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Abstract— In this paper, we explore the capabilities of actu-
ated models of the compass gait walker on rough terrain. We
solve for the optimal high-level feedback policy to negotiate
a perfectly known but qualitatively complex terrain, using a
fixed low-level controller which selects a high-level action once-
per-step. We also demonstrate that a one-step time horizon
control strategy using the same low-level controller can provide
performance which is surprisingly comparable to that of the
infinite time horizon optimal policy. The model presented here
uses a torque at the hip and an axially-directed impulsive toe-off
applied just before each ground collision. Our results provide
compelling evidence that actuated robots based on passive
dynamic principles (e.g. no ankle torque) should inherently be
capable of walking on significantly rough terrain.

I. INTRODUCTION

For legged robotic locomotion to become practical out-

side of a controlled, laboratory setting, robots will need

robust, dynamic control strategies which can cope with the

variability in environmental conditions expected in day-to-

day operation. Such robots will encounter differences in

terrain profiles and in characteristics such as contact friction

and coefficient of restitution, and they will be subject to

intermittent external forces.

Passive dynamic principles have inspired a promising

avenue of research in legged robotics ([12], [7], [11], [4],

[14], [16], [6]. Purely passive walkers, which require no

actuation or active control, exhibit stable, limit-cycle walking

down a gentle slope. Unfortunately, the coupling of the

stance- and swing-leg dynamics in a passive walker requires

a narrow set of acceptable initial conditions (about some

nominal, post-collision fixed point in state space) for any

particular step to be completed successfully. As a result,

passive walkers have notoriously fragile basins of attraction;

minor perturbations, such as subtle variations in terrain, tend

to knock them away from the fixed point and to cause

them to fall. Work has been done toward the problem of

walking on varying terrain, but in general, the methodologies

developed to date have some limitations. These methods

include a passivity-passed approach [14], which requires a

fully-actuated ankle torque rather than the passive ground

contact found in our compass gait model, and a manifold

control method [6], which is currently limited to gradual

variations in slope. Additionally, the sample-based hybrid-

zero dynamic (HZD) approach [16] is very promising as a

low-level solution for efficient and robust control, but it still

does not solve the high-level problem of setting the low-level

control at each step to walk on more complex terrain profiles.
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In this paper, we present highlights of our results in the

study of a compass gait (CG) walker model with torque actu-

ation at the hip and an axially-directed source of impulse at

each toe; the model is described in more detail in Section II.

Our goal is to assess the capabilities of this machine on

known (but complex) upcoming terrain; no attempt has been

made to consider energy efficiency.

II. METHODOLOGY

To solve for the approximate optimal control solution for

the compass gait walker on rough terrain, we discretized the

dynamics, creating a mesh of post-collision states. We then

used the value iteration algorithm [15] to find an optimal

step-to-step feedback policy for the discretized system. We

tested two low-level control strategies for defining the state-

to-state dynamics. The first method was a Proportional-

Derivative (PD) controller regulating the inter-leg angle, α.

The second method was an impulsive toe-off, applied just

before the next ground collision. We tested each method

alone and also tested both together. Details on the simulations

are given below in the remainder of this section.

A. The Compass Gait Model
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Fig. 1. The compass gait piped model. Simulations in this paper used the
following parameter values: m = 2kg, mh = 2kg, a = .5m, b = .5m

The basic compass gait model, introduced by [7], is used

in all simulations and depicted in Figure 1. It consists of two

rigid legs: a stance leg (at absolute angle θ1) and a swing

leg (at angle θ2, relative to θ1). The legs meet at a linkage

referred as the “hip”, which has a pure torque source. The

contact point with the ground is referred to throughout as the

“toe” and it is a zero-torque, frictionless joint. The model has

a distributed inertia, represented by mass mh at the hip and

a mass m along each leg, as illustrated. Ground collisions

are assumed to be instantaneous and perfectly inelastic, and

the labels of stance and swing leg are interchanged at each

step. Parameters for the model used throughout this paper
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are given in the caption of Figure 1, and the direction of

walking for all simulations is from the left to the right.

To address the practical concerns of defining and detecting

ground collision, we assume that the toe of the swing leg is

immediately retracted once a ground collision occurs and

remains so until the stance leg reaches a vertical position,

at which time it extends instantaneously. We also include

an ideal impulsive source at each toe which we assume

can deliver an impulse of prescribed magnitude axially at

the stance leg contact immediately preceding an upcoming

collision between the swing leg and the ground. Inclusion

of an impulse source is inspired by the work of [10], who

illustrate that this is an efficient method for imparting energy

to the system to make up for energy lost in ground collisions.

They use the simplified version of the compass gait (i.e. all

mass concentrated at the hip; infinitesimal mass at each toe).

B. Optimal Control Using Value Iteration

For each of the three low-level control strategies, we

discretized the dynamic system and found the optimal high-

level policy which maximized the distance traveled over

time before falling. To determine the full capabilities of

the walker, one would need to discretize over time and to

select a torque magnitude at each dt. We chose to discretize

on a step-to-step basis instead, primarily to reduce the size

of the state space (from 5 to 4 dimensions) to keep the

problem computationally tractable, and we were pleased to

find that such a strategy still produces impressive results in

our simulations.

The post-collision state of the walker is represented in

most plots using four meshing state variables, X1m through

X4m, which are defined below.

X1m : absolute x coordinate of stance leg on terrain

X2m : relative x coordinate of swing leg from stance leg

X3m : absolute angular velocity of stance leg, θ̇1

X4m : relative angular velocity of swing leg, θ̇2

The table below gives the number of elements and range

spanned for each meshing state. Mesh elements are spaced

evenly in each dimension.

State # elements min. value max value units

Xm1 140 0 7 (m)

Xm2 15 -0.85 -0.15 (m)

Xm3 14 -3 -0.4 (rad/s)

Xm4 14 -0.1 5.1 (rad/s)

The value function and feedback policy between the

discretization points was smoothed using barycentric inter-

polation [13]. To maximize the distance traveled, the cost to

optimize was defined as the negative of the distance traveled

when a successful step was taken, and as 0 at each step for all

walkers which have entered an absorbing, “fallen” state. The

value function and feedback policy between the discretization

points was smoothed using barycentric interpolation [13].

Any post-collision states falling outside the defined mesh

range were automatically binned into the absorbing failure

(fallen) state.

C. Rough Terrain Model

We attempted to solve the optimal control problem for

each controller on a variety of terrain profiles, some of

which include discontinuities in addition to changes in slope.

Examples are shown in Figures 2, 4, 6 and 8.

To test the performance limits of each control strategy

analyzed, each terrain was scaled to make its features more

dramatic until the value iteration failed to converge on a

stable walking policy. Each terrain consists of a particular

profile which repeats every 7 meters, as shown in Figure 2.

This allows the value iteration to converge on a fixed policy

using a finite representation for the terrain and a finite

number of iteration steps. A repeating terrain may also be

thought to represent the terrain of a compass gait walker

circling endlessly on a fixed boom; we intend to experiment

with the control strategies described in this paper on a real

robot mounted to a such a boom, as depicted in Figure 10

in Section VI.
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Fig. 2. An example of terrain. Tested terrain profiles always repeat every
7 meters, allowing the numerical mesh to “wrap”.

D. Hierarchical Controller Design

Our simulations investigate two simple low-level control

options, and optimal policies are found for each of three

combinations: using each option individually, and using them

together. One low-level option is Proportional-Derivative

(PD) control of a desired inter-leg angle, and the other is im-

pulsive stance-foot toe-off immediately preceding the ground

collision for each new step. The high-level control action

selected at each step in the value iteration correspondingly

consists of one or both of the following: (1) a desired inter-

leg angle, αdes, for the PD controller and (2) the magnitude

of the impulse.

The primary purpose of the PD controller is to regulate of

the step length of the walker, which in turn selects upcoming

foot placement on the terrain. However, the dynamics are

inherently coupled and the controller also affects the entire

dynamic state of the walker. The main goal in employing

the impulsive toe-off action is to compensate for the energy

which is lost at each ground collision. This in turn should

allow the walker to take larger steps than would otherwise

be possible, since more energy is (of course) lost for larger

step angles [3].

1) PD Control of Inter-leg Angle: The low-level PD

controller regulates the inter-leg angle, α, defined as:

α = θ2 − π (1)

Our PD controller was designed by hand, using simulations

of the compass gait walker on flat terrain and observing
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performance given intermittent, impulsive disturbances. It

acts only during the latter part of each step, after the stance

leg has passed vertical. Activating the torque too early in the

gait tends to cause the walker to fall over backward before the

stance leg has successfully passed beyond the vertical point

in its trajectory. The hip torque, τ , is defined by Equation 2:

τ =

{

Kp(αdes − α) + Kd(0 − α̇) , if θ1 < π
2

0 , otherwise
(2)

where Kp = 100 and Kd = 10.
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Fig. 3. Comparison of passive and PD-controlled walker on a constant
4◦ slope. Although the peak swing-leg velocity each cycle is over 2 times
greater for the PD walker, the overall speed in walking is only about 9%

faster, since the dynamics are still dominated by the passive, inverted-
pendulum motion of the stance leg.

2) Impulsive Toe-Off Immediately Before Impact: In this

control strategy, a particular magnitude impulse is applied

axially from the stance leg downward, toward ground. It is

well-known that applying the impulse immediately before

collision is an efficient method for imparting energy to the

compass gait walker [10]. We assume the impulse is executed

perfectly and instantaneously.

The high-level feedback policy is evaluated at each post-

collision state, but we desire that a commanded pre-collision

impulse action affect the current step. Therefore, to model

the transition, the post-collision state is simply ”rewound” to

its corresponding pre-collision state, using the well-known

equations for conservation of angular momentum during the

inelastic collision [7]. Then, the contribution of the impulse

(m× v) is added as appropriate at the toe of the stance leg,

and the equations for angular momentum (now going from

pre- to post-collision) are applied once again. Note that the

velocity of the swing leg must be tested after the impulse is

applied to ensure that the velocity of the swing leg toe is still

directed toward the ground. A large enough impulse could

theoretically send the entire walker airborne! However, this

has not been a practical concern for the magnitudes we have

tested in our simulations.

Our initial tests using value iteration allowed for the

selection of one of 21 values ranging from 0 to 2 (kg-m/s).

Because the cost function described below rewards taking as

large a step as possible, the optimal impulse selected was

almost always the maximal value possible. To simplify the

controller and to reduce the run-time for value iteration (by

a factor of 21), we eventually set the impulse value to a

constant magnitude of 2 at every step.

E. Control Using a Single-Step Time Horizon

Our main purpose in this paper is to demonstrate the

theoretical capabilities inherent in the underactuated walker

as terrain becomes more extreme, and so we provide perfect

long-horizon knowledge of the terrain to decouple this factor

from the issue of what is dynamically possible, given the

underactuation. However, to further explore the theoretical

performance of the compass gait model on rough terrain, we

also tested a one-step control strategy. At each step, a new

action is selected by simulating a nominal value for αdes

for one step, assuming we have access to a perfect model

of the one-step dynamics. If the tested value results in a

successful (non-fallen) uncoming step, it is selected as the

desired action. If not, we continue to search inter-leg angles

in a discrete, prescribed sequence until a successful candidate

angle is found.

The one-step control policy we implement is extremely

primitive, yet it has proven surprisingly effective. This result

provides some evidence that use of a very limited look-ahead

(e.g. 1 to 3 steps) may provide near-optimal performance.

Correspondingly, it follows that it may also be possible

to obtain near-optimal results on real-world legged robots

having only a short-sighted knowledge of upcoming terrain.

We anticipated this result after our previous work, where we

noted a surprisingly fast mixing dynamics of the metastable

limit cycle generated by a passive compass gait walker on

statistically rough terrain [2].

III. RESULTS

This section highlights our simulation results for each of

the three control strategies described in Section II. Summa-

rized briefly, the PD controller is effective in regulating foot

placement on terrain; however, it allows for a disappointingly

limited variations in step width or height. The toe-impulse
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action is intended to enable the walker to negotiate more

extreme terrain by pumping additional energy into the system

efficiently, but performance of the impulse control alone is

unfortunately quite fragile. Combining a constant magnitude

toe-off with the PD controller provides a significantly better

design that either component demonstrates alone, allowing

for significantly greater variations in both step length and

height during continuous walking.

A. Performance Using Only PD Control

Figures 4 and 5 show examples of terrain which our sim-

ulation successfully negotiates using only the PD controller.

The performance is good, but it is importantly limited by the

inherent inefficiency of adding energy through hip torque,

alone. A single step which is too wide or too steeply uphill

results in rapid failure, as the compass gait simply cannot

complete a subsequent step after a large loss in energy.
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[all scales are in meters]

Fig. 4. Examples of terrain which were successfully negotiated using
PD control alone. Terrain at top is flat except for a set of bottomless no-go
gaps. The middle and bottom examples consist of piecewise slopes. Figure 5
shows detail from the bottom plot.
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Fig. 5. A close-up of the bottommost terrain in Figure 4.

Several features can be noted about both the performance

capabilities of the walker and the nature of the resulting

optimal control policy. Qualitatively, the walker is able to

perform much larger steps when the terrain is sloped down-

hill, as one might naturally expect. Also, the more extreme

(“difficult”) the terrain was, the more likely the optimal

policy was to select the same, repeated set of footholds over

a particular portion of the terrain, as illustrated in Figure 6.

The terrains shown throughout the paper are what the

authors consider to be the most impressive examples for

which successful optimal policies could be found; on more

extreme terrain, there were no solutions which resulted in

continuous walking. That noted, it is interesting to compare
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Fig. 6. The optimal footholds on extreme terrain quickly converge to
a fixed pattern (top). On easier terrain, no fixed pattern emerges, because
the cost function always rewards taking the largest steps possible (bottom).
In intermediate terrain, we see an intermediate level of organization in the
pattern of footholds (middle). The x locations of footholds taken are plotted
as dots here and in Figure 8, with the earliest steps plotted lowest and with
dots repeating as the terrain repeats, every 7 meters.

the features of the three types of intermittent terrain in

Figures 4. On the flat (topmost) terrain, gap width was about

11 cm on average, up to a maximum of 18 cm; for the

piecewise sloped terrain (bottom), the gaps needed to be

somewhat smaller: 8 cm on average up to a maximum of

about 10 cm. The downhill terrain (shown in the middle)

has an average grade of 4◦ and correspondingly permits

dramatically larger steps: 30 cm on average, with the larger

step being about 47 cm – or nearly half the leg length.

The overall variation in terrain height away from a

constant-slope terrain is not significantly different for the

downhill terrain with large steps as compared with the

piecewise sloped terrain. Excluding the part of the terrain

with intermittent gaps, the piecewise terrain has a standard

deviation (SD) of 1.07 cm, and a max-to-min height dif-

ference of 5.15 cm. Subtracting out the net slope of 4◦, the

“downhill” terrain height has a standard deviation of 1.26 cm

and max-to-min height different of 6.15 cm. Step width on

this terrain does vary significantly (from about 28 cm to

63 cm), but it cannot maintain a gait with continuously

small footsteps without tripping forward and falling after

a few steps. Torque-only actuation is often insufficient to

completely regulate energy.

B. Performance Using Only Toe-Off Control

It was hoped that an impulsive toe-off controller might

produce better results than the PD controller. However, the

toe-off alone results in a surprisingly fragile walking cycle
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which requires a fairly precise initial condition and allows for

almost no variations in terrain height. We let a walker under

impulse-only control reach a steady limit cycle on terrain

which is completely flat (0◦ slope), using a constant impulse

value of m × v = 2 (kg-m/s). Then we introduce slight,

rolling bumps into the terrain of about 1/12 the magnitude

of those seen on the terrain in Figures 8.

After reaching the mild bumps on the terrain, the “toe-off

only” walker takes one step with a resulting downward slope

of -.7◦ and then “trips up” while attempting a subsequent

step at +.35◦. The performance is quite poor, even if one

allows for the selection of the magnitude of the impulse.

Without more direct regulation of the upcoming step length,

the walker quickly falls on even trivial terrain.

Figure 7 shows the dynamic states (angles and angular ve-

locities) of the walker during the same trial described above.

These data are presented primarily to allow quantitative and

qualitative comparison with the dynamic states during the

trials using both PD and impulse control, shown in Figure 9.

With the torque actuation from the PD controller, the steps

are generally both much larger (X2 is larger) and faster (there

are more steps per second, and X3 and X4 are both larger

when hip torque is employed). Note that two of the dynamic

states plotted in these figures differ from the meshing states

defined in Section II-B: X1 = θ1 and X2 = θ2, while

X4 = Xm4 = θ̇1 and X3 = Xm3 = θ̇2.
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Fig. 7. Dynamic states using impulsive toe-off control, only.

C. Performance Using Both PD Control and Toe-Off

Our most impressive performance by far is obtained by

combining the low-level PD controller with the an impulse

of magnitude 2 (kg-m/s) preceding every ground collision.

The optimal control policy converges to a successful policy

for continuous walking on the terrain shown in Figure 8,

which has a standard deviation (σ) of 4.7 cm and a max-to-

min difference in height of 19.1 cm. The step-to-step heights

between footholds actually achieved along this terrain have

σ of 3.3 cm, and σ of the inter-leg angle at each step is about

5.9◦.

The dual-mode control strategy was so powerful that we

were also able to obtain long trials of continuous walking

(over 60 seconds in duration) using the simple, one-step

control method described in Section II-E. The bottom of

Figure 8 shows footholds taken during one such trial using

the one-step planner. Here, the standard deviation in step-

to-step height is 5.0 cm, and the SD in α is 8.8◦. Finally,

Figure 9 depicts the dynamic states for both the optimal

and one-step control policies. Note here that the selected

set-point for α (X2 = α + π) has very little variation in

the one-step planner. Deviations in the set point of α are

occasionally required for success, but not if a nominal first-

tested value (of 28◦) works. It is intriguing that this low-level

controller works surprisingly well even given such a clearly

sub-optimal high-level policy. This leads us to suspect that

it is quite probable that a more intelligently-design short-

sighted planner might perform nearly as well the optimal

(far-sighted) one.
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Fig. 8. Footsteps taken during a 60-second trial using the optimal control
policy from value iteration (top) and using a one-step time horizon (bottom).
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Fig. 9. Dynamic states during a using the optimal control policy from
value iteration (top) and using the one-step control strategy (bottom).
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IV. DISCUSSION

We wish to bring some particular issues to the attention

of the reader in this section. First, we note that care must

be taken in interpolating the inherently discontinuous policy

for walking on rough (most particularly, on intermittent)

terrain to select control actions. We discovered a persistent

and catastrophic interpolation error which occurred from

time to time when evaluating the optimal policy during

simulations. For gaps, there are transition points where one

must decide to take either a small step or a large step

to avoid such regions. We found there were occasionally

but consistently states where barycentric interpolation of the

policy resulted in a medium-sized step which landed in a

no-go zone. Although [13] provide an excellent reference on

issues of stochasticity and discontinuity of value function in

implementing the solution to a dynamic system via value

iteration, their solutions can be expensive in practice and do

not directly address our particular interpolation issues, which

are associated with sharp discontinuities in our policy.

The second issue we bring to the reader’s attention here

is that our solutions do not attempt to exploit the low

cost of transport and efficiency which are so characteristic

and appealing in particularly well-designed passive dynamic

walkers, such as the Cornell biped [5], [9]. Our purpose

here was to demonstrate the theoretical performance possible

for passive-based walking with an inherently underactuated

ankle. Further study can be done using a cost function which

takes into account both the distance traveled and the cost of

transport.

Finally, we note that the success of a simple, intuitive

strategy for control of the Raibert hopper on intermittent

terrain in [8] inspired our inclusion of intermittent gaps

in some of our own terrain examples. The simple control

ideas of the Raibert hopper have since provided a basis

for the practical design of impressively robust control for

the dynamic quadruped “BigDog” on rough terrain [1]. We

conjecture that the future for dynamic legged bipedal robots

may follow a similar path, using lessons learned from the

compass gait model as a basis for impressive controllers on

advanced robots based on passive dynamic principles.

V. CONCLUSIONS

The compass gait model can successfully negotiate an

impressive range of rugged terrain using a surprisingly

simple control strategy. A simple yet effective low-level

control strategy can be obtained by combining a toe-off just

before each ground collision with a PD control loop on the

desired inter-leg angle. The magnitude of the toe-off can be a

constant value for all footsteps, so that the high-level control

at each step consists solely of the desired inter-leg angle.

The action of the toe-off insures energy in added efficiently

at each step, while actively controlling the step width tends

to regulate the dynamics around a nominal trajectory in state

space.

VI. FUTURE WORK

Given the success of our simulations, we plan to imple-

ment a similar control strategy on real compass-gait robot.

The robot will be mounted on a boom, providing lateral

stability but also introducing some additional, unmodeled

dynamics. We are hopeful that the inherent stability demon-

strated by the simple low-level control strategy described in

this paper can also be demonstrated on the real-world system.

We expect that a controller based on the same practical

principles will provide a good initial control policy, to be

optimized online using model-free gradient-based learning

methods.

Fig. 10. Compass gait robot posed on rough terrain.
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