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Abstract— This paper studies the efficiency and asymptotic
stability of a dynamic bipedal gait with a constraint on the
impact posture. First, we generate a gait by using tracking
control to achieve the desired trajectory of the hip-joint angle,
and show that there is a trade-off between efficiency and ro-
bustness through a numerical simulation. Second, we investigate
the asymptotic stability of the gait from the mechanical energy
balance viewpoint, and discuss the importance of the control
input properties. Furthermore, we point out that there is a
feedback in mechanical energy in the discrete walking system,
and it is difficult to detect a stable 2-period gait.

I. INTRODUCTION

Detection of limit cycle stability is a basic problem in

research on robotic bipedal locomotion. Dynamic walkers,

especially passive-dynamic walkers [1], that generate limit

cycles with impacts have been the subject of this sort of

study, but their nonlinearity including impulsive effects is

very complicated and is not thoroughly understood yet.

Several approaches to detect limit cycle stability have

been proposed, and they use certain techniques to simplify

the walking system. Among them, the constraint on impact

posture is a key factor for the stability of dynamic walking

[2][3], and the constraint on restored mechanical energy

guarantees a stable gait. We showed that these two con-

straints asymptotically stabilized dynamic gaits through the

same stability mechanism as in a rimless wheel and clarified

how gait stability can be guaranteed [4].

Based on observations, this paper studies the asymptotic

stability of dynamic bipedal gaits that only have constraint

on impact posture. It introduces a planar underactuated biped

model with semicircular feet and a torso, which has 2-

D.O.F. and one active joint. Both constraint conditions on the

impact posture and restored mechanical energy are needed to

guarantee the asymptotic stability of the gait. The robot this

paper considers, however, can achieve only one constraint

condition of them due to the underactuation, and it takes

the constraint on impact posture. The restored mechanical

energy then changes with respect to the initial conditions

and control input. In this case, the features of the restored

mechanical energy with respect to the control input must be

numerically examined. Through numerical studies, we show

how the dynamic bipedal gait changes with respect to the

torso’s physical parameters. We also discuss the asymptotic
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stability of the dynamic gait and feedback structure of the

mechanical energy inherent to the walking system.

II. DYNAMIC GAIT GENERATION WITH

CONSTRAINT ON IMPACT POSTURE

A. Model of underactuated biped with torso

This paper deals with a planar underactuated biped model

with semicircular feet and a torso as shown in Fig. 1. A

bisecting hip mechanism (BHM) [5] is used to stabilize the

torso passively in an upright pose. Through the synergistic

effect of BHM, we can efficiently generate a dynamic bipedal

gait without having to maintain the torso’s posture actively.

Semicircular feet are also very effective for generating an

efficient dynamic gait [6][7]. Two joint torques between each

leg and torso can be exerted. Let θ =
[
θ1 θ2 θ3

]T
be the

generalized coordinate vector; the dynamic equation of the

biped model is then

M (θ)θ̈ + h(θ, θ̇) = Su + JT
HλH , (1)

where

Su =

⎡
⎣ 1 0

0 1
−1 −1

⎤
⎦[u1

u2

]
, (2)

and JT
HλH ∈ R

3 denotes the constraint force of the BHM.

The geometric relation between the torso and legs according

to the BHM is given by

θ3 =
θ1 + θ2

2
+ ψ, (3)

where ψ [rad] is the offset angle of the torso. We will

choose it to be zero and won’t investigate its effect. The

time derivative of Eq. (3) is

θ̇3 =
θ̇1 + θ̇2

2
. (4)

This can be simply rearranged as

JH θ̇ = 0, JH =
[
1 1 −2

]
. (5)

This leads to JH θ̈ = 0, and by substituting this into Eq. (1)

and eliminating λH , we obtain

λH = −XH(θ)−1JHM (θ)−1
(
Su− h(θ, θ̇)

)
, (6)

XH(θ) = JHM(θ)−1JT
H . (7)

By substituting Eqs. (6) and (7) into Eq. (1), we can further

simplify the robot’s dynamic equation to

M (θ)θ̈ = Y H(θ)
(
Su− h(θ, θ̇)

)
, (8)

where

Y H(θ) = I3 −XH(θ)−1JT
HJHM(θ)−1. (9)
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Fig. 1. Model of planar underactuated biped robot with semicircular feet
and torso

Please see [8] for further details. The heel-strike is modeled

as an inelastic collision and is described in the next section.

B. Dynamic gait generation

We first synthesize a desired trajectory for the hip-joint

angle. Considering smooth motion of the hip-joint, we intro-

duce the following fifth-order time-dependent function.

θHd(t) =

{
a5t

5 + a4t
4 + a3t

3 + a0 (0 ≤ t < Tset)
θ∗H (t ≥ Tset)

The coefficients, ai, are determined so that they satisfy the

following boundary conditions:

θ̈Hd(0) = 0, θ̇Hd(0) = 0, θHd(0) = −θ∗H ,

θ̈Hd(Tset) = 0, θ̇Hd(Tset) = 0, θHd(Tset) = θ∗H ,

and they are given by⎡
⎣a5

a4

a3

⎤
⎦ =

⎡
⎣ T 5

set T 4
set T 3

set

5T 4
set 4T 3

set 3T 2
set

20T 3
set 12T 2

set 6Tset

⎤
⎦
−1 ⎡
⎣ 2θ∗H

0
0

⎤
⎦ , (10)

and a0 = −θ∗H . The desired settling time, Tset, is chosen

empirically, and we assume that the settling-time condition

is always satisfied. After the settling time, the hip-joint

angle is kept constant, θ∗H , and the constraint control on the

impact posture is achieved. We simply call the generated gait

constrained compass gait.

We now synthesize the output following control by using

the hip-joint torque. We choose θH as the system’s control

output; i.e., θH =
[
1 −1

]
STθ, and its second-order deriva-

tive with respect to time is

θ̈H =
[
1 −1

]
STθ̈

=
[
1 −1

]
STM−1Y H

([
1

0

−1

]
u1 − h

)

=: Au1 −B, (11)

where

A =
ˆ
1 −1

˜
S

T
M

−1
Y H

2
4

1

0

−1

3
5 , B =

ˆ
1 −1

˜
S

T
M

−1
Y Hh.

Then we can consider the following trajectory tracking

control input:

u1 = A−1 (ū+B) , (12)

ū = θ̈Hd + kd

(
θ̇Hd − θ̇H

)
+ kp (θHd − θH) , (13)

where kp and kd are the PD gains.
Fig. 2 shows the simulation results for a constrained

compass gait with the physical parameters as in Table I. The

energy efficiency is much worse than that of underactuated

virtual passive dynamic walking [8]. The specific resistance

is 0.1066 [-]. This is caused by the negative input power

due to the tracking control (See Fig. 2 (e)). The mechanical

energy must be monotonically restored by the control input to

achieve high energy-efficiency, unlike in Fig. 2 (d). However,

the robustness of the dynamic gait is much better than one

without desired trajectories. The torso length, lT , can be set

very long. Fig. 3 shows the stick diagram for one cycle of

motion for a constrained compass gait. We can see from this

figure that the long torso is passively stabilized to remain

upright through the effect of the BHM [5][8].
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Fig. 2. Simulation results for constrained compass gait with upper body
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TABLE I

PARAMETERS OF BIPED WALKING SYSTEM

m 5.0 kg
mT 10.0 kg
a 0.50 m
b 0.50 m

l (= a+ b) 1.00 m
lT 0.70 m
I 0.001 kg·m2

IT 0.001 kg·m2

R 0.30 m
θ∗
H

0.60 rad
ψ 0.00 rad
kd 100 s−1

kp 2500 s−2

Tset 0.80 s

Fig. 3. Stick diagram of steady walking pattern

III. ENERGY LOSS COEFFICIENT

The heel-strike is modeled as an inelastic collision. We

introduce the extended coordinate vector, q ∈ R
6, and the

model then becomes

M̄(q)q̇+ = M̄(q)q̇− − JI(q)TλI , (14)

JI(q)q̇+ = 07×1, (15)

where M̄ ∈ R
9×9 and JI ∈ R

7×9. λI ∈ R
7 means the

impact force on the robot. The details are omitted. Following

Eqs. (14) and (15), we obtain the post-impact velocity as

q̇+ =

(
I9 − M̄

−1
JT

I

(
JIM̄

−1
JT

I

)
−1

JI

)
q̇−

=: Y (q)q̇−. (16)

The relation q̇− = H(q)θ̇
−

also holds, where

H(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R 0 0
0 0 0
1 0 0

R+ (l −R) cos
θ∗

H

2
−(l −R) cos

θ∗

H

2
0

−(l −R) sin
θ∗

H

2
−(l −R) sin

θ∗

H

2
0

0 1 0

R+ (l −R) cos
θ∗

H

2
0 0

−(l −R) sin
θ∗

H

2
0 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (17)

and this is a function matrix only of θ∗H . On the other hand,

the constraint control of the impact posture leads to the

following relation:

q̇− = H(θ∗H)

⎡
⎣ 1

1
1

⎤
⎦ θ̇−1 . (18)

By substituting this into Eq. (16) and considering the relation

between θ̇
+

and q̇+, we finally obtain

θ̇
+

=

⎡
⎣ 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

⎤
⎦Y H

⎡
⎣ 1

1
1

⎤
⎦ θ̇−1 =: ξθ̇

−

1 . (19)

The kinetic energy just after impact is then given by

K+ =
1

2
ξTM(−θ∗H)ξ

(
θ̇
−

1

)2

=:
1

2
M̄+

(
θ̇
−

1

)2

, (20)

and that just before impact on the other hand is

K− =
1

2

⎡
⎣1

1
1

⎤
⎦

T

M(θ∗H)

⎡
⎣ 1

1
1

⎤
⎦(θ̇−1 )2

=:
1

2
M̄−

(
θ̇
−

1

)2

.

(21)

Because of M(θ∗H) = M (−θ∗H), energy loss coefficient, ε,

becomes

ε :=
K+

K−
=
M̄+

M̄−
, (22)

and depends only on θ∗H . The constraint control of the impact

posture not only reduces the system’s D.O.F. [2][3] it also

keeps the energy loss coefficient constant.

Fig. 4 plots ε with respect to torso length, lT , and torso

mass, mT . ε monotonically increases as both parameters

increase. The reason is as follows. In such cases, as shown

in Fig. 5, the CoM rises and the relative hip-joint angle of

its equivalent biped model with mass-less legs closes. This

decreases the energy dissipation [7]; i.e., ε increases.
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IV. ASYMPTOTIC STABILITY OF DYNAMIC GAIT

A. Constraint on restored mechanical energy

The i+1-th kinetic energy just before impact is determined

by the i-th one and the restored mechanical energy in the i-th

step; it is expressed as

K−[i+ 1] = K+[i] + ΔE. (23)

Here, by considering the relation

ε =
K+[i]

K−[i]
, (24)

we obtain the following recurrence formula for K−:

K−[i+ 1] = εK−[i] + ΔE. (25)

If ε and ΔE are kept constant, the general term of K− is

obtained as

K−[i] =
ΔE

1− ε
+ εi

(
K−[0]−

ΔE

1− ε

)
, (26)

and we get

K−[∞] = lim
i→∞

K−[i] =
ΔE

1− ε
. (27)

This proves asymptotic stability. Let θ̇
−

∗
= θ̇

−

1 = θ̇
−

2 > 0
be the equilibrium point of the angular velocity just before

impact in the forward walking motion, and it should satisfy

K−[∞] =
1

2
M̄−

(
θ̇
−

∗

)2

=
ΔE

1− ε
. (28)

This leads to the following result.

θ̇
−

∗
=

√
2ΔE

M̄− (1− ε)
(29)

This stability mechanism is equivalent to that of a rimless

wheel [4], and the generated gait always becomes asymptot-

ically stable so long as collisions occur.

B. Without constraint on restored mechanical energy

We next consider a case without a constraint on the

restored mechanical energy. ΔE should be considered to be

a discrete state variable, ΔE[i], and the recurrence formula

should be rewritten as

K−[i+ 1] = εK−[i] + ΔE[i]. (30)

For two given initial kinetic energies, K−

1 [i] and K−2 [i], the

following equations

K−1 [i+ 1] = εK−1 [i] + ΔE1[i], (31)

K−2 [i+ 1] = εK−2 [i] + ΔE2[i], (32)

hold and define the approximate rate of change of the return

map:

δ :=
K−1 [i+ 1]−K−2 [i+ 1]

K−1 [i]−K−2 [i]
. (33)

The asymptotic stability condition is then expressed as

|δ| < 1. (34)

Figs. 6 and 7 plot the Poincaré return map of K− for three

values of lT and mT . We can conclude from their slopes that

all gaits are asymptotically stable around each equilibrium

point. The slopes are mainly determined by the energy loss

coefficient, i.e., the impact posture. The slope becomes ε for
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ΔE = 0, but differs if there is no constraint on the restored

mechanical energy. We discuss this in the next section.

V. ENERGY FEEDBACK STRUCTURE IN

DYNAMIC WALKING SYSTEMS

A. Mechanism of discrete energy feedback

As seen in Figs. 6 and 7, the Poincaré return maps of K−

seem to be straight lines. This result implies that the relation

between K−[i] and ΔE[i] also should be linear. Figs. 8 and

9 plot the relations, and we can see that they are almost

straight in all cases. They should be able to be approximated

by linear functions of the form

ΔE[i] = C1K
−[i] + C0, (35)

where C1 and C0 are constant coefficients. By substituting

this into Eq. (30), we obtain

K−[i+ 1] = (ε+ C1)K
−[i] + C0, (36)
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and the general term becomes

K−[i] = (ε+ C1)
i

(
K−[0]−

C0

1− ε− C1

)
+

C0

1− ε− C1

.

(37)

The asymptotic stability is thus

K−[∞] = lim
i→∞

K−[i] =
C0

1− ε− C1

. (38)

Here, we assume the following condition holds.

|ε+ C1| < 1. (39)

This stability principle can be shown to be the same as Eq.

(25) by replacing ε+C1 and C0 with ε and ΔE, respectively.

It is remarkable that the restored mechanical energy in

the form of Eq. (35) can be regarded as a state feedback

control for the discrete walking system of Eq. (30). Fig. 10

shows the block diagram. The coefficient C0 is the feed-

forward input and K−[i] is the system’s state. It is known

that passive dynamic walking inherently has a feedback

stabilization mechanism [10], whereas a similar mechanical

energy mechanism exists in dynamic walking system with a

constraint on impact posture.

We calculated the values of the coefficients in the nu-

merical examples. Tables II and III lists these coefficients

calculated by the least squares method and limit value of

K−. They show that Eq. (39) is satisfied for all cases.

TABLE II

MEASURED COEFFICIENTS AND K−[∞] FOR THREE lT CASES

Case A1 Case A2 Case A3
lT [m] 0.4 0.7 1.0
ε 0.8527 0.8938 0.9207
C1 −0.4031 −0.3664 −0.3410
C0 4.0397 3.0783 2.5027

ε+ C1 0.4496 0.5273 0.5796
K−[∞] = C0/(1 − ε− C1) 7.3399 6.5126 5.9539

TABLE III

MEASURED COEFFICIENTS AND K−[∞] FOR THREE mT CASES

Case B1 Case B2 Case B3
mT [kg] 5.0 10.0 15.0

ε 0.8571 0.8938 0.9082
C1 −0.6500 −0.3664 −0.2155
C0 4.4593 3.0783 2.2197

ε+ C1 0.2072 0.5273 0.6927
K−[∞] = C0/(1 − ε− C1) 5.6246 6.5126 7.2222

ΔE[i]C0 + K−[i+ 1]+

ε

+ +

K−[i]1

z

C1

Fig. 10. Energy feedback structure in discrete-time walking system

B. Detection limit of limit-cycle stability

Here we discuss the detection limit of the limit cycle sta-

bility. Goswami et al. discovered that passive-dynamic walk-

ers often exhibit period-doubling bifurcations and chaotic

behavior [9]. The active walker this paper considers also

exhibits bifurcations. When lT = 0 and Tset is large, ε

approaches −1. Fig. 11 shows the Poincaré return map of

K− for three values of Tset, and Table IV lists the calculated

coefficients and the limit value of K−. From Fig. 11, we

can see that ε almost becomes −1 when Tset = 1.485 [s],

and the calculated result in this case shows that the gait

is unstable. In contrast, the numerical simulation indicates

that the limit cycle converges to a stable 2-period gait, as

shown in Fig. 12. This means the stability detection using

an approximate linear function was an error. This is because

the linear function can only find a stable 1-period gait or

unstable gait.

For this reason, we must check the features of ΔE[i] with

respect to K−[i] in the whole range to understand the limit

cycle stability exactly. We must conclude that it is impossible

to detect the stability of 2n-period gaits. As shown in Fig. 13,

a linear approximation of the Poincaré return map can only

give detections of stability or instability about the generated

dynamic gait. Therefore, to clarify not the local but the global

stability of the dynamic gait, the restored mechanical energy
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Fig. 11. Poincaré return map of kinetic energy just before impact for three
values of Tset

TABLE IV

MEASURED COEFFICIENTS AND K−[∞] FOR THREE Tset CASES

Case C1 Case C2 Case C3
Tset [s] 1.10 1.30 1.485
ε 0.8727 0.8727 0.8727
C1 −1.1402 −1.4909 −1.8747
C0 9.5085 11.6941 14.3630

ε+ C1 −0.2674 −0.6181 −1.0019
K−[∞] = C0/(1 − ε− C1) 7.5022 7.2270 Unstable

should obey the following nonlinear function

ΔE[i] =

∞∑
j=0

Cj

(
K−[i]

)j
. (40)

However, the stability analysis becomes complicated in this

case.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated the asymptotic stability of

dynamic bipedal gaits that have a constraint on the impact

posture only and discussed the energy feedback structure.

We showed that there is a limit to detecting the limit cycle

stability including 2n-period gaits with a linear function

approximation of the return map.

As discussed in [4], two constraint conditions are nec-

essary to guarantee limit cycle stability, and in this sense,

dynamic walkers should have enough active joints to meet

them. We conclude that all or almost all joints of the robot

must be driven during the stance phase to realize stable

dynamic walking.

In the future, we will investigate the limit cycle stability

in a more general case without any constraint conditions.
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Fig. 12. Phase plane of 2-period gait where Tset = 1.485 [s]
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