
 
 

 

  

Abstract—In this work, we explore the mechanical behavior of 
gecko hairs by means of macromodels. The macromodel has 
four spatular hairs operating by magnetic forces instead of van 
der Waals forces. The purpose of the models is to simulate the 
mechanics of the actual gecko seta. For additional hair 
compliance, a two degree of freedom double bent spatular hair 
geometry is chosen. A mathematical model for the 
displacement and forces (slide, peel, and pull-off) for the macro 
scale gecko hairs is presented. Experiments showed good 
agreement with the model and a directional adhesion effect 
which could be useful for locomotion.  

I. INTRODUCTION 
ECKOS have the ability to climb and run on almost any 
surface, whether smooth or rough, wet or dry, with 

very high maneuverability and efficiency. The foot sticking 
and release mechanisms are the critical components to 
understand and replicate the gecko’s dry adhesive properties 
[2]. Because they have compliant micro- and nano-scale 
high aspect ratio beta-keratin structures at their feet, geckos 
can adhere to any surface with a shear controlled contact 
area [3]. This adhesion is due to intermolecular forces such 
as van der Waals force. Since geckos are the largest animals 
to adhere to almost any surface, gecko mechanics is useful 
for developing future wall climbing robots, surgical robots 
and other general dry adhesion applications.  

An important feature of gecko mechanics is the “frictional 
adhesion” effect. In frictional adhesion, the maximum 
adhesive force is directly proportional to the applied 
tangential force and the angle of attachment when pulling 
along the adhesive direction [7, 8].  

Currently synthetic hairs are fabricated to mimic the 
adhesion of actual gecko setae. Since fabricating synthetic 
hairs is difficult, constructing macromodels of gecko hairs is 
a means to guide the design of the final nanoscale adhesive. 
These models are low cost and easy to build. The gecko 
apparatus from [5] models the entire gecko foot. This 
physical model represents a highly compliant five fingered 
nylon hair pad which comprises eight magnetic spatulae 
made of rare earth neodymium magnets [6]. Each finger 
represents a setal stalk and each magnet corresponds to a 
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spatula.  
In this paper, we use a macromodel of a single setal stalk 

with 4 magnetic spatulae. In section II, Force limits for 
peeling, lifting and sliding are derived and compared with 
experiments. To increase compliance, we chose a double-
bent spatular hair geometry. Displacement limits for sliding 
and peeling are modeled and measured. We assumed a 
flexural pivot for the spatular displacement. The 
experimental results and their comparison to the 
mathematical model are presented in section III. Section IV 
concludes with a comparison between the macromodel and a 
frictional adhesion model.  

II. MATHEMATICAL MODEL 

A. Force limit for rigid spatular hair array 
We first develop a simple mechanical model to predict the 

force limit for a single seta. As shown in Fig. 1a, we model a 
setal stalk containing hundreds of spatular hairs, where the 
hairs are assumed rigid. This model assumes that all spatulae 
are in contact with the surface with a uniform adhesive 
pressure of 0P expressed in N/m. We assume a Coulomb 
friction model where nt FF μ=  and μ  is the coefficient of 
friction, Ft is the tangential force and Fn is the normal force. 
A tension T acts at angle φ  pulling the spatular hairs from 
the surface. The three possible conditions are sliding, 
peeling of the seta and lifting (pull-off). From static 
equilibrium, we can solve for the forces for sliding to the 
right: 

( )φμφ sincos 0 ⋅−⋅⋅>⋅ TlPT ,             (1) 
and lifting: 

lPT ⋅>⋅ 0sinφ .                   (2) 
For peeling of the seta, the moment is taken with respect to 
the most distal spatula (see Fig. 1a). 

( ) ∫ ⋅⋅+⋅⋅>⋅+⋅ l dxxPhTlsT 0 0cossin φφ .          (3) 

Solving for T from (3), the equation for peeling of the seta is 

( )[ ]φφ cossin
1

2

2
0

⋅−⋅+
⋅

>
hls

lPT .          (4)      

 Because constructing a model containing a patch of 
hundreds of spatulae would be impractical, we model a setal 
stalk consisting of four evenly spaced rigid spatular hairs. 
Each magnetic tip is attached to the surface with adhesive 
force F0 (see Fig. 1b for setal stalk and Fig. 1d for the 
spatular close-up). From static equilibrium, we can solve for 
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forces for sliding right, sliding left, lifting and peeling of the 
seta. The equation for sliding to the right (+)/left (-) is  

⎟⎟
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⎛
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⎤
⎢⎣
⎡ +⋅⋅>⋅± φμφ sin

4
4cos 0 TmgFT .        (5) 

where F0 is the adhesive force of each magnet in contact 
with the surface and mg/4 is the weight of a single spatula. 
For peeling of the seta, the moment is taken with respect to 
the most distal spatula (see Fig. 1b). The equation for 
peeling of the seta is 
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Solving for T from (6), with n = 4, the minimum T for 
peeling of the seta is 
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To disengage the magnet by lifting normal to the surface: 

⎟
⎠
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4sin 0

mgFT φ .              (8) 

B. Force limit for compliant spatular hair array 
 Because the previous model does not take into account 

the height change of the setal stalk with load, we next 
develop a simple mechanical model to predict the force limit 
for a single seta comprised of compliant hairs. We assume 
that each spatular hair is a linear spring.   
 Using Hooke’s Law, we model a setal stalk consisting of 
four evenly spaced compliant spatular hairs with their 
magnetic tips attached to the surface (see Fig. 1c). From 
static equilibrium, we solve for the forces of the compliant 
spatulae neglecting the effects of peeling, lifting and sliding. 
The equation for the force in the x-direction is: 

xkTF xx Δ⋅=⋅= 4cosφ              (9) 
where xΔ is the displacement and kx is the stiffness in the x-
direction. 
The equation for the force in the y-direction is: 
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where yΔ and θΔ are the y-direction and the angular 
displacements, respectively and ky is the stiffness in the y-
direction. Since the displacements do not affect sliding and 
lifting, the equation for sliding to the right is identical to (5) 
and the equation for lifting is identical to (8).  
For peeling of the seta, the moment is taken at the edge of 
the most distal spatula (see Fig. 1c for setal stalk and Fig. 1d 
for the spatular close-up):  
 

( )[ ]

( )[ ] ( ) 0
3

1)(sin

cos
4

1
0 =

−⋅+
−⋅Δ⋅+++−

⋅Δ⋅+++Δ>

∑
=i

iyx

y

ialFFalsh

FalsxM

θ

θ
 

                      (11) 
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and a is the spatular length. For a freely pivoting spatula, we 
choose a = 0.  
With n = 4, the equation for setal peeling due to peeling at 
the fixed spatula is 
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After solving for Δy in (10), this Δy is substituted into (13). 
Simplifying (13), the equation for peeling at the fixed 
spatula is 
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Solving for T from (14), the equation for setal peeling at the 
fixed spatula is 
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C. Displacement limit of compliant spatular hairs  
 In the previous section, we determined the force required 
to peel a setal stalk. We now determine maximum allowable 
displacement before the peeling resistance of the seta is 
exceeded. For sliding, we assume a two degree of freedom 
model with a single bend for the spatular hair (Fig. 2). The 
spatular hair is modeled as a fourbar with two torsional 
springs at the base of the two segments [4]. The flexural 
pivot approach is a good approximation for smaller 
displacements [4].  
 As shown in Fig. 1c, the most proximal spatular hair is 
the first one to slide or peel, and its extension limit will 
determine the maximum setal displacement.  
 Assuming equal load sharing on a smooth surface, the 
moment balance equation to solve for the pseudo-rigid body 
angle 1Θ  for the top most segment of the compliant spatula 
is:   

( ) ( ) 0sin4 111111 =−Θ−Θ⋅−Θ−Θ⋅⋅ φoo TLK     (16) 
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where K1 is the torsional spring constant and L1 is the length 
for the top most segment. 
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Fig. 1.  Setal stalk with (a) spatular array at one end (hundreds of hairs) 
[from http://www.lclark.edu/~autumn/dept/Images.html], (b) with four rigid 
spatular hairs and (c) with four compliant spatular hairs. (d) Close-up of the  
free and fixed spatulae. 
 

The moment balance equation to solve for the pseudo-
rigid body angle 2Θ  for the bottom most segment of the 
compliant spatula is:   

( ) ( )[ ]
( ) 0sin

4

222

11222

=−Θ−Θ⋅
−Θ−Θ−Θ−Θ⋅⋅

φo

oo

TL
K

        (17)  

where K2 is the torsional spring constant and L2 is length for 
the bottom most segment. If the spatular hairs slide to the 
right, T satisfies (5). If setal peeling with single bent spatula 
hairs occurs, T satisfies (15).  
The torsional spring constant is: 

j
j L

EwtK
⋅

=
4

3
                 (18) 

where E is the elastic modulus, w is the width of the spatular 
leg and t is the spatular leg thickness [4]. 
The equations for normal position and front spatular hair 
displacement are given by (19) and (20) respectively:   

2211 sinsin Θ⋅+Θ⋅= LLb ,            (19) 
 [ ] [ ]oo LLd 2221110 sinsinsinsin Θ−Θ⋅+Θ−Θ⋅=  . (20) 
Since a long moment arm is applied as shown in Fig. 1c, the 
displacement by using similar triangles is 
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Fig. 2.  Displacement diagram using the flexural pivot model for the 
proximal spatular hair. 
 

Since the flexural pivot approach is a better 
approximation for smaller displacements, we need to 
account for larger displacements associated with the setal 
peeling of double bent spatular hairs. To account for the 
larger displacement, we assumed a linear spring model 
based on Hooke’s law.  To obtain the displacement, we 
solve for θΔ in (10) and substitute into (21). This 
displacement is complementary to the compliant setal peel 
force from (15). 

III. EXPERIMENTAL RESULTS AND COMPARISON TO  MODEL 

A. Overview of the Macromodel 
Our gecko fiber macromodel comprises an array of four 

double bent spatular hairs. The bends occur at 1/4 and 2/3 
the length of the spatular hair. The bend locations for the 
cases of freely pivoting and fixed spatulae are shown in Fig. 
3a and Fig. 3b, respectively. The purpose of this spatular 
hair geometry is to have additional compliance in the 
vertical direction (or 90o compliance) since the straight 
cantilever has a very high stiffness in the normal (90o) 
direction.  

Since the bent arrays have more compliance compared to 
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the straight cantilever array, bent cantilever spatular hairs 
extend before they pull off. The double bent shape provides 
an additional degree of freedom to further increase the 
compliance in the normal direction. To improve detachment 
of spatular hairs at angles greater than 90o, a long moment 
arm has been added to the body of the model. To understand 
the effects of the peeling moment at the spatula, spatular 
hairs containing freely pivoting and fixed spatulae were 
made.  

 

l/4 l/4

5l/12 5l/12

l/3l/3

free pivot

(a) (b)

Free Spatular HairFixed Spatular Hair

l/4 l/4

5l/12 5l/12

l/3l/3

free pivot

(a) (b)

Free Spatular HairFixed Spatular Hair

 
 
Fig. 3.  Drawing of the double bent spatular hair model with 
(a) fixed spatula and (b) free spatula.  
 

We also tested straight, bent and curved spatular hairs as 
shown in Fig. 4a-c. The actual experimental apparatus for 
the double bent spatular hair geometry is shown in Fig. 5a, 
and a close-up of the spatula is shown in Fig. 5b. The 
estimated stiffnesses of each spatular hair are listed in Table 
I. 

 

(a) (b) (c)(a) (b) (c)  
 
Fig. 4.  Cantilever geometry for a single (a) straight, (b) bent and (c) curved 
spatular hair. 
 

For the fabrication of the setal hair body, a 30 cm long 
foam core board (0.3 cm thickness) was bonded to a 30 cm 
long acrylic sheet (0.1 cm thickness) to provide a sturdy yet 
lightweight structure. The spatular hair legs are four 22 cm x 
7 cm x 0.8 cm polycarbonate sheets which were bonded to 
the setal hair body. 

Each of the four spatulae contained four plastic bumpers, a 
magnet (pull-off strength of 1.5 N per magnet) and a 4 cm 
long cord. One end of the cord was inserted and glued to the 
plastic bumpers. Then, the other end of each cord was glued 
and taped to the end of the legs. To obtain the fixed spatulae, 
the bumpers were glued to the plastic leg. The base of the 
setal stalk, labeled s in Fig. 5(a), is a 32 cm acrylic sheet 
glued to the body. 

B. Force Limits and Comparison to Model 
To measure the force, a mechanical postal scale with a 

relative error of 5% was used. Next, a string was tied to the 
scale. The magnets adhere to a 100 cm long steel bar. To 
control the angle, the apparatus used an elevating pulley. 
See Fig. 6 for a drawing of the apparatus.  
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Fig. 5.  (a) Actual photograph of the gecko hair macromodel with freely 
pivoting spatulae. (b) Actual close-up of the fixed and free spatulae. 

 
TABLE I 

STIFFNESSES OF A SINGLE FIBER ESTIMATED FROM WHOLE 
ARRAY 

Spatular 
Geometry 

kx 
(N/cm) 

ky 
(N/cm) 

Critical 
Angle 

(degrees) 
Straight > 13.40 > 3.00 35 
Curved 9.90 2.25 35 

Bent 6.60 1.50 35 
Double 

Bent(Free) 
3.30 0.75 35 

Double 
Bent(fixed) 

3.30 0.75 35 

 
The force space plot for the double bent spatular hair 

model is shown in Fig. 7. Using (5), (7), (8), and (15), the 
intersections of each line indicate the cut-off angles for 
sliding, rigid peeling, lifting, compliant peeling at the free 
pivoting spatula and compliant peeling at the fixed spatula. 
These cutoff angles are listed in Table II. 

From (7), (8), and (15), the double bent spatular hair 
model has a greater tendency to peel due to the long moment 
arm of the apparatus since the force required for lifting is 
significantly larger than the force required for peeling (either 
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with free or fixed spatulae). From Fig. 7, the pattern of the 
experimental points is more consistent with a peeling 
behavior than a lifting behavior. For angles between 35o and 
90o, the spatular hairs peel, with the force necessary for 
peeling reducing at higher angles. Between 90o and 180o, the 
spatular hairs also peel, except the force required for peeling 
increases at larger angles.  

l

s
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d0

b

pulley
string
scale

moment arm

l

s

T
φ

h0

hθΔ

l/3

d0

b

pulley
string
scale

moment arm  
Fig. 6.  Apparatus for force measurement. Note: The apparatus for 
displacement is almost identical except no scale is involved. 
 
For the experimental points which correspond to peeling, 

we cannot conclude whether the double bent spatular hair 
model undergoes a rigid peel [from (7)] or a compliant peel 
[from (15)]. This is the case because the experimental data 
for the double bent spatular hair array are identical with the 
straight and single bent spatular hair arrays. This implies 
that the compliance is not high enough to significantly 
change the geometry. 

TABLE  II 
CUT-OFF ANGLES FOR PULL-OFF AND SLIDING 
Condition Angle 

Rigid Peel (h = 16 cm) °<<° 18035 φ  
Peel at the Fixed Spatula °<<° 18041 φ  
Peel at the Free Spatula °<<° 18038 φ  

Slide to Right °<<° 350 φ  

 Comparing (15) when a = 0 and a = 3 cm, the force for 
setal peeling for fixed spatulae is almost identical to the 
force for setal peeling for the freely pivoting spatulae. The 
experimental force measurements for the freely pivoting 
spatular hair model are slightly larger than the fixed spatular 
hair model because the freely pivoting spatulae aligns better 
with the surface.  

At angles below 35o, both the mathematical model and the 
experimental data show sliding to the right, with the 
tangential force necessary for slipping reducing at higher 
angles. Since the coefficient of friction is measured as μ = 
0.6, the slide force at 0o is 3.5 N which follows the Coulomb 
friction model.  

The predicted cutoff angle for peeling and sliding of 
double bent spatulae is at 35o, as listed on Table II. The 
experimental critical angle for this model is also 35o. This 
angle is the same for the straight and single bent spatulae 
model. From the experimental data in [3], the critical angle 

is between 25o and 37o. The critical angle from our 
experimental data is consistent with the mathematical model 
as well as the experimental data from [3]. 
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Fig. 7.  Force space plot of tangential and normal forces. Experimental 
data: (Circle): peeling with free spatulae (Diamond): sliding of free 
spatulae, (Triangle): peeling of fixed spatulae,  (Square): sliding of fixed 
spatulae. 
Models: (---) compliant peel with fixed spatulae, (-) compliant peel with 
free spatulae, (…) rigid peel. 
 

C. Displacement Limits and Comparison to Model 
  The experimental apparatus for measuring 

displacement limits is almost identical to the force setup. A 
tape marker was placed on the string to be the reference 
point for the measurement. A 60 cm ruler was placed on top 
of the string to record the initial position. The final position 
was recorded once the model started to slide or peel. To 
obtain the displacement, the difference between the final and 
initial measurements was taken.  

For angles less than 35o, both the single bent and double 
bent spatular hairs slide, with the displacement increasing at 
higher angles. For angles between 35o and 180o, both the 
single and double bent spatular hairs peel, with the 
displacement reducing at higher angles. As shown in Fig. 8, 
the experimental data for sliding and single bent setal 
peeling is consistent with (16), (17), (20), and (21).  
Between 80o and 180o, the single bent spatular hairs peel, 

but the displacements at those angles are higher compared to 
the experimental values. This result is consistent because the 
model spatular hair extends due to its compliance. The 
torsional spring equations assume that a spatular hair 
completely straightens to its full length under maximum 
displacement. Between 50o and 180o, the total displacement 
of the double bent spatular hairs is larger than the total 
displacement of the single bent spatula hair. This is 
consistent with linear spring model based on Hooke’s law 
from (10), (15) and (21). 
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Fig. 8.  Tangential and normal displacement limits. Experimental data: 
(Circle) single bent hair peeling, (Square) double bent hair peeling, 
(Diamond) single and double bent hair sliding. Models: (-) peeling of single 
bent spatular hair, (…) peeling of double bent spatular hair,  (---) sliding. 
 

 Furthermore, the displacement of the most proximal 
spatular hair is almost identical for a freely pivoting spatula 
and a fixed spatula. This experimental data is consistent with 
the mathematical model which predicts that the force 
required for peeling with free pivoting and rigid spatulae is 
almost identical. 

IV.   CONCLUSION 
 By means of macromodels, we have approximated the 
mechanical behavior of gecko seta with spatular hairs. We 
can compare the behavior of this macromodel to the 
frictional adhesion behavior described in [7, 8], as shown in 
Fig. 9. In frictional adhesion, the normal pull-off force is 
reduced to zero when the tangential force is zero or 
negative. In our model, a non-zero peel force is required at 
zero normal force, but one can observe the peak peel force 
when a tangential force is applied. We expect that more 
complicated spatular geometric features will be required to 
demonstrate frictional adhesion.  

As shown in Fig. 9, the behavior of a gecko seta with 
straight, single bent and double bent spatula hairs exhibit a 
frictional adhesion effect. Our experimental data from Fig. 
8, on the other hand, demonstrate the additional compliance 
the double bent spatular hairs provide. From our results, the 
gecko seta with double bent hairs is more compliant than the 
other hair geometries. This extra compliance will 
significantly increase the work of adhesion, and make for 
stronger bonds, yet it does not significantly affect the peel 
angle. Hence, we conclude that more compliant spatular 
fibers are worth including in future nanofibrillar adhesives. 
Our results demonstrate the importance of fiber array 
geometry and stiffness in modeling fibrillar adhesion. 
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Fig. 9.  Comparison of force space data and models with frictional 
adhesion.  Experimental data: (Circle) peeling for the magnetic spatulae, 
(Diamond): sliding for the magnetic spatulae. Models:  (---) peeling with 
frictional adhesion [7], (-) peeling for the magnetic spatulae. (-..) sliding 
with frictional adhesion. 
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