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Abstract— GPS-free localization is essential for navigation
and information tagging in small robotic fish-based aquatic
mobile sensor networks. Constraints on size, weight, and
onboard computing power, together with noisy underwater
environment, have made underwater localization a particularly
challenging problem. In this paper a comprehensive experimen-
tal study is presented on underwater acoustic ranging methods
based on time difference of arrival (TDOA). Performances
of four methods are characterized and analyzed, including
threshold-crossing, tone-detection, correlation integral, and
sliding-window fast Fourier transform (FFT) methods. The
study facilitates the understanding of capabilities and limita-
tions of different underwater ranging methods and provides
important insight into choice of hardware and algorithms for
localization of networks of small aquatic robots.

I. INTRODUCTION

Localization without the use of Global Positioning Sys-
tems (GPS) becomes increasingly important as mobile com-
puting devices and wireless sensor networks are getting per-
vasive. A number of GPS-free localization approaches have
been proposed and investigated, involving the use of infrared,
acoustic, ultrasonic, and radio frequency (RF) signals. Local-
ization is typically achieved through triangulation, based on
either angle of arrival (AoA) [1]–[3] or distance of travel.
The distance measurement, or ranging, can be realized using
the received signal strength information (RSSI) [4]. RADAR
[5] and SpotOn [6] are two examples of RF RSSI-based
ranging. But it is well documented that this approach is not
reliable in cluttered environments. Another major approach
in ranging is to measure the time of signal propagation,
such as Time of Arrival (TOA), Roundtrip Time of Flight
(RTOF), or Time Difference of Arrival (TDOA). The TDOA
measurement is often made for concurrently sent RF and
ultrasonic (or acoustic) signals, example of which include
AHLoS [7], the Cricket location-support system [8], and the
Calamari system [9].

There is a growing need in underwater localization, driven
by recent developments in micro and small robotic fish.
It is attractive to deploy mobile sensor networks for var-
ious aquatic sensing applications, such as monitoring of
aquafarms for improved productivity, monitoring of drink
water reservoirs to prevent algae blooms, surveillance in
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seaports, and reconnaissance in hostile waters. One such
sensing platform is the centimeter-scale biomimetic robotic
fish propelled by electroactive polymers, developed by Tan
et al. [10]. Having onboard localization system is essential
for successful navigation of the robot and for effective
coordination of robotic fish network (e.g., generation of
schooling behaviors). For these systems, GPS signals are
often unavailable (underwater), and even if they are available,
the positioning resolution is typically inadequate.

While underwater localization and its related topics have
been studied for almost a century [11]–[14], it remains
challenging to perform onboard localization for small under-
water robots (in this paper, by “small”, we mean the order
of 10 cm or less). First, comparing to in-air localization,
underwater localization itself is much more difficult. RF
signals have large attenuation in water. Sound travels at about
five times the speed as it does in air, which implies five
times error in time-of-flight ranging methods assuming the
same error in measuring the time of flight. The influence
of currents, depth, temperature and salinity on sound speed
[15] inevitably introduces error in estimation of travel time
of the acoustic signal. Second, the speed (typically under 10
cm/s) and the size of the robotic fish demand high resolution
in localization. Desired localization resolution should be at
the order of 10 cm or less. Finally, the constraints on power,
size, and weight require that the onboard localization system
should have minimal volume and computational complexity.
One should note in particular the last two points: while
sonar is a mature, routine technology for submarines, the
ranging/localization resolution requirement is much more
relaxed, and there is virtually no constraint on the power/size
of acoustic transmitters or receivers. Work related to this
paper can be found in [16]; however, the authors used pow-
erful hydrophones as tranceivers and full-fledged computer
systems for signal analysis, both of which will be unavailable
for small, autonomous robotic fish.

This paper addresses the aforementioned challenges by
experimentally investigating the capabilities and limitations
of underwater localization methods for robotic fish equipped
with small, lower-power sounder (buzzer) and microphones.
The emphasis is placed on TDOA-based ranging as it
is a key element in localization. Four methods are stud-
ied and compared for obtaining TDOA: threshold-crossing,
tone-detection, correlation integral, and sliding-window fast
Fourier transform (FFT). The first two methods have already
been fully implemented on the existing biomimetic robotic
fish, and online tracking experiment has also been conducted
using the tone-detection method when the fish is tugged in
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a swimming pool. The correlation integral and FFT methods
are examined on a computer using data collected from the
robotic fish hardware. While requiring more computational
power than the first two methods, they show great promise
in achieving acceptable ranging resolution. Both methods
can be implemented onboard the fish with an upgraded
microcontroller, which is work underway.

The remainder of the paper is organized as follows. Sec-
tion II describes the biomimetic robotic fish and its hardware
for localization. In Section III through Section VI, all four
methods of ranging are discussed respectively. Concluding
remarks are provided in Section VII.

II. DESCRIPTION OF ROBOTIC FISH AND LOCALIZATION

HARDWARE

Fig. 1 shows the robotic fish used in this study. It is an
upgraded version from that reported in [10]. The fish is pro-
pelled by an ionic polymer-metal composite (IPMC) actuator.
IPMC is a class of electroactive polymers that generate large
bending movement under a low actuation voltage (several
volts) [17]. The IPMC actuator is further covered by a passive
fin to enhance propulsion. The rigid shell of the robot was
custom-made based on the shape of a real fish. It houses
rechargeable batteries, a microcontroller (PIC16F688, Mi-
crochip), a Zigbee-standard RF wireless communication chip
(XB24, Maxstream), a temperature sensor, and accessory
circuit components such as voltage regulators, MOSFETs,
filters, and amplifiers. All these components are contained
in a water-proof packaging with necessary wires and pins
exposed for charging batteries and driving IPMC actuator.
Without the tail, the fish measures 14.8 cm long, 6.3 cm
high, and 5.2 cm wide. The tail is about 5 cm long. The
total weight of the robotic fish is about 140 g.

Fig. 1. The biomimetic robotic fish propelled by an ionic polymer-
metal composite caudal fin.

The onboard circuit also has interface to a buzzer (CPE-
267, CUI Inc.) and to a microphone (MR-23793, Knowles
Acoustics) for localization purposes. These products (not
shown in Fig. 1) have been chosen based on their water-
proof packagings, small sizes, and light weights. The buzzer
produces a sound signal of about 2.8 kHz upon activation.
Ultrasonic transducers are not used due to their directivity
[8], which would create blind spots for robotic fish. One
pair of buzzer and microphone is currently considered for
each robotic fish for sending and detecting sound waves. This

will allow ranging measurement between a robotic fish and
a fixed beacon or between fish, and thus enable localization
with respect to fixed, known locations or relative localization
among fish nodes. Note that for navigation purposes, one
also needs to know the orientation (or relative orientation)
of each fish. While this could be addressed by using two
pairs of buzzer/microphone and exploiting differential trans-
mitting/detecting techniques [16], the small size of the fish
relative to the acoustic wavelength (about 60 cm) makes
the approach difficult. Instead, an electronic compass will
be used for measuring fish orientation. Therefore, this paper
will be focused on localization and in particular, ranging,
only.

The ranging is based on the Time Difference of Arrival
(TDOA) between an RF signal and an acoustic signal. As
the RF signal propagates much faster than the acoustic one,
its travel time is assumed to be zero. Each robotic fish or
a fixed beacon is equipped with a buzzer, a microphone,
a microcontroller, and a Zigbee chip, as described earlier
(the last two also perform other control and communication
functions). As RF signals propagate poorly underwater, an
antenna is placed in air at the back of the fish (Fig. 1). The
ranging is carried out as follows:

• Step 1: Node 1 transmits an RF packet to Node 2 to
indicate it is ready;

• Step 2: Node 2 simultaneously transmits an RF packet
and an acoustic pulse;

• Step 3: Node 1 receives the RF packet and starts on-
board timer;

• Step 4: Node 1 receives the acoustic pulse and stops
on-board timer;

• Step 5: Distance between receiver and transmitter is
estimated from the timer reading.

While the protocol about seems straightforward, it is very
challenging to determine the precise moment that an acoustic
signal arrives (Step 4) due to various noises, multi-path
effects, and hardware constraints. It is precisely this problem
the paper aims to address. The four sound-arrival detection
methods to be discussed later all start with the signal Vmic,
which is obtained after the raw microphone signal passes an
onboard amplifier and band-pass filter; see Fig. 2.

Band-Pass
FilterAmplifierPre-Amp

Vmic

Fig. 2. Onboard preprocessing of microphone signal.

In order to understand general characteristics of the acous-
tic signal, Vmic is recorded using a Linux-based real-time
control station with a sampling frequency of 49.7 kHz, for a
buzzer-microphone separation of 30 cm (in air). In Fig. 3, the
dashed line indicates when the acoustic signal was activated
at the buzzer, while the solid line represents Vmic. As ex-
pected, there should be a set travel time between transmitting
the acoustic pulse and receiving it. For 30 cm-separation,
this should be 0.869 ms (with speed of sound in air taken
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to be 345.18 m/s at T = 23◦C). A closer look at 0.869 ms
shows that the received signal looks like background noise.
In fact a signal starts to show up after around 1.24 ms, a
difference of 0.371 ms that can be explained by transient
times of the buzzer and the microphone for them to reach the
steady-state. More experiments have shown that the transient
times are roughly constant and can be compensated during
ranging. In actual ranging, delay also occurs due to RF
transmitting/receiving and microcontroller operations, which
has been experimentally characterized to be 6.59 ms and
compensated in range calculation.
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Fig. 3. Typical microphone signal in relation to activation of the
sounder (separation: 30 cm).

III. RANGING BASED ON THRESHOLD-CROSSING

The simplest method for detecting the arrival of acoustic
signal is to compare Vmic against a threshold value. Vmic

was fed into two on-board comparators, both internal to the
microcontroller. One comparator is set up with a positive
threshold (with respect to the average DC value of Vmic),
while the other with a negative threshold. Once Vmic exceeds
either threshold, the on-board timer is stopped.

Both in-air and underwater experiments were conducted,
partly to understand the difference between in-air and un-
derwater ranging. In-air experiments were run in a eight by
eight meter room, cluttered with laboratory equipment and
other lab members. Data was collected for different distances
L, specifically, every 20 cm starting from 40 to 200 cm.
At each distance, 20 acoustic pulses were sent, each lasting
20 ms with a 30 ms silent interval between pulses. Note
that multiple data points were collected at each distance to
minimize the effect of random noises. A threshold of ± 100
mV was used. Fig. 4 shows the ranging results, both the raw
data and their medians and averages at each distance. Clearly
the median curve provides much more consistent result since
it effectively eliminates the impact of outliers. The ranging
error was found to be about 2 cm, which is comparable to
the state of the art reported in literature for in-air ranging.
Ranging in air beyond 200 cm was not pursued further as
the main goal was to investigate underwater localization.

Underwater experiments were performed in a 25 by 10
yard swimming pool, with depth varying from 4 feet in
one end to 10 feet in the other end. Swimmers were not
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Fig. 4. Experimental results on ranging in air using threshold
crossing. (a) Estimated distances based on average and median of
data points; (b) ranging error based on median of data points.

present when the data were collected; however, constantly
running pool filtration system contributed noises. As seen
from Fig. 5, the noise underwater is much higher than in air.
The threshold in sound wave detection was raised to ± 600
mV. Beyond 500 cm, the signal was barely distinguishable
from the noise. Again, the median curve of data points
provides more consistent ranging result, with a maximum
ranging error of about 90 cm over 500 cm range. This
clearly illustrates the difference between in-air and under-
water acoustic ranging. Another interesting observation from
Fig. 5 is that the empirical ranging curve (median-based)
appears to be nonlinear. This is likely due to the nonuniform
depth of the pool, which leads to varying propagation speed
of the sound [15].

IV. RANGING BASED ON TONE DETECTION

The second method uses a tone detector chip (LMC567,
National Semiconductor) tuned to 2.8 kHz, with Vmic as its
input. The output is connected to the onboard microcon-
troller. The output remains at the positive voltage-supply
rail as long as no signal is detected. Once the internal
phase locked loop (PLL) is locked, the output is switched
to ground, at which point the timer is stopped.

The experiment was run underwater, with 20 data points
collected at each distance. The experimental results are
shown in Fig. 6. Comparing to the threshold-crossing
method, the approach is more robust to noises and the
median-based curve and the average-based one almost over-
lap. It can cover almost double the range of the threshold-
crossing method. The problem with tone detection, however,
is the uncertainty in time it takes for the internal PLL to

714



0 100 200 300 400 500
0

100

200

300

400

500

Distance (cm)
(a)

D
is

ta
nc

e 
(c

m
)

 

 

Med. based est.
Ave. based est.
Ideal

0 200 400 600
0

10

20

30

40

50

60

70

80

90

Distance (cm)
(b)

Ab
so

lu
te

 E
rro

r (
cm

)

Fig. 5. Experimental results on ranging underwater using threshold
crossing. (a) Estimated distances based on average and median of
data points; (b) ranging error based on median of data points.

lock on. Considering the wavelength of sound underwater,
a ranging error of more than 50 cm will be introduced for
one missed cycle in PLL. Furthermore, it is assumed that the
frequency of the sounder is constant. This is not the case;
experimental data showed a standard deviation of 90.4 Hz,
which affects the lock-on time. From Fig. 6, the ranging error
is mostly under 130 cm (maximum 180 cm) over about 1000
cm. Percentage-wise, this is comparable to the threshold-
crossing method. Interestingly, Fig. 6 seems to confirm the
nonlinear range function observed also in Fig. 5.

A localization experiment was further performed using the
tone-detection method. As shown in Fig. 7, the robotic fish
was manually tugged through the pool with a microphone
tied to the bottom of the fish. Tugging the fish was decided
instead of letting the fish swim by itself, since the pool
current due to filtration processing would push the fish
off a straight line and create difficulty for validating the
localization method. Two buzzers were attached underwater
to the wall of the pool at each end. Localization took place
every 20 seconds, for six locations. For each location, 10
pulses (each lasting 20 ms with 30 ms silence in between)
were sent by one buzzer and then 10 pulses sent by the other
buzzer, which took a total of 1 second. Fig. 8 shows the result
of localization for two runs. It can be seen that the onboard
tone-detection can approximately track the position of the
robot, with an error commensurate with that in Fig. 6.

V. RANGING BASED ON CORRELATION INTEGRAL

In order to improve ranging accuracy, we have further
explored two methods that require more intensive processing
of the signal Vmic (this section and Section VI). For both
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Fig. 6. Experimental results on ranging underwater using tone
detection. (a) Estimated distance versus actual distance; (b) ranging
error based on median of data points.
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Fig. 7. Localization experiment in a swimming pool.
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Fig. 8. Experimental results on localization based on tone-detection.

methods, as proof of concept, Vmic was recorded using a
data acquisition card and then processed in a computer to
calculate the arrival time of sound. Both methods will be
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implemented onboard the fish after moderate upgrading of
the processing hardware.

The correlation integral method is based on integrating
the product of Vmic and a sinusoidal signal sin(ωt), where ω
denotes the frequency of the acoustic signal. In particular,
once the receiving node gets the RF packet, it starts to
compute

∫ t
0 Vmic(τ)sin(ωτ)dτ . Suppose the distance is L. Let

v denote the sound speed. Then under an ideal condition,
Vmic(t) can be expressed as

Vmic(t)=

{
0 if t ≤ L

v

A(L)
(
1− e

t−L/v
T

)
sin(ωt + ωL

v +φ) if t > L
v

,

(1)
where A(L) represents the steady-state amplitude of Vmic,
which is a function of L, and φ denotes the (unknown) phase
of the original signal at the buzzer. T represents the time
constant of the buzzer/microphone transient dynamics; refer

to Fig. 3. Letting θ �
= ωL/v+φ , one can show, when t ≤ L

v ,
the integral signal I(t) =

∫ t
0 Vmic(τ)sin(ωτ)dτ = 0, and when

t > L
v ,

I(t) =
A(L)cos(θ )

2
(t− L

v
)− A(L)

4ω
sin(2ωt +θ )

+
A(L)T cos(θ )

2

(
e−

t−L/v
T −1

)
+

A(L)
4ω

sin(
2ωL

v
+θ )

+
2ω

4ω2 +T 2 e−
t−L/v

T

(
sin(2ωt +θ )− T

2ω
cos(2ωt +θ )

)

− 2ω
4ω2 +T 2

(
sin(2ωL/v+θ )− T

2ω
cos(2ωL/v+θ )

)
. (2)

Despite the complex looking of ( 2), only the first two terms
will persist as others will vanish due to the exponential
decaying. This implies that, when t > L

v , I(t) will be approx-
imated by a linearly growing term superimposed by a low-
amplitude, high frequency sinusoidal signal. Fig. 9 illustrates
the analysis above, where one can see the integral curve
consists of roughly the superposition of a linearly decaying
signal and a small oscillatory signal. The time of travel can
be inferred from the time instant t when I(t) starts to deviate
from 0, and in practice, deviate beyond certain threshold.

Fig. 10 shows the experimental results on ranging using
correlation integral, where 14 acoustic pulses were sent and
collected for each location. Significant improvement can be
seen over the previous two methods: a maximum ranging
error of 45 cm over the range of 6 m. The remaining error is
due to the difficulty in proper choice of the threshold, which
is a constant tradeoff problem between false alarm and mis-
detection.

VI. RANGING BASED ON SLIDING-WINDOW FFT

The last method studied involves FFT analysis for a sliding
window of sampled Vmic signals. In the experiment, the
sampling frequency is 49.7 kHz. A window with length 35
samples is adopted, which represents roughly two periods
of the acoustic signal. FFT is performed recursively since
only one sample is different for two consecutive windows.
The algorithm then looks for the frequency component
corresponding to the acoustic signal. When its magnitude is
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Fig. 9. Illustration of the integral method. (a) Example of Vmic; (b)
correlation integral.
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Fig. 10. Experimental results on ranging underwater using corre-
lation integral. (a) Estimated distance versus actual distance; (b)
ranging error based on the median curve.

higher than a set threshold, the acoustic signal is considered
to have arrived. The sample number of the start of the present
window is recorded and translated to time. Fig. 11 shows the
ranging result based on the FFT method, where 14 acoustic
pulses were used at each location. From the figure, this
approach can achieve 25 cm ranging precision for a range
of 8 m, which is the highest among all methods studied in
this paper.
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Fig. 11. Experimental results on ranging underwater using sliding-
window FFT. (a) Estimated distance versus actual distance; (b)
ranging error based on the median curve.

TABLE I

SUMMARY OF FOUR RANGING METHODS

Methods Range Accuracy Complexity

Threshold Small Low Low
Tone-detect Large Low Low

Integral Medium High Medium/High
FFT Large High High

VII. CONCLUSIONS

In this paper, comprehensive experimental investigation of
ranging methods was reported for centimeter-scale under-
water robots, together with analysis on sources of ranging
errors. The work was motivated by the need to localize such
robots for mobile sensing applications, under the requirement
of high localization precision yet with severe constraints
on hardware/software size and complexity. Capabilities and
limitations of each of the four methods were examined and
compared, which are summarized in Table I.

The study concludes that it is possible to achieve under-
water localization resolution of 20 cm over a range of 10 m,
with the small, low-power buzzer and microphone used in
this paper. Work is underway to characterize the localization
performance over 25 m. We are also working on onboard
implementation of the correlation integral method and the
FFT method. Since both algorithms can be executed recur-
sively, onboard localization can be realized by upgrading the
current microcontroller to a dsPIC-family chip by Microchip,
which is capable of performing complicated computations.

The correlation integral method could also be implemented
using additional circuit components.
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