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Abstract— In our earlier work, we showed that high stability
of passive walking can be achieved by the global stabilization
principle of fixed point. The principle has been established,
providing that the state just after heel-strike exists at the next
step. However, this condition may not always hold. The passive
walker with knees can execute the leg-swing motion with no
control, only by gravity effect. Unfortunately, while the walker
takes a step forward, the swing leg may strike its toe on the slope
at unsuitable point. Therefore, understanding of the mechanism
of leg-swing motion is very important for assuring the next
step. In this paper, we focus on the leg-swing motion of passive
walking, and demonstrate the mechanism of the flexion and
extension of knee joint of swing leg.

I. I

The bipedal walking is a central aspect of human behavior

in human motion. Human motion is controlled by the nervous

system and powered by muscle. While, passive walker can

walk down without actuators, sensors, and controls[1][2].

This motion is very attractive because its gait is natural.

Passive walking may give us an insight into understanding

human locomotion and developing biped robots.

Though the mechanical system of passive walker is simple,

it is a sort of hybrid system that combines the continuous

dynamics of leg-swing motion and the discrete event of leg-

exchange. Passive walking can exhibit a stable limit cycle.

When the state keeps on the stable limit cycle, the walking

system is stable. The generation and stability of limit cycle

can be analyzed from fixed point (cross-section point of limit

cycle).

McGeer [1][2] first demonstrated the local stability of

fixed point from Jacobian matrix obtained by linearizing the

discrete-time state equation (called “step to step equation”).

Since then, Goswami et al. [3], Coleman et al. [4], and Garcia

et al. [5] studied it in detail. They have demonstrated that

the fixed point of passive walking is stable. However, they

have not demonstrated the stability mechanism of fixed point

in passive walking. In addition, they have not considered

the physical mechanism behind the fixed point. They merely

searched the fixed point by numerical methods.

In our earlier work, we have demonstrated the generation

mechanism of a fixed point of passive walking, and have

proposed a generation method of a fixed point based on

its mechanism [6]. Moreover, we have derived the local

stabilization control method from a stability mechanism of

fixed point [6]. Though our local stabilization control method

is very simple, it can realize the highest local stability of

discrete-time system.
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Fig. 1. Leg-swing motion of passive walking

In addition, we have derived a global stabilization principle

from a stability mechanism of fixed point [7]. Based on the

principle, high stability of passive walking can be achieved

only by a simple improvement. A great result is that our

passive walker could walk for 4,010 steps on a treadmill [7].

The global stabilization principle has been established,

providing that the state just after heel-strike exists at the

next step. However, this condition may not always hold.

As shown in Fig. 1 (a), the passive walker with knees can

execute the leg-swing motion with no control, only by gravity

effect. Unfortunately, while the walker takes a step forward,

the swing leg may strike its toe on the slope at unsuitable

point as shown in Fig. 1 (b). Therefore, understanding of

the mechanism of leg-swing motion is very important for

assuring the next step.

Many researchers have studied the passive walking [1]-

[5][8]. Moreover, many researchers have proposed robots

based on passive walking [9]-[15]. However, they have not

considered the mechanism of leg-swing motion of passive

walking. Therefore, we focus on the flexion and extension

of knee joint of swing leg. In this paper, first, an equation of

angular acceleration of knee joint is derived from the simpli-

fied and linearized model of passive walking. Secondly, we

demonstrate the mechanism of the flexion and extension of

knee joint of swing leg. Finally, we demonstrate the influence

of leg and foot on its mechanism.

II. M   

A. Leg–swing motion

Figure 2 shows the model of kneed passive walker with

feet. The model consists of stance and swing legs. The knee

of the stance leg is locked straight. The motion is assumed

to be constrained to the saggital plane. For the purpose of

simplicity and clarity of analysis, as possible, we give a
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simplification of the model as follows:

M ≫ m, M ≫ m1, M ≫ m2 (1)

In addition, we assume that inertia moments of thigh and

shank are very small.

1) Motion equation of 3 links (with Knees): Stance leg is

assumed to be fixed on the ground with no slippage or take

off. The equation of 3 links can be written as

MK(θK)θ̈K + HK(θK , θ̇K) + GK(θK , γ) = 0 (2)

where

MK(θK) =


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θK(= [θ, φ1, φ2]T ) is the vector of joint angles. g is the

acceleration of gravity. km is km = m1/m2. Setting m =

m1 +m2, a = {m1(l2 + a1)+m2a2}/(m1 +m2), I = m2(l2 − b2 −

a)2 +m1(l2 + a1 − a)2, stance leg is equal to swing leg. d and
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Fig. 2. Model of kneed passive walker with feet

ζ are given as follows:

d =

√

(ρ sin δ)2 + (l − ρ cos δ)2 (3)

ζ = tan−1













ρ sin δ

l − ρ cos δ













(4)

2) Equation of knee-lock: Knee-lock occurs when the

swing leg becomes straight (φ1 = φ2 = φ). Assuming that

the swing knee locks instantaneously, angular momentum is

conserved through the knee-lock for the whole walker about

the stance foot contact point, and the swing leg about the

hip. Angular velocities of stance and swing legs just after

knee-lock are obtained from these conservations of angular

momentum as

θ̇+ = θ̇− (5)

φ̇+ =
{b2

1
+ (l2

1
+ b2l1)/km}φ̇

−
1
+ (b2

2
+ b2l1)φ̇−

2
/km

b2
1
+ (l1 + b2)2/km

(6)

The “+” superscript means “just after knee-lock,” and the

“−” superscript means “just before knee-lock”.

3) Motion equation of 2 links (Compass-type): After

knee-lock, the model can be regarded as compass-like biped

model. The equation of 2 links can be written as

MC(θC)θ̈C + HC(θC , θ̇C) + GC(θC , γ) = 0 (7)

where

MC(θC) =

[

ρ2 + d2 + 2ρd cos(θ − ζ) 0

−b{ρ cosφ + d cos(θ − φ − ζ)} b2 + I/m

]

HC(θC , θ̇C) =

[

−ρd sin(θ − ζ)θ̇2

bd sin(θ − φ − ζ)θ̇2

]

GC(θC , γ) =

[

−ρ sin γ − d sin(θ − ζ − γ)

b sin(φ + γ)

]

g

θC (=[θ, φ]T ) is the vector of joint angles after knee-lock.

4) Equation of inter-leg angle lock: We stabilize the fixed

point by maintaining constant inter-leg angle at heel-strike

[7]. So, the inter-leg angle is locked when it becomes the set

inter-leg angle α. Angular velocity of stance leg just after

inter-leg angle lock can be obtained as

θ̇+ = θ̇− (8)

The “+” superscript means “just after inter-leg angle lock,”

and the “−” superscript means “just before inter-leg angle

lock”. After inter-leg angle lock, the model can be regarded

as an inverted pendulum. The equation of 1 link can be

written as

{

ρ2 + d2 + 2ρd cos(θ − ζ)
}

θ̈ − ρd sin(θ − ζ)θ̇2

− {ρ sin γ + d sin(θ + γ − ζ)} g = 0 (9)
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(a) Nonlinear model

(b) Linear model

Fig. 3. Stick diagrams and ankle trajectories of swing leg

B. Equation of leg–exchange

For an inelastic no-sliding collision with the ground,

angular momentum is conserved through the collision [16].

Relational expression can be obtained from these conserva-

tions of angular momentum as

Q+θ̇
+

K = Q−θ̇
−

C (10)

where

Q+ =




















ρ2 + d2 + 2ρd cosα/2

{b1 + (l1 + b2)/km}{ρ cos(α/2 + ζ) + d cos(α + ζ)}

b2{ρ cos(α/2 + ζ) + d cos(α + ζ)}

0 0

−b2
1
− l1(l1 + b2)/km −b2(l1 + b2)/km

−b2l1 −b2
2





















Q− =




















ρ2 + d2 cosα + 2ρd cosα/2 0

−(1 + 1/km)b {ρ cos (α/2 + ζ) + d′ cos ζ′} + I/m1 0

b2 {ρ cos (α/2 + ζ) + d′′ cos ζ′′} 0





















The “+” superscript means “just after heel-strike,” and the

“−” superscript means “just before heel-strike”. d′ and ζ′ are

given as follows:

d′ =
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d′′ and ζ′′ are given as follows:
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From Eq. (10), the vector of angular velocity after heel-strike

can be given as

θ̇
+

K = (Q+)−1Q−θ̇
−

C (15)

III. K J   

A. Linear model

The swing leg can swing through the stance leg without

striking its toe on the slope, and then the knee joint of swing

leg becomes straight. These motions are chiefly generated

by the flexion and extension of knee joint of swing leg.

Therefore, we focus on the knee joint motion of swing leg.

Linearized equation of leg-swing motion (1) can be ob-

tained as follows:
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Figures 3 (a) and (b) show the stick diagrams of nonlinear

and linear models in fixed point respectively. The stick

diagram of linear model has the same features as the one of

nonlinear model. In addition, the ankle trajectory of swing

leg has the same features as the one from the experiment

result as shown in Fig. 1. Therefore, the simplified and

linearized model is sufficient to analyze the knee joint motion

of swing leg.

B. Angular acceleration of knee joint

From Eq. (16), we can obtain the angular acceleration of

knee joint of swing leg as follows:

ψ̈ = φ̈1 − φ̈2

= p1(φ1 + γ)g + p2(φ2 + γ)g + p3(θ + γ)g + p4g (17)

where

p1 = −
b1(l1 + b2) + l1(l1 + b2)/km

b2
1
b2

p2 =
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1
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b2
1
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p3 =
d

ρ + d

l1 − b1 + b2
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p4 = −
1

ρ + d
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(dζ − ργ)
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Fig. 4. Initial angular acceleration of knee joint of swing leg

In case of ψ̈ < 0, the flexion moment acts on the knee joint

of swing leg. In case of ψ̈ > 0, the extension moment acts

on the knee joint. The first term of the right-hand side in Eq.

(17) depends on the swing leg’s thigh posture (angle). The

second term depends on the swing leg’ shank posture. These

equations are equivalent to the one of double pendulum.

The third term of the right-hand side in Eq. (17) depends

on the stance leg posture (angle). By the simplification of Eq.

(1), the motion of stance leg is equivalent to that of inverted

pendulum. The fourth term depends on the circular arc foot.

This term is a constant number if the model parameters are

fixed.

IV. M         

 

A. Initial phase

Initial state is set to the state just after heel-strike. We

assume that the initial state can be given as follows:

θ+ = −α/2 + ζ, φ+1 = φ
+
2 = α/2 + ζ, φ̇

+
1 ≤ φ̇

+
2 (18)

From Eq. (18), initial angle and angular velocity of knee

joint of swing leg can be obtained as follows:

ψ0 = π + φ+1 − φ
+
2 = π (19)

ψ̇0 = φ̇+1 − φ̇
+
2 ≤ 0 (20)

Initial angular acceleration of knee joint can be derived from

Eqs. (17) and (18) as follows:
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




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










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If dζ − ργ > 0, ψ̈0 < 0 holds. In the case when the foot

shape is point (δ=0, ρ=0, d=l, ζ=0), ψ̈0 < 0 holds always.
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Fig. 5. Angular acceleration of knee joint of swing leg

If ψ̈0 < 0 and Eq. (20) holds, the knee of swing leg always

inflects at initial phase.

Figure 4 shows the initial angular acceleration of knee

joint as the parameters of circular arc foot are varied. The

horizontal axis denotes the center angle of circular arc of

foot δ. The vertical axis denotes the curvature radius of foot

ρ/l (dimensionless). d, ζ, d′, and ζ′ are obtained from Eqs.

(3), (4), (11), and (12) respectively. d′′ and ζ′′ are obtained

from Eqs. (13) and (14) respectively. Slope angle and inter-

leg angle are set to γ=0.02 and α=0.6[rad] respectively. In

the case when the foot shape is point, ψ̈0 can be obtained

as ψ̈0 =−58.8[rad/s2]. If δ is bigger than 18[deg], the flexion

of knee joint at initial phase is bigger than the one of point

foot.

B. Leg-swing phase

One swing cycle is defined as the period from the state just

after heel-strike to the state just before the next heel-strike.

Figure 5 shows the angular acceleration of knee joint of

swing leg ψ̈ in one swing cycle of fixed point. The horizontal

axis denotes the angle of stance leg θ. The vertical axis

denotes ψ̈. In addition, all terms of Eq. (17) are written in Fig.

5. Continuous line denotes ψ̈. Short dashed line and chain

line denote the contributions of thigh and shank of swing

leg respectively. Dot-line denotes the contribution of stance

leg. Chain double-dashed line denotes the contribution of the

circular arc foot.

As passive walker steps forward (θ changes from minus to

plus), mechanical actions of stance leg and the thigh of swing

leg change from flexion to extension. These are desirable

mechanical action for the leg-swing motion. Mechanical

action of shank of swing leg is almost extension. While,

mechanical action of the circular arc foot is always flexion.

All these mechanical actions generate the knee motion of

swing leg in passive walking.
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Fig. 6. Effect of mass ratio km on the coefficient ratio p1/p2

V. E  

A. Mass ratio

The mass ratio of thigh and shank of swing leg km(=

m1/m2) influences p1 and p2 in Eq. (17). Figure 6 shows

the relationship between km and the coefficient ratio p1/p2.

Regardless of the model parameters, if km approaches 0,

p1/p2 converges as follows:

lim
km→0

p1

p2

= −1 (22)

In addition, from the motion of equation (16), we can obtain

the following equation.

φ1 = φ2 (23)

Equation (23) denotes that the knee of swing leg is al-

ways straight. This means that the model always becomes

compass-like passive walking.

Conversely, if km approaches infinity, p1/p2 converges as

follows:

lim
km→∞

p1

p2

= −
l1 + b2

b1

< −1 (24)

Extremal value of p1/p2 depends only on the length of thigh

l1, center of mass of thigh and shank b1, b2. In section IV-B,

it is desirable that the mechanical action of thigh of swing

leg is bigger than the one of shank. Therefore, it is desirable

that the mass of thigh m1 is bigger than the mass of shank

m2. It is more desirable that p1/p2 approaches the value of

Eq. (24).

B. Center of mass

Effect of center of mass of thigh and shank is analyzed

in the case of km fixed as km = 7. Figure 7 shows the

relationship between the center of mass and the coefficient

ratio p1/p2. The horizontal axis denotes the length ratio

b1/l1. The vertical axis denotes the length ratio b2/l2. The

contour line denotes p1/p2.

It is desirable that mechanical action of thigh of swing leg

is bigger than the one of shank. Therefore, it is desirable that

the center of mass of thigh and shank are set to the center

position and the lower position respectively.
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Fig. 7. Effect of center of gravity on the coefficient ratio p1/p2

VI. E  

A. Mechanical action of stance leg

From Eq. (17), the terms determined by the posture of

thigh and shank of swing leg (the first and second terms

of the right-hand side) do not depend on the parameters of

circular arc foot. While, the term determined by the posture

of stance leg (the third term) depends on them. In the case

when the foot shape is point, coefficient p3 in Eq. (17) can

be derived as follows:

p3p =
l1 − b1 + b2

b1b2

(25)

The “p” subscript means “point foot”. The ratio of coefficient

p3 of point foot and circular arc foot can be obtained as

follows:

p3

p3p

=
d

ρ + d
(26)

From Eq. (26), 0 < p3/p3p < 1 holds. This indicates that the

circular arc foot decreases the mechanical actions of stance

leg.

B. Action of flexion

As mentioned in section IV-B, the circular arc foot exerts

a flexion action on the knee joint of the swing leg. In this

section, the relationship between the flexion actions and the

parameters of circular arc foot is demonstrated. Figure 8

shows the coefficient q in Eq. (17) when the parameters

of circular arc foot are varied. The horizontal axis denotes

the center angle of circular arc of foot δ. The vertical axis

denotes the curvature radius of foot ρ/l (dimensionless).

The contour line denotes the coefficient q. If δ and ρ/l are

increased, the flexion action of foot is enhanced. In addition,

ρ/l has more influence than δ.

As shown in Fig. 3 (a), the swing leg swings through the

stance leg while the knee of swing leg is inflecting. During
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Fig. 8. Flexion effect by circular arc foot

this, passive walker has a high risk for striking its toe on

the slope. In order to reduce the collision risk, the flexion

action of knee of swing leg must be enhanced. Therefore, it is

desired to take advantage of the flexion action of circular arc

foot. At the same time, we must consider the disadvantage

of the circular arc foot becoming an obstacle of swinging

through the stance leg.

VII. C

In this paper, we derived the equation of angular acceler-

ation of knee joint from the simplified and linearized model.

From this equation, we demonstrated the mechanism of the

flexion and extension of knee joint of swing leg, which is

generated by the mechanical actions of thigh and shank of

swing leg, stance leg, and circular arc foot.

From a viewpoint of the mechanism above, it is desired

that the mass of thigh is bigger than the mass of shank. In

addition, it is desirable that the center of mass of thigh and

shank are set to the center position and the lower position

respectively.

The circular arc foot exerts a flexion action on the knee

joint of the swing leg. We demonstrated the relationship

between the flexion action and the parameters of circular arc

foot. We believe that the flexion action of circular arc foot

is important for making an improvement on the leg-swing

motion of passive walking.

In the future, we will develop a passive walking robot

based on the mechanism of the flexion and extension of

knee joint of swing leg. We aim at realizing a robust passive

walking robot, which can walk stably on irregular terrain.
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