustering approach, we
mitigate this effect by incorporating prior information into
a Bayesian clustering algorithm. Our strategy’s foundation
is the optimization of the model parameters of a Gaussian

mixture via expectation-maximization (EM) to best represent
the probability distributions of the signal-generating neurons
[20], [21]. Under the assumption that the preceding recording
interval has a reasonable clustering result, we first use the
preceding model’s statistics to guess the initial values (or
seed) for the EM algorithm, which greatly increases our
chances of avoiding poor local optima while still mindful
of phenomena commonly encountered in clustering neural
data over time. Then we incorporate the preceding cluster
locations as a prior during the EM algorithm, thus seeking
maximum-a-posteriori (MAP) rather than maximum like-
lihood (ML) results for the purpose of improved cluster
tracking throughout the recording session. Importantly, we
implement the prior in a manner such that the method
will likely succeed even if the preceding clustering was
incorrect or if different neurons’ signals are recorded during
the two intervals. Not only does this procedure provide more
consistent clustering results, but we will show that it provides
neuron tracking (or data association across time) “for free,”
as it generates measures that quantify the probability that a
given cluster in the current recording interval is associated
with a signal cluster from a previous recording interval. A
Bayesian technique for choosing the best mixture model
order is embedded in our approach as well. We assume the
clusters are nearly stationary over small time intervals.

Our clustering and tracking procedures are executed in a
d-dimensional feature space of the extracted, aligned spike
waveforms. Typically, we use a 2-dimensional PCA basis,
which is also commonly used in manual spike classification.

A. Mixture Model Optimization via EM

While many traditional clustering procedures have been
used to classify neural waveforms, the optimization of a
(typically Gaussian) mixture model [20] has been shown to
be an effective approach [22], [17], [23]. The underlying
assumption is that the spike waveform samples in different
clusters can be modeled as samples from different multivari-
ate statistical distributions, where each distribution represents
the signal features of a specific neuron.

Let us first review the classical mixture model and corre-
sponding ML optimization. We consider the mixture likeli-
hood, LM , of the model parameters given the data:

LM
(
Θm | Y,Mm

)
= p
(
Y | Θm,Mm

)
=

N∏
n=1

Gm∑
g=1

πgfg
(
yn | θg

)
, (1)

where:
• Y is a set of N (spike feature) observations yn ∈ Rd.
• Mm is the mth model class under consideration in

the current recording interval, which dictates the model
order Gm, the form of the gth probability density fg
(typically Gaussian), and the model parameters Θm =
{θg, πg}Gg=1.

• θg are the parameters of gth mixture component (mean
and covariance matrix for a Gaussian mixture, θg =
{µg,Σg}).
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• πg is the mixture weight of component g, i.e., the
probability that an observed spike belongs to component
g (i.e. generated by source neuron g), with πg ≥ 0 and∑Gm

g=1 πg = 1.
The powerful EM algorithm [24] is typically applied to

estimate the mixture parameters by log-likelihood maximiza-
tion. At the same time, the EM procedure assigns data points
to the appropriate mixture component, thereby effecting the
separation of spikes. To apply this technique, we view our
data Y as “incomplete” and augment it by Z, the set of
membership variables zn = (zn1, ..., znG),

zng =
{

1 if spike waveform yn belongs to cluster g
0 otherwise.

Incorporating Z we can derive the corresponding complete-
data log-likelihood

lCD(Θm | Y,Z,Mm) =
N∑
n=1

Gm∑
g=1

zng log
[
πgfg

(
yn | θg

)]
.

(2)
The EM algorithm iterates between an E-step to calculate
the conditional expectation ẑng = E[zng | yn,Θ] ∈ [0, 1]
using the current parameter estimates, and an M-step to
find the parameter estimates Θ̂ that maximize (2) given ẑng ,
until some convergence threshold is reached. The algorithm
requires an initial guess or “seed clusters” for initialization,
and a new seeding method is discussed in more detail below.

B. Bayesian Framework for Model Selection and Parameter
Estimation

To develop an appropriate spike waveform clustering
method, let us now incorporate the sequential nature of
our data sampling, include a model selection framework (to
determine the most appropriate number of clusters, Gm),
and employ MAP parameter estimation (determining Θ̂ and
thus cluster membership Z). Denote Y k the data at the
kth time step, and Y 1:k all data from the first through
kth step of recording. We choose a set of model classes
Mm,m = 1, ...,M for consideration, typically encoding
a range of model orders (number of clusters to seek), but
perhaps also different parsimonious models of covariance
matrices Σg or different probability densities fg . Then the
problem consists of three related parts:

1) Find the MAP parameters and cluster membership for
each model class: MAP parameters are naturally estimated
using Bayes’ Rule:

p
(
Θm | Y 1:k,Mm

)
∝ p
(
Y k | Θm,Mm

)
p
(
Θm | Y 1:k−1,Mm

)
, (3)

where we have removed the unnecessary conditioning on
Y 1:k−1 in the likelihood term and have suppressed the k-
dependence of parameters — i.e., Θm for Θk

m — when it
can be inferred to be at time k. Our EM solution (see Section
IV-C) provides the cluster membership Z in the same way
as discussed above.

2) Determine the model class Mm: Again we will use a
Bayesian approach to determine the probability of the model
given the data:

P
(
Mm | Y 1:k

)
= P

(
Mm | Y k, Y 1:k−1

)
=
p
(
Y k | Y 1:k−1,Mm

)
P
(
Mm | Y 1:k−1

)
p
(
Y k | Y 1:k−1

) . (4)

This probability is difficult to compute because the evidence
term p

(
Y k | Y 1:k−1,Mm

)
theoretically requires an integra-

tion over all possible parameters. However, by employing
Laplace’s asymptotic approximation [25], we can estimate a
value while evaluating only at the MAP parameters Θ̂m:

p
(
Y k | Y 1:k−1,Mm

)
≈ p
(
Y k | Θ̂m,Mm

)
· p
(
Θ̂m | Y 1:k−1,Mm

)
(2π)Nm/2|Hm(Θ̂m)|−1/2 (5)

The first factor is the well-known likelihood of the Gaussian
mixture, while the other terms are collectively known as the
Ockham factor, as they penalize the complexity of the model
parameterization. Other popular approaches to model selec-
tion, such as the Bayes Information Criterion (BIC), elim-
inate terms and are essentially approximations to Laplace’s
approximation. For our application, the Laplace approach
naturally incorporates the prior on Θm, and provides greater
accuracy that is especially useful for distinguishing models
in noisy neural data. The main disadvantage is the need to
calculate the Hessian matrix Hm(Θ̂m).

We can see that the prior, P
(
Mm | Y 1:k−1

)
, is simply the

output of the previous clustering step, under the assumption
that the model class is constant. To include some probability
that the model can change (e.g. new neural signal sources
appear, or existing signal sources disappear), we use a
weighted mixture of the previous result with a uniform prior.
The denominator in (4) is simply the sum of the numerator
over all M models, normalizing the probability.

3) Match clusters from the current recording interval to
clusters identified in the previous interval: To track neurons,
the currently identified clusters are matched to those in the
previous step(s), while also allowing for possible changes
in the number of clusters. We will show below how the
probability that each current cluster matches to either a
cluster from the previous step or to a “new neuron” arises
from our EM routine. The match with the highest probability
is taken for each current cluster. If a neuron from the previous
step is not matched, it is assumed to have disappeared from
the signal. In the infrequent case that multiple current clusters
match a common prior cluster, this prior cluster is taken to
have split into two now-distinguishable neurons.

C. Extending EM for Cluster Location Priors

For use in (3), we will construct a prior based on our
clustering results from the previous step, so that p

(
Θm |

Y 1:k−1,Mm

)
= p

(
Θm | Θ̂k−1

m ,Mm

)
. Most important to

the issue of cluster consistency and tracking is the location
of each cluster center, µg . We look for the gth mean µg
to be near to any of the preceding step’s cluster locations,
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without regard to which one, and use an equitable mixture
of Gaussians representing all of the previous step’s cluster
means. We give uniform priors to all Σg and πg , as they
are not as important for tracking, and they drop out of most
calculations as constants. Thus,

p
(
Θm | Θ̂k−1

m ,Mm

)
∝

Gm∏
g=1

Ĝk−1∑
j=1

1
Ĝk−1

fN
(
µg | µ̂k−1

j ,Σk−1
µ̂j

)
(6)

where fN is the d-dimensional multivariate normal density,
Ĝk−1 is the number of clusters identified in the previous step,
µ̂k−1
j is the estimated (MAP value) of the jth cluster mean

in the previous step, and Σk−1
µ̂j

is the covariance associated
with our estimation of the prior mean µ̂k−1

j . Note that,
if using data-dependent features such as PCA, we clearly
must ensure the prior statistics and current data are in the
same coordinate frame — we convert the prior step’s full-
dimension spike data to the current PCA space, then calculate
the prior clusters’ statistics in this space.

Note that the prior (6) bears distinct resemblence to the
mixture likelihood (1) and, when incorporated into (3), will
in fact share the same difficulty of maximization. We can
apply the same solution: add hidden variables and optimize
via EM. Let the new “membership” variables Z = {ζgj}
indicate whether the prior of previous cluster j should
influence the current cluster g, or, ideally,

ζgj =
{

1 if µg and µ̂k−1
j represent the same neuron

0 otherwise.

Using this approach, we can derive the complete-data prior
log density on the means:

log p
(
µ,Z | Θk−1

)
=

Gm∑
g=1

Ĝk−1∑
j=1

ζkj log
[

1
Ĝk−1

fN
(
µg | µ̂k−1

j ,Σk−1
µ̂j

)]
. (7)

Returning to (3) and expanding to include the hidden
variables (with Θk−1 = {µ̂k−1

j ,Σk−1
µ̂j
}Ĝk−1

j=1 ), we have

p
(
Θm,Z | Y 1:k, Z,Mm

)
∝ p
(
Y k, Z | Θm,Z,Mm

)
· p
(
Θm,Z | Y 1:k−1,Mm

)
. (8)

To maximize the log posterior, take the log of (8) and
substitute in (2) and (7),

log p
(
Θm,Z | Y 1:k, Z,Mm

)
=

N∑
n=1

Gm∑
g=1

zng log
[
πgfN

(
yn | µg,Σg

)]
+

Gm∑
g=1

Ĝk−1∑
j=1

ζkj log
[

1
Ĝk−1

fN
(
µg | µ̂k−1

j ,Σk−1
µ̂j

)]
+ C.

(9)

This complete-data posterior (9) is the object equation of the
EM iterations, which are modified from the ML (see [20])
iterations as follows.

1) E-Step: As before, we find spike-to-cluster mem-
berships ẑng given parameter estimates from the M-step.
Now, additionally calculate the expectation of the other
hidden data, current-to-prior cluster membership ζ̂gj =
E
[
ζgj | Y 1:k,Θm

]
ζ̂gj =

fN
(
µg | µ̂k−1

j ,Σk−1
µ̂j

)
∑Ĝk−1

l=1 fN
(
µg | µ̂k−1

l ,Σk−1
µ̂l

) . (10)

2) M-Step: As our prior term in (9) is independent of the
parameters πg and Σg , these estimates remain the same as the
ML version2. Maximizing (9) with respect to µg , however,
gives

µ̂g =

 N∑
n=1

ẑngΣ̂−1
g +

Ĝk−1∑
j=1

ζ̂gj

(
Σk−1
µ̂j

)−1

−1

·

 N∑
n=1

ẑngΣ̂−1
g yn +

Ĝk−1∑
j=1

ζ̂gj

(
Σk−1
µ̂j

)−1

µ̂k−1
j

 , (11)

in contrast to the ML estimation,

µ̂g =
∑N
n=1 ẑngyn∑N
n=1 ẑng

.

Note that (11) has the form of a weighted average of the
data points yn with (fuzzy) membership to cluster g and the
prior means µ̂k−1

j (fuzzily) affiliated to cluster g, with the
weights governed by the respective covariance matrices.

D. Tracking Clusters Across Time Steps

Ultimately our goal is to “track neurons” — that is, to
associate specific neurons with specific signals over time by
matching the current clusters with clusters of the preceding
step (or possibly identify them as newly appearing or disap-
pearing neurons). If we consider this a data association task
on the locations (i.e., means) of the clusters over consecutive
time steps, we can match each current cluster g to its best
prior cluster via j∗ = arg maxj ζ̂gj .

However, one biophysical possibility must be accounted
for. The quantity ζ̂gj encodes the probability that current
cluster g was generated from the same distribution (“neu-
ron”) as prior cluster j relative to all Ĝk−1 prior clusters, im-
plicitly assuming the same neurons are in approximately the
same locations. A high value ζ̂gj only indicates the closest
of the prior clusters (in the Mahalanobis sense), but cluster g
could be a newly appearing neuron. We add, then, a uniform
“background” distribution as a mixture component in our
prior (6). This effectively places a minimum threshold on
the Mahalanobis distance allowed to match g to j, otherwise
g is considered a new neuron. Note that disappearing neurons
will simply not have a match among current clusters and thus
marked by that evidence.

Additionally, a mathematical possibility exists for two
current clusters to be matched to the same j∗. A single-
match nearest neighbor approach could be implemented to

2Parsimonious estimations of Σg are also possible [26]; an equal-volume
assumption among clusters may be preferred.
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avoid this. However, the two current neurons’ spikes may
have been indistinguishable on the prior step, and thus we
choose to track this as a split of the prior “neuron.”

E. Generating Seed Clusters

The EM algorithm is highly susceptible to local optima
near its initial values, or seed clustering. To start with the
best possible seeds, we again leverage our preceding step’s
result. The basic approach to using this “prior” information
in generating the seed is to assign the current data points
to whichever prior cluster is closest, using the Mahalanobis
distance. Recall, however, that we need a seed clustering for
each of a range of model orders (numbers of clusters), say
Gm = 1, ..., Gmax.

The primary complications arise in cases Gm is different
from the number of prior clusters Ĝk−1. For the case Gm <
Ĝk−1, we choose prior cluster(s) to “eliminate” and assign
points to the remaining ones. The case Gm > Ĝk−1 is
trickier, as we must implement a “pre-clustering” routine
simply for the seeds. We have obtained good results from
using k-means with carefully chosen starting centroids. We
refer the reader to Wolf and Burdick [27] for more detail.

The plots in Figure 4 demonstrate the algorithm’s perfor-
mance in simultaneously positioning three electrodes for ac-
ceptable isolations. This data set was recorded from macaque
parietal cortex in an acute recording session with platinum-
iridium, 1.5 MΩ-impedence electrodes. For each electrode
channel, the isolation quality metric (IQM), electrode depth,
and algorithm mode are shown. Channel A represents a
nearly ideal case wherein a neuron is said to be isolated
throughout the recording. Channels B and C show more typ-
ical cases: the algorithm first seeks neuronal signals, builds
the SQM curve, isolates a neuron, and then itermittently
readjusts electrode position to re-isolate a neural signal.

Figure 5 highlights the algorithm’s clustering and tracking
performance, while also showing spike waveforms collected
from the robotic microdrive. This figure displays electrode
position over a 9 minute interval with associated samples
of recorded spike waveforms at different sampling steps.
This sequence emphasizes the importance of consistent spike
clustering to effective neuron tracking, contrasting the max-
imum likelihood (ML) clustering results below our results.
Importantly, all thirteen steps during this time period have
the “same” three clusters identified and tracked by our
proposed algorithm. Each step contains 20 seconds of data
with separating intervals of approximately 20 seconds.

V. EXPERIMENTAL RESULTS

The ML “baseline” algorithm used for this figure follows
the proposal of [28], using EM with ML parameters, seeded
with clusters from a standard hierarchical agglomerative
technique. Model order is selected according to the Bayesian
information criterion (BIC), an approximation to the Bayes
factor that includes a penalty for model complexity: BIC ≡
2lM

(
Θ̂ | Y,M

)
− pM logN for model M, maximized

mixture log-likelihood lM , and number of independent model
parameters pM. We have used this method extensively for the
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Fig. 4. Algorithm mode, isolation quality, and electrode depth over time on
three simultaneously-operated electrodes during an acute recording session.
Both Mode label and background color indicate the algorithm state: (A) [red]
Isolate, includes search states and gradient climbing; (B) [green] Neuron
Isolated; (C) [yellow] Re-isolate Neuron, includes gradient re-estimation.

past two years in hundreds of recording sessions, originally
chosen based on its high rate of success compared to other
spike sorting options. In both algorithms, we implemented a
“background” mixture component of uniform distribution to
capture outliers, which appear as black waveforms/points.
Overall, notice our algorithm consistently identifies three
clusters in approximately the same PCA position, whereas
the ML method gives statistically sound but somewhat incon-
gruous results, seemingly more volatile to noise variations.
Moreover, the consistency of the cluster colors in each step
signifies our algorithm’s tracking of the neurons through
the sequence of samples. No such attempt is made for the
baseline case and thus the colors are essentially random.

VI. CONCLUSION

We have presented control algorithm and a miniature robot
capable of automating the process of isolating and main-
taining high quality extracellular neural recordings for hours
at a time. The algorithm’s finite state machine architecture
enables it to cope with many unstructured challenges existent
in a realistic recording environment. The new sequential
clustering and classification algorithm presented in this paper
gives significantly more consistent classification results, and
enables us to track individual neurons over consecutive
recording intervals. We hope that these advances provide
further steps along the path to an implantable device with
many independently movable electrodes, each capable of
tracking individual neurons indefinitely.
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