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Abstract— In this paper we consider the problem of sensori-
motor coordination in a Bayesian framework. To this end we
introduce a novel kind of Dynamic Bayesian Network serving
as the core tool to integrate active vision and task-constrained
motor behaviors. The proposed system is put into work by
addressing the challenging task of realistic drawing performed
by a robotic agent, namely a 7-DOF anthropomorphic manip-
ulator. Simulation results are compared to those obtained by
eye-tracked human subjects involved in drawing experiments.

I. INTRODUCTION

Any agent, either biological or artificial, situated in

the world requires the combined effort of both perceptual

(sensory) and action–related (motor) resources in order to

survive. However, which are the criteria that guide such

critical liaison is still an open issue.

It is evident that both motor and perceptual behaviors

of an agent are constrained; in humans, for instance, eye

movements are task dependent, as they are targeted to extract

the relevant information for task resolution [1]. On the other

hand, recent approaches to sensorimotor coordination in

primates claim that motor preparation has a direct influence

on subsequent eye movements [2], sometimes turning coor-

dination into competition. Complementary, eye movements

come into play in generating motor plans, as suggested by

the existence of look ahead fixations in many natural tasks

[3]. To investigate the sensorimotor coordination issue we

consider the task of realistic drawing. Realistic drawing is

not considered as a “common” visuomanual activity such

as driving, washing one’s hands or making a cup of tea

[3], neither a “common” visual task such as the recognition

of a face; indeed drawing requires a high precision of

hand movements and a high degree of voluntary attentional

control in directing fixations both on the scene and on the

drawing hand.

A second, but related issue, is that any agent situated

within the world has to contend with uncertainty about

the world and with noise plaguing its sensory inputs and

motor commands; in this perspective, the Bayesian approach

provides a powerful framework [4].

To face both issues, here we present a novel kind of

Dynamic Bayesian Network (DBN) [5], the Input–Output
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Coupled Hidden Markov Model (IOCHMM) which provides

a general high level mechanism for the dynamic integration

of eye and hand motor plans, and enables the use of

information coming from multiple sensory modalities. The

model also accounts for the task–dependence of eye and

hand plans, by learning a sensorimotor mapping that is

suitable for the given task, namely realistic drawing.

Further, we show how the IOCHMM can be suitably

employed as the core of a system that allows a robotic arm

to produce human–like eye–hand movements in solving a

realistic drawing task, where the robot is allowed to look at

an image while copying it. The proposed system is outlined

at a glance in Fig. 1.

Clearly, drawing, as well as many anthropic tasks, involves

force and position constraints for the robotic arm, for what

concerns inverse kinematics and trajectory planning. Here,

the inverse kinematics is computed using a closed–loop

algorithm with redundancy resolution. It is worth noting that,

for a human draughtsman, when a picture to be reproduced

is observed, the direction of gaze is crucial for trajectory

planning, and the postures assumed while executing such

task are strictly related to optimizations shaped by evo-

lutionary history. When a 7 degrees of freedom (DOF)

anthropomorphic robot manipulator performs a drawing task

or a handwriting task, the 4 redundant DOF’s can be suitably

used to perform secondary tasks [7]. In this work the

redundancy is handled considering a minimization of joint

velocities (use of the Moore–Penrose pseudo–inverse of the

Jacobian matrix), and additional tasks can be considered [8].

Simulation results are provided: the outputs of the pro-

posed model, namely the scanpath as well as the task–space

and joint–space motions of a 7 DOF robot, in the drawing

task, are compared to human eye movement recordings and

hand movement analysis. Experiments have been performed

with 25 human subjects. Preliminary results give evidence

of reasonable performance in comparison with human vi-

suomotor behavior.

II. JOINT EYE–HAND MOVEMENT PLANNING

The selection of the coordinate sequence of eye and

hand actions, namely saccades and hand trajectories, calls

for reliable inference (via IOCHMM) and decision of such

actions on the basis of visual and proprioceptive inputs.

A. Visual and proprioceptive processing

Consider again the system in Fig. 1. The visual input

is represented by the image of the observed world scene

while the reafferent proprioceptive input is represented by

the velocity of the end effector in the drawing plane.
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Fig. 1. A system for sensorimotor coordination of a robot involved in a realistic drawing task (see text for explanation)

Clearly the proprioceptive input can be hardly measured in

experiments with human subjects, but cortical recordings in

behaving non–human primates suggest that populations of

neurons can encode 2D hand velocity [20].

The proprioceptive input is fed into the the Hand State

Estimation module which by taking into account internal

feedback computes an estimate of the hand direction uh

(radians), uh ∈
{

0, π
4
, . . . , 7π

4

}

while here we are not

interested in speed.

The visual input, which more precisely is represented by

the scene image together with the point fixated within that

image (the fixation e provided as visual feedback, cfr. Fig. 1

follows two routes. In the Preattentive Vision module, early

visual features (color, intensity, orientation) are extracted

through linear filtering across different scales; then, center–

surround differences are computed for each feature to yield

the feature maps, that are combined in the saliency map

S (see [9] for details). From such map a list σ̄ of the n

(n ≃ 6, 7) most salient points in S; such points represent

bottom-up, plausible FOA candidates that can bias high level

gaze planning.

In the Vision for Action module, action–related information

[10] is computed, within the image region surrounding

the fixated point e (such region represents the the Focus

of Attention, FOA) to provide subsequent modules with

orientation and curvature information. More precisely, due

to the peculiar characteristics of realistic drawing [11], a

regular grid is ideally superimposed on the original image

and two matrices (N, O) are obtained by assigning to each

cell respectively an on/off intensity value (Fig. 6(d)) and the

average orientation of the contour (Fig. 6(e)). Eventually,

the visual feature ue, forwarded to the DBN, is coded as

an angular value corresponding to the orientation value of

the image contour in the currently fixated cell, and takes the

following values (radians), ue ∈
{

0, π
8
, . . . , 7π

8

}

.

B. Inference of sensorimotor behavior through the

IOCHMM net

At this level, appropriate plans for sequences of eye

and hand movements are generated, following a Bayesian

approach.

The sequential nature of gaze allocation, and the obser-

vation that saccades are driven by neural signals that are

inherently noisy, suggest that scanpaths are best described by

stochastic processes [12], [13]. Furthermore the variability

in observable quantities, e.g. fixation duration and saccade

length, reflects not only random fluctuations in the system

but also factors such as moment–to–moment changes in

the visual input, cognitive influences, and the state of the

oculomotor system. To account for these further variables,

most recent models of eye movements in reading [14] have

adopted the Input–Output HMM (IOHMM, see [15]). In the

IOHMM the temporal evolution of the (hidden) state variable

is described as a Markov process, but conditioned on some

observed (or input) variables.

Similar considerations hold for motor planning, and this is

the main reason for the widespread diffusion of probabilistic

techniques in modeling sensorimotor behaviors in humans

and animals [4]. Furthermore, probabilistic graphical models

together with Bayesian Decision Theory are a rich tool not

only for modeling biological systems (the inverse problem,

fitting the data), but also for controlling artificial agents (the

direct problem, generating/simulating the data) [4].

Here we introduce a module based on probabilistic net-

work capable to learn the sensorimotor mapping, whose

inferences are then evaluated in the framework of Bayesian

Decision Theory, to select the best eye–hand movements

given the multimodal input and previous movements.

Since dealing with a process unfolding in time, the network

proposed is shaped as a DBN [5] for which the graph in Fig.

2 depicts pictures two temporal slices; nodes denote random

variables, and arrows, conditional dependencies.

In detail, the process corresponding to the temporal

evolution of the eye plan is modeled in our network as

an IOHMM; we have three layers of variables, i.e. in-

put variables ue, uh related to vision and proprioception

respectively, and the hidden and output variables xe, ye

corresponding to the eye plan. Similar considerations hold

for the hand plan, where the inputs are the same, while the

hidden and output variables are denoted xh, yh.
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Fig. 2. The IOCHMM’s for combined eye and hand movements. The gray
circles denote the input (u) and output (y) variables. Dotted connections in
the hidden layer highlight the subgraph that represents the dependence of
hand movements on eye movements, while continuous connections denote
the dependence of the eye on the hand.

The most important point here is that the two processes

should not be considered as independent (see section I), but

rather as coupled chains: a viable solution is to consider a

graphical model that unifies the IOHMM Model and another

DBN known in the literature as the Coupled HMM [5], [16].

We call the resulting DBN an Input–Output Coupled Hidden

Markov Model (IOCHMM, Fig. 2)

By generalizing the time slice snapshot of Fig. 2 to a time

interval [1, T ] we can write the joint distribution of the state

and output variables, conditioned on the input variables as:

p(x̄1:T , ȳ1:T | ū1:T ) =

p(xe
1|u

e
1, u

h
1 )p(ye

1|x
e
1)p(xh

1 |u
e
1, u

h
1 , xe

1)p(yh
1 |x

h
1 ) ·

T−1
∏

t=1

[

p(xe
t+1|u

e
t+1, u

h
t+1, x

e
t , x

h
t )p(ye

t+1|x
e
t+1) ·

p(xh
t+1|u

e
t+1, u

h
t+1, x

e
t+1, x

h
t )p(yh

t+1|x
h
t+1)

]

(1)

where ū1:T denotes the pair of input sequences from t = 1
to T (ue

1:T , uh
1:T ), x̄1:T denotes the pair of state sequences

and ȳ1:T the pair of output sequences.

Hidden variables xe, xh are assumed to be discrete, taking

values in
{

0, π
4
, . . . , 7π

4

}

.

In order to use the DBN as a control system, we apply

a decision step to inference results. According to Bayesian

Decision theory, if the agent is given a set of observation

data d and formulates some hypotheses h, a decision rule is

a function α(d) that associates the data with an hypothesis. A

loss function L(h, α(d)) can be defined to quantify the cost

of choosing a wrong hypothesis. Then, the agent will take

its decision so as to minimize the risk, namely a functional

that quantifies the cost of the decision weighted by the joint

probability of the data and the hypothesis:

r(α) = Σh,dL(h, α(d))P (h, d) . (2)

Different choices can be made for the cost function, and the

decision rule that minimizes the risk changes accordingly.

In the simulations presented in this work we used the most

basic cost function:

L(h, α(d)) =

{

0 if α(d) 6= h

1 otherwise
. (3)

With this choice the risk function is minimized when the

decision rule just selects the hypotheses that maximizes the

conditional probability P (h|d). In our case by substituting

h with the pair (xe
t+1, x

h
t+1), the decision rule selects the

eye–hand plans that are the argmax of the state transition

distribution:

(xe⋆
t+1, x

h⋆
t+1) =

argmax
[

p(xe
t+1, x

h
t+1|u

e
t+1, u

h
t+1, x

e
t , x

h
t )

]

.(4)

Note that, after the DBN has been trained with a suffi-

cient number of examples (see section IV), it is straight-

forward to compute at any time step t, given the in-

puts (ue
t , u

h
t ), the values of the state transition distribution

p(xe
t+1, x

h
t+1|u

e
t+1, u

h
t+1, x

e
t , x

h
t ). Moreover, such posterior

probability takes into account a factor that prevents from

moving the eye towards empty cells.

Eventually, the values of the outputs (ye⋆
t+1, y

h⋆
t+1) are found

by sampling the corresponding output distributions condi-

tioned on the hidden states, and choosing the most likely

values, which is performed by the Gaze orienting and Hand

orienting modules, respectively. Here, similarly to related

input and hidden variables, (ye⋆
t+1, y

h⋆
t+1) are assumed to be

discrete variables, taking values in the set
{

0, π
4
, . . . , 7π

4

}

.

C. Gazepoint selection and hand trajectory generation

Planning of hand trajectory is achieved by fusing the out-

puts of different sensorimotor modules of our architecture,

in the Trajectory Generator module (see Fig. 1); here the

goal is to reproduce the trajectory planning strategy that

can be inferred from the observation of human draughtsmen.

Eye tracking experiments have shown that the most common

drawing behavior is the following: a) subjects fixate on a

location on the original image, b) then move the gazepoint

towards the pencil tip, c) draw the corresponding portion

of the image and d) stop drawing and go back to point

a). Such a cyclic behavior is illustrated in Fig. 5, where

it is possible to observe the temporal sequence of drawing

movements by the subject whose scanpath is shown in

Fig. 4(a). Accordingly, in our model hand trajectory is

generated and executed in segments, and the endpoints and

intermediate key points of each segment are defined by the

fixation points.

Recall that, at any given time step t, the Gaze orienting

and Hand orienting modules provide the next eye and hand

movement directions, (ye
t ) and (yh

t ), respectively; meanwhile

a set of most salient points σ̄ is made available by the

Preattentive Vision module. The latter points are translated

to the coordinates of the hand workspace, and are used as

the starting and ending points for each trajectory segment.

Gaze points e are determined by the Gazepoint Selection

module as follows. Assume a current gaze location et ∈ σ̄;

given et and the value of ye
t , the cell where the gaze point
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Fig. 3. The 7 DOF manipulator

will move next (ǫt+1) is computed. Then, the next gaze

location et+1 is obtained by finding the most salient point

in the image patch I(ǫt+1) corresponding to the next cell.

The gaze point et and the angular value φt of the chosen

hand direction yh
t are fed into the Trajectory Generator

module. This is repeated until that et+τ ∈ σ̄; in this case

the sequence of pairs [(et+i, φt+i)]i=0,1,...τ is interpolated

by a spline, setting the slope of the curve at point et+i to

the value tan(φt+i). The resulting curve is the trajectory

segment that is fed into the Inverse Kinematic module for

generating actual motor commands.

III. INVERSE KINEMATICS

Movements of a redundant seven degree–of–freedom

(DOF) robot manipulator, having a human–like kinematic

structure (Fig. 3), have been simulated.

The drawing task considered in this paper leads to a solution

to the inverse kinematics that can be possibly evaluated and

compared with arm movements of human experimenters.

Previous work in this direction is discussed in [8].

The closed-loop inverse kinematics (CLIK) scheme [17]

has been used to obtain the joint variables of the robot

manipulator from a differential mapping between task–space

and joint–space values, denoted respectively as p and q. In

solving the kinematic inversion one should keep in mind

that in this peculiar case, i.e. the drawing task, only the first

two components of the position vector p = [ x y z ]T in

the task space are variable, while the z component remains

constant during the task execution.

To compute the inverse kinematics we resort to the differ-

ential kinematics equation:

ṗ = J(q)q̇ (5)

where J(q) is the (3 × 7) Jacobian matrix. This equation

represent the mapping of the (7×1) velocity vector q̇ of the

joint variables into the task space (3× 1) velocity vector ṗ.

It is possible to invert the equation using the pseudo–inverse

of the Jacobian matrix as follows:

q̇ = J
†(q)ṗ (6)

where J† = JT(JJT)−1 is a (7×3) matrix; it corresponds

to the minimization of the joint velocities in a least-squares

sense [17].

(a) (b) (c) (d)

Fig. 4. The scanpath executed by a human subject in the drawing task.
See 5 for the corresponding hand trajectories

(a) (b) (c) (d) (e) (f)

Fig. 5. The sequence of hand movements by a human subject in the
drawing task. The solid black square denotes the fixation. In 5(f) the circles
denote the endpoints points of each trajectory segment, found by inspection
of the video recording, as the points where the drawing movement stops
for a while. See Fig. 4(a) for the corresponding scanpath.

In order to contemplate the different characteristics of the

available DOF’s it could be necessary to modify the velocity

distribution with respect to the least-square minimal solution.

A possible solution is to consider a weighted pseudo-inverse

matrix:

J
†
W = W−1JT(JW−1JT)−1 (7)

with W−1 = diag{β1, . . . , β7}, where βi is a weighting

factor belonging to the interval [0, 1] such that βi = 1
corresponds to full motion for the i-th degree of mobility

and βi = 0 corresponds to freeze the corresponding joint.

Furthermore, redundancy of the robotic arm can be ex-

ploited to satisfy secondary tasks, without affecting the

primary task, i.e. the motion of the drawing point p. To

this end, a task priority strategy [18] is used, which leads to

the following solution:

q̇ = J
†
W (q)ṗ +

(

I7 − J
†
W (q)J(q)

)

q̇a (8)

where I7 is the (7×7) identity matrix, q̇a is an arbitrary joint

velocity vector and the operator
(

I7 − J
†
W J

)

projects the

joint velocity vector in the null space of the Jacobian matrix.

Discrete–time integration of the joint space velocity can

lead to numerical drifts; the CLIK algorithm [17] used here,

allows the system to overcome this problem by exploiting the

direct kinematics equation to compute an internal feedback

signal from the efferent copy of the joint space variables.

The drawing task is performed on a vertical plane. Con-

sequently, the secondary task of minimizing the gravity

torques can be transformed to the joint space. This constraint

provides an arm posture that is attached to the body. A

possible definition of multiple secondary tasks related to

the positioning of intermediate parts of the same kinematic

structure, including proper trajectory planning, is presented

in a more systematic fashion in [6].

IV. EXPERIMENTS AND SIMULATION

In order to test the performance of the proposed model

and compare the results with human execution, we presented
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Fig. 6. The original image (6(a)), the saliency map (6(b)), and the most
salient locations (6(c)) denoted by black circles. The red lines denote the
scanpath that would be obtained following the approach proposed in [9].
6(d) shows the imaginary grid superimposed on the image; cells containing
an ‘X’ sign are those evaluated as empty. 6(e) depicts the orientation of
the image patch contained in each non empty cell; the color code for
orientations is explained in 6(f).

to a robotic simulator the same images presented to human

subject in previous eye tracking sessions. In those experi-

ments, 25 human subjects were asked to copy the images

from life, i.e. they could look at the original image while

drawing it; eye movement data were collected using an ASL

5000 eye tracker provided by the Natural Computation Lab

of the University of Salerno. In Fig. 4 the plots of the

fixations from four subjects can be observed; more details

on the experimental setup and preliminary data analysis can

be found in [19].

A. Implementation choices

The robotic arm has 7-DOF arm and the lengths of the

links have been set on the basis of anatomic evaluations:

0.3 m for the first link, 0.25 m for the forearm and 0.15 m

for the hand-pencil link.

In the implementation of the DBN, discrete state spaces

are used for all the variables. In particular, both eye and hand

movement are coded as displacement vectors, originating

from the current fixation point or hand position respectively,

as this is the most plausible encoding in the motor areas

of primate’s brain (see e.g. [20]). Recall that eye hidden

variable xe ranges in
{

0, π
4
, . . . , 7π

4

}

and the same holds

for ye, uh, xh and yh. Differently, the visual feature ue

corresponds to the orientation value of the image contour

in the fixated region, and ranges in
{

0, π
8
, . . . , 7π

8

}

.

The problem of training the DBN consists of evaluating

the probability distributions associated with hidden and

output nodes, given any input configuration. In our case the

variables are discrete, therefore the associated distributions

are matrices, whose entries are the parameters that must

be learnt. The learning technique we adopt as the basic

building block is the Maximum Likelihood Estimate of the

parameters using the standard Expectation Maximization

algorithm for exact inference. The distributions of both

the output layer (emission probabilities) and the hidden,

unobserved layer (transition probabilities) are inferred from

a number of example sequences that show how the inputs

and outputs (observed nodes) are related.

The training examples we use are sequences that reflect the

experimental observations on eye–tracked human subjects:

hand movements are graphically continuous and correspond-

ingly the scanpath is a coarse–grained edge–following along

H
a

n
d

 P
la

n
E

y
e

 P
la

n
C

o
n

fi
d

e
n

c
e

Time StepsV
is

u
a

l 
In

p
u

t

Fig. 7. The discrete–time evolution obtained as described in section II-C,
with time increasing left to right. The bottom row is the sequence of visual
inputs, namely the orientation of the image in the region foveated at each
time step. The second bottom row shows the confidence level assigned to the
eye–hand plan chosen. The two top rows depict respectively the sequences
of eye movement plans, in green, and hand movement plans, in red, output
by the DBN.

(a) (b)

Fig. 8. The final scanpath (8(a)) and planned hand trajectory (8(b)); the
blue circles in (8(b)) denote the starting and ending points of each trajectory
portion. Both eye and hand movements start from the upper left corner.

the contours of the original image.

B. Results and comparisons

After running the model with the DBN trained as de-

scribed above, with the input image shown in Fig 6(a), the

resulting sequences of eye and hand plans ȳe, ȳh are shown

in the two top rows of Fig. 7. The corresponding scanpath

is depicted in Fig. 8(a), and it can be directly compared to

the human eye movement recordings shown in Fig. 4.

It is worth noting that a pure bottom-up, uncoupled scanpath

generation would provide a very different result. This can be

easily seen, for instance, by feeding the salient points in S

to a winner–takes–all network combined with the inhibition

of return as suggested in [9] in order to obtain the bottom-

up fixation sequence; it is readily apparent that the sequence

obtained (Fig 6(c)) is quite different from scanpaths either

generated by our approach or recorded via eye-tracking;

meanwhile the scanpath simulated by our system exhibits

a high agreement with human performance, and work on

quantitative comparisons is under way.

Fig. 8(b) shows, in green, the trajectories planned after the

DBN outputs, with the endpoints evidenced by blue circles.

(For human subjects, such endpoints have been found by in-
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Fig. 9. The time history of joint motions for the considered trajectory.

spection of the video recording, as the points where the hand

interrupts for a while the drawing movement). The results

of the kinematic inversion of such trajectories are shown in

Fig. 9, where the time histories of the joints of the robot

are depicted. Finally, Fig. 10 shows the pencil trajectory

obtained by the simulated robotic arm. It can be recognized

that the simulated trajectory and segmentation points are

qualitatively following those recorded experimentally (Fig.

5), although direct measurements of the pencil tip, wrist and

elbow would be required for a quantitative comparison of

both the mobility distribution and the resulting trajectory.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a computational model of real-

istic drawing in order to investigate the issue of visuomotor

coordination. The strategies adopted to coordinate such sen-

sorimotor processes of eye and hand movement generation,

during the drawing task, are inferred by a Dynamic Bayesian

Network, namely an Input-Output Coupled Hidden Markov

Model (IOCHMM). To the best of our knowledge such

model has never been discussed before in the literature.

Experimental results are produced using 7-DOF anthro-

pomorphic manipulator and compared to those obtained

by eye-tracked human subjects involved in drawing ex-

periments. Experiments showed that both the simulated

trajectory and the gazing points have patterns quite similar to

those obtained experimentally. As future work we prefigure

to complete the analysis of results providing a quantitative

comparison of both the mobility distribution and the final

trajectory.
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