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Abstract— This paper investigates the extent to which biar-
ticular actuation mechanisms—antagonistic actuation schemes
with spring stiffness that extend over two joints, similar in
function to biarticular muscles found in legged animals—
improve the performance of jumping and other fast explosive
robot movements. Robust gradient-based optimization algo-
rithms that take into account the dynamic properties and
various contact and actuator constraints of biarticular systems
are developed. We then quantitatively evaluate the gains in
jumping vis-à-vis conventional joint actuation schemes. We also
examine the effects of biarticular link stiffness and link mass
distributions on the jumping performance of the biarticular
mechanism.

Index Terms— Legged robot, biarticular muscle, movement
optimization, jumping.

I. INTRODUCTION

Although recent biped robots have displayed impressive

movement coordination skills that require balance and dex-

terity, as of yet none can even remotely approach the

ability of humans to jump, run, kick, or perform other fast,

explosive movements. Several studies on jumping have been

undertaken for one degree-of-freedom mechanisms [1], [2],

and for jumping robots with multiple degrees of freedom

[3], [4]. Computationally intensive numerical optimization-

based studies of hopping and vertical jumping have also been

performed [5], [6], which take into account models for the

ground-foot contact, actuators, and multibody dynamics (of

the human musculoskeletal system in the latter case), and

numerically determine optimal jumps based on, e.g., user-

specified center-of-mass trajectories, contact time, air time,

take-off time.

One intriguing attempt at addressing the limitations of

current actuators can be found in schemes that emulate

the properties of biarticular muscles such as those found

in human legs. These antagonistic muscles extend over

two joints—the human gastrocnemius muscle, for example,

extends from the knee to the ankle joints, and acts as both

a knee flexor and ankle extensor (Figure 1)—and have been

found to play a critical role in the generation of fast explosive

human movements [7]. The gastrocnemius muscle also has

the interesting feature of being connected to the foot by an

elastic tendon; several biomechanical studies have confirmed

the importance of elasticity in the tendons and muscle fibers

in enhancing, e.g., jumping and running motions [8], [9].
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Inspired by these biomechanical findings, robotics re-

searchers have pursued both mechanical designs and motion

control laws that emulate the function of biarticular mus-

cles. Saito et al [10], [11] propose a biarticular actuation

mechanism based on a bilateral servo system, and conduct

experiments involving a bipedal robot as well as an externally

powered orthosis. Tahara et al [12] show through simulation

studies that biarticular actuation schemes, when endowed

with the nonlinear and time-varying stiffness properties char-

acteristic of muscles, can considerably simplify feedback

control.

In work prior to this paper, Babic et al [13], [14] develop

a planar jumping robot in which the thigh and ankle are

connected by a biarticular link and spring-damper unit.

Maximum height vertical jumping motions for this robot

are also found under various simplifying assumptions, e.g.,

contact with the floor is modeled as a rotational joint, the

hip joint velocity is linearly related to the knee joint velocity,

the ankle joint is active during contact but becomes passive

when airborne, etc. The assumptions in [13] are made in

large part to overcome the inherent complexities of modeling

the dynamics of the biarticular jumping robot. The ensuing

optimization must converge while ensuring that the dynamic

equations are always satisfied.

While there is credible evidence suggesting that biarticular

actuation schemes are indeed helpful for generating fast ex-

plosive movements, as yet we cannot make any quantifiable

claims about the extent to which performance is improved—

to do so the dynamics need to be accounted for in a complete

way without any restrictive assumptions and simultaneous

optimization with respect to both the actuator inputs and

various parameters (e.g., spring stiffness and the angle of the

joint angle at which the passive biarticular link is activated)

must be performed.

This paper attempts to determine in a quantifiable way the

extent to how various parameters beyond the actuator input

profiles, e.g., stiffness, maximum force and velocity of the

actuators, the angle of activation for biarticular structures,

etc., improve movement performance. We make the follow-

ing specific contributions:

Dynamic Modeling and Optimization of Biarticular Struc-

tures: In previous studies on dynamics-based motion opti-

mization of both open and closed loop chains [15], [16], the

advantages of analytic gradient-based motion optimization

algorithms have been clearly demonstrated. For biarticular

structures, several complexities not addressed in these pre-

vious studies arise: the dynamics model involves not only

a closed chain with redundant actuation and spring ele-

ments, but also contact models between the feet and ground,
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the optimization involves discontinuities at several levels

(e.g., the contact conditions, joints switching from passive

to active, etc.) and diverse parameters in addition to the

actuator inputs (e.g., spring stiffness, activation angle, etc.).

This paper extends the previous Lie theoretic gradient-based

motion optimization algorithms to systems with biarticular

actuation mechanisms, with corresponding objective func-

tions for maximum height and maximum distance jumping.

The algorithms show reliable convergence behavior over a

wide range of robot structures and boundary conditions.

Evaluating the Effectiveness of Biarticular Structures:

Using the optimization algorithms developed in this paper,

we answer the question of exactly how effective biarticular

mechanisms really are as a means of generating fast explo-

sive movements in robots. Using the work of Babic et al

[13], [14] as our point of departure, we make the following

specific contributions:

• Most of the simplifying assumptions in the previous

work are discarded;

• The biarticular system’s optimized motions are com-

pared with the corresponding optimal motions obtained

for conventional and monoarticular robots;

• The effects of various mechanical design parameters

such as spring stiffness and link masses on jumping

performance are examined.

These results offer insight into how biarticular actuation

schemes should be implemented in the design of high-

performance biped robots, e.g., minimum actuator require-

ments for a given desired level of performance. The opti-

mized motions themselves can also be used as feedforward

reference trajectories in the implementation of control laws

for such systems.

This paper is organized as follows. In Section II we briefly

review biarticular actuation mechanisms, and describe the

planar jumping robot that will be the focus of our case

studies. Section III describes the algorithm for generating

optimal jumping movements, and provides a detailed analysis

of these movements for our jumping robot. Section IV

then discusses the effects of design values (spring stiffness,

activation moment time) on jump performance based on a

detailed case study for our robot. Section V concludes with

a summary, and a brief discussion of the implications of our

study on the design of next-generation robots that employ

biarticular actuation.

II. BIARTICULAR LEG STRUCTURE

Our model for a single planar jumping leg, consisting of

four links serially connected by revolute joints, is shown in

Figure 1. The base link of the robot is connected serially

to the fixed reference frame by a set of virtual joints. A

biarticular actuation mechanism is connected between the

thigh and foot, passing through the knee and ankle joints.

Since our goal in this paper is to emulate the functional

role of the biarticular muscle in improving jump perfor-

mance, rather than to capture the exact muscle dynamic

properties of biarticular gastrocnemius muscles, we express

Fig. 1. Biarticular leg model.

the biarticular actuation force for our model as

fbiarticular = −k(x − x0), (1)

where x is the length of b − a, x0 is the length of b − a

at the instant of activation, b − a is a vector represent-

ing the direction of force, and k is the stiffness of the

biarticular link. The instant at which the biarticular link

is activated is specified by the angle of the knee joint θ0:

x0 = f(qa2, qa3)qa2=θ0
, θ0 = qa2,activation. The activation

knee angle θ0 and stiffness value k completely characterize

the behavior of the biarticular actuation mechanism.

To better understand the biarticular actuation mechanism,

consider a jumping motion starting from a squat position.

Until the instant of activation, the biarticular actuation mech-

anism has no effect on the system, essentially acting as a

passive prismatic joint. When the biarticular actuation mech-

anism is activated, the robot essentially becomes redundantly

actuated by the biarticular force (one can think of a tension

spring). Immediately after robot pushes off the ground, the

biarticular actuator is deactivated. This sequence must be

executed over a short time in an optimal fashion to maximize

jump performance.

III. MOVEMENT OPTIMIZATION ALGORITHM

Our planar jumping robot model is a floating body system

in which the base link is not fixed. We can describe the base

link motion using three virtual passive joints, two prismatic

and one revolute, which are serially connected between the

system base link and the fixed reference frame. The use

of such a dynamic model employing passive virtual joints

considerably simplifies the analysis and motion optimization,

by allowing one to, e.g., optimally determine the time at

which the foot loses contact with the ground for maximum

jumping performance, and rigorously taking into account

frictional contact and collisions between the foot and ground.

Let q = (qa, qp) be the set of coordinates describing the

state of the overall system, where qa and qp denote the active

and passive joints, respectively. The dynamic equations of

motion for the system are then given by

M(q)

(

q̈a

q̈p

)

+ b(q, q̇) =

(

τa

τp

)

(2)
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where τa and τp are the torque (or force) vectors correspond-

ing to qa and qp. The solution of such systems requires a

hybrid dynamics algorithm such as the one suggested in [17],

which in effect computes

(qa, q̇a, q̈a, qp, q̇p, τp) → (τa, q̈p) (3)

from repeated iterations of both the inverse and forward

dynamics.

Accounting for both contact forces and biarticular muscle

forces, the equations of motion assume the form

M(q)

(

q̈a

q̈p

)

+ b(q, q̇) + JT
c Fc + JT

b Fb =

(

τa

τp

)

(4)

where Fc denotes the contact forces, Fb the biarticular forces

(both Fc and Fb are expressed in generalized coordinates),

and Jc and Jb are the respective Jacobians for position and

orientation. To solve the above system equations under the

action of frictional contact forces, we use Lemke’s algorithm

for the linear complementary problem (LCP) formulation,

and also use the time-stepping schemes discussed in [18],

[19] to reduce the integration error. The biarticular actuator

force is assumed to exert an external force as prescribed by

the muscle model equation (1).

Once the robot motion is determined from the correspond-

ing active joint values (qa, q̇a, q̈a) and the torques for the

passive joints τp determined from kinematic information on

the active joints, the joint accelerations q̈p of the passive

joints can then be calculated, and the joint torques for the ac-

tive joints determined via the hybrid dynamics equation. By

numerical integration complete information on the passive

joints (qp, q̇p, q̈p) can be obtained. The robot motion can thus

be described completely by joint angle position, velocity, and

acceleration profiles for the active and passive joints. The

active torque profiles required to execute the motion can also

be calculated (note that our robot model has no passive joints

excluding the three virtual passive joints, so that τp = 0).

Given the above governing equations of motions, our goal

is to optimize objective functions of the form

max
k

max
qa(t)

J = J(τa, τp, qa, q̇a, q̈a, qp, q̇p, q̈p, k)

subject to

q
a
≤ qa ≤ qa, q̇

a
≤ q̇a ≤ q̇a

τa ≤ τa ≤ τa, τp = 0
pcom ∈ Pcom, pzmp ∈ Pzmp

(5)

where pcom is the location of the center of mass of the

robot, pzmp is the zero moment point. Each joint trajectory

is parameterized using quintic B-splines; the B-spline curve

depends on the choice of basis functions Bi(t), and the

control points P = {p1, . . . , pm}, with pi ∈ ℜn. The joint

trajectories then assume the form q = q(t, P ), with

q(t, P ) =
m

∑

i=1

Bi(t)pi (6)

By parameterizing the trajectory in terms of B-splines, the

original optimal control reduces to a parameter optimiza-

tion problem, in which the optimization variables are the

control points. Once the optimal control point values are

determined, trajectories for the joint angle displacements,

velocities, and accelerations can be derived straightforwardly

from the B-spline basis functions. From that hybrid dynamics

equation (2), the active torque values τa can be calculated.

For our purposes we constrain τa using a penalty function;

by constraining the internal active torque values it is possible

to control the contact forces indirectly. Joint angle limits are

easily bounded using B-spline properties; joint velocity limits

can also be similarly constrained [20].

In the event that the biarticular link stiffnesses are assumed

to have a fixed value, the objective function and constraints

of Equation (5) can be expressed more concretely as

min
P

J(P ) = −Jperformance + Jtorque + Jposture

subject to

p0 = · · · = p4 = qa0, pm−3 = · · · = pm = qaf

q
a
≤ pi ≤ qa, q̇

a
≤

(k−1)(pj−pj−1)
tj+k−1−tj

≤ q̇a

(7)

where Jperformance represents a performance index to be

maximize (e.g., maximum height of the robot center of mass

in the case of vertical jumping), Jtorque is a penalty function

bounding τa to within [τa τa] i.e.,

Jtorque =

tf
∑

0

(τa−τa)T (τa−τa)+(τa−τa)T (τa−τa), (8)

and Jposture is a posture criterion to ensure that the robot

does not fall over. The robot’s initial and final states (as

described by the displacement, velocity, and acceleration of

the active joint angles) are easily set by adjusting the B-spline

control points as in Equation (7); the posture can thus be

checked by appropriately constraining the joint information

corresponding the virtual passive joints (e.g., Jposture =
(qp(tf ) − c1)

2, or (pcom(tf ) − c2)
2). By checking the final

robot posture, it is possible to guarantee that the robot does

not fall over during execution of the whole motion (because

no external forces are exerted on the robot while in flight, it

is impossible to recover posture without external power).

IV. CASE STUDIES

This section considers two case studies involving (i) ver-

tical jumping; and (ii) broad jumping. For the vertical jump

case we determine the maximal height jumps for a given

robot model, and also optimize the robot with respect to

various design parameters (biarticular link stiffness, moment

of activation, link masses). The nonlinear optimizations are

executed using Matlab’s Optimization Toolbox version 7.0

running on a Core 2 (2.13 GHz) personal computer. The

stopping criterion | Jk+1(P ) − Jk(P ) |< ǫ with ǫ set to

10−3 ∼ 10−5 is used for our optimizations.

A. Vertical Jump

We first consider maximum height vertical jumping move-

ments for our biarticular model. Table I lists the kinematic

and dynamic properties of the robot model used. An initial

jumping motion is first generated via manual adjustment of

control points, with the total jumping time set to 0.5 seconds.
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(a) Biarticular legged. (b) Monoarticular legged.

Fig. 2. Robot model.

TABLE I

ROBOT MODEL PARAMETERS.

Link Length (mm) COM (y,z) Mass/Inertia (kg, kgmm2)

Trunk a=370 (100, 787.5) (2.031, 20366)
Thigh b=254 (100, 475.5) (1.033, 7440)
Calf c=255, f=30 (100, 221) (0.963, 7487)
Foot d=93.5, e=200 (100, 46.75) (0.399, 1057)

Figure 3(a) shows the initial vertical jumping motion. The

goal is to maximize the vertical height of the robot’s center

of mass at the final time tf . Joint displacement and velocity

limits can be imposed as simple linear inequality constraints

on the B-spline control points. Limits on the actuated joint

torques, and the selection of the final robot posture, are

imposed by use of appropriate penalty functions to avoid

the use of nonlinear constraints in the optimization.

The optimized vertical jumping motions are benchmarked

with similar jumping motions for a conventional robot with-

out biarticular actuation and also for a monoarticular robot

as shown in Figure 2(b). We first consider the case of a

biarticular actuated robot with biarticular link stiffness k =
10000 N/m and activation angle θ0 = −90◦. The boundary

conditions and constraints for the corresponding optimization

are shown in Table II. The results of the optimization are

TABLE II

OPTIMIZATION PARAMETERS FOR VERTICAL JUMPING.

Optimization setting (hip, knee, ankle)

Total jumping time (sec) 0.5
Integration sampling time (sec) 0.005
Friction coefficient 0.6
Number of variables 15

Performance index (max) Jperformance = Height2
pcom(tf )

Joint angle limits (rad) q = (π, 0, π), q = (−π,−π,−π)

Joint velocity limits (rad/sec) q̇ = (20, 20, 20), q̇ = −q̇

Joint torque limits (Nm) τ = (20, 20, 20), τ = −τ
Initial active joint values qa0 = (1.919,−2.094, 0.873)
Final active joint values qaf = (0.175,−0.262,−1.047)
Boundary conditions q̇a0 = q̈a0 = q̇af = q̈af = 0

shown in Table III and Figure 3. Please see the accompanying

video attachment to identify the corresponding optimized

motions. As shown in Table III, the biarticulated robot

reaches a maximum height that is nearly 23% higher than

that of the conventional robot. Figure 4 shows the joint ve-

TABLE III

OPTIMIZATION OF VERTICAL JUMP

Conventional Mono- Bi-articulated

Maximum jump height (m) 0.1230 0.1294 0.1509
Optimization time (min.) 38.7 38.05 37.79

(a) Initial motion.

(b) Optimized motion for the conventional robot.

(c) Optimized motion for the monoarticular
legged robot (k=10000 N/m, θ0=−90◦).

(d) Optimized motion for the biarticular legged
robot (k=10000 N/m, θ0=−90◦).

Fig. 3. Vertical jump.

locities/torques, normal contact forces, and mono-/biarticular

link force trajectories for the optimized vertical jumps. It can

be verified that the joint velocities and torques stay within

the prescribed limits. A sudden and drastic increase in torque

values for the biarticulated case can also be observed that

cannot be generated by the actuators of the conventional

robot. Figure 5 also shows the corresponding increase in

power exertion for the optimized vertical jump. The apparent

discontinuities in the torque profiles are due to changes in

the contact state.

As shown in Figure 4, the maximum torque in the ankle

joint is lower in the system with the biarticular actuator

compared to the conventional and monoarticular cases. At

the end of the stance phase, when the biarticular element

exerts a force, the torques in the proximal joints, hip, and

knee increase, while the torque in the ankle decreases.

This phenomenon can be traced to power transfer from the

proximal joints to the distal joints delivered via the biarticular

element. This effect allows one to implement an actuator in

the ankle joints that has a lower maximum torque compared

to the knee and hip actuators. The smaller ankle motor is
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generally associated with a lower weight; hence, the mass

of the calf and foot can be reduced. The further results of

this study in Tables VI and VII show that a lower weight of

the distal elements (calf and foot) leads to higher jumping

performance, even for the cases when the upper segments

are made slightly heavier.
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Fig. 4. Joint velocities/torques, normal contact forces, and biarticular
force trajectories for optimized vertical jumps (gray: initial motion, blue:
conventional robot, green: monoarticular legged robot, red: biarticular
legged robot).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−100

−50

0

50

100

150

P
−

h
ip

 (
W

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−50

0

50

100

150

200

250

P
−

k
n

e
e

 (
W

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−50

0

50

100

150

200

250
Time (sec.)

Time(sec)

P
−

a
n

k
le

 (
W

)

Fig. 5. Joint power profiles for optimized vertical jumps (blue: conventional
robot, green: monoarticular legged robot, red: biarticular legged robot).

TABLE IV

ACTIVATION MOMENT ANGLE OPTIMIZATION FOR SELECTED STIFFNESS.

Jump height (m)

Activation angle (◦) k=5000 k=10000 k=15000

-70 0.0758 0.0753 0.0997
-80 0.1025 0.0758 0.1128
-90 0.1242 0.1509 0.1140
-100 0.1503 0.1297 0.1066
-110 0.0757 0.1121 0.0889

1) Activation angle optimization: We also optimize the

vertical jumping motion with respect to the activation angle,

i.e., the angle at which the biarticular actuation is applied.

The results are shown in Table IV; it can be observed that

the optimal activation angle lies in the range −90 ∼ −100◦.

Not surprisingly the precise values depend on the choice of

biarticular link stiffness values.

TABLE V

STIFFNESS OPTIMIZATION FOR SELECTED ACTIVATION ANGLES.

Jump height (m)

Stiffness (N/m) θ0 = −80◦ θ0 = −90◦ θ0 = −100◦

5000 0.1025 0.1242 0.1503
7000 0.1241 0.1651 0.1105
9000 0.1491 0.1242 0.1074

11000 0.0759 0.1250 0.0982
13000 0,0949 0.0758 0.1134

2) Stiffness optimization: We now optimize the biarticular

link stiffness values for a prescribed set of activation angles;

the results are shown in Tables IV and V; the results show

that the maximum height attained is clearly higher for the

biarticulated robot than for the conventional robot (0.123 m).

Table V indicates that for our particular biarticulated robot

model, the maximum height for prescribed stiffness value

7000 N/m is attained when θ0 = −90◦.

TABLE VI

SELECTED LINK MASSES SET (kg).

Link I II III IV V

Trunk 2 3 1.1 0.4 2
Thigh 1 0.5 1.1 1 0.6
Calf 1 0.5 1.1 1 0.4
Foot 0.4 0.4 1.1 2 1.4

3) Effects of link masses on vertical jumping: We now ex-

amine the effects of the choice of link masses on the vertical

jump height. Table VI shows five different sets of choice of

link masses; for each set we determine the maximum vertical

jumping height via our optimization algorithm. Note that the

total robot is constrained to be a constant 4.4 kg in all five

cases. The results of the optimization are given in Table VII.

As can be seen for the results obtained for case IV, a heavy

foot is clearly disadvantageous for jumping, and having the

mass concentrated in the trunk is more helpful. On the other

hand, in most current humanoid robots it is not uncommon

to see actuators with more or less similar specifications used

at each joint, and from this perspective having the mass

concentrated in one particular link can be disadvantageous.

Our results indicate that link masses have a strong influence

on vertical jumping motions, particularly for conventional

robots (the effects are less pronounced for biarticular robots,

allowing for a greater range of mass distributions over the

links for biarticulated structures). The best result is obtained

for the biarticulated case II.

B. Broad jump

We now generate maximum distance broad jumps for both

the biarticulated and conventional robot structures. For the

biarticular mechanism, the link stiffness is set to k = 5000
N/m, and the activation angle to θ0 = −80◦. The boundary
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TABLE VII

MAXIMUM HEIGHT JUMPS FOR SELECTED LINK MASSES.

Jump height (m)

Link masses set Conventional robot Biarticulated robot

I 0.1287 0.1307
II 0.0753 0.1921
III 0.0854 0.1057
IV 0.0752 0.0756
V 0.0755 0.1390

(a) Initial motion.

(b) Optimized motion for the conventional robot.

(c) Optimized motion for the biarticular legged
robot(k=5000 N/m, θ0=−80◦).

Fig. 6. Broad jump.

TABLE VIII

MAXIMUM DISTANCE BROAD JUMP.

Conventional robot Biarticulated robot

Maximum distance (m) 0.4768 0.5695
Optimization time (min.) 40.89 57.26

conditions and constraints for the broad jump are the same as

those used for vertical jumping, except for the final posture

and total jumping time (set to tf = 0.8 sec in the case of the

broad jump). The results of the optimization are shown in

Table VIII and Figure 6. For the particular choice of model,

the maximum distance achieved by the biarticulated robot is

nearly 20% more than that of the conventional robot.

V. CONCLUSION

This paper has examined the extent to which biarticular

mechanisms can improve the jumping performance of legged

structures. After developing detailed planar dynamic models

of biarticular legged structures, we formulate the ensuing

optimization problems for maximum height vertical jumping

and maximum distance broad jumping. Case studies involv-

ing a four degree-of-freedom biarticular leg structure are

compared with those for an identical structure without biar-

ticular actuation, and a quantitative comparison performed

for the two cases. Our results indicate that biarticular actu-

ation not only considerably improves jumping performance

(by up to 25%), but that the resulting performance gains are

less affected by, e.g., the choice of link mass distributions.

Current research is directed at performing experiments with

a hardware prototype of a biarticular jumping robot [21].

Future work on movement optimization with spatial dynamic

models, involving more complex movements such as running

high jumps and hurdling, is underway.
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